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Abstract

Pairs of polyhedra connected by a piecewise-linear bijection appear in different fields

of mathematics. The model example of this situation are the order and chain polytopes

introduced by Stanley in [Sta86], whose defining inequalities are given by a finite partially

ordered set. The two polytopes have different face lattices, but admit a volume and lattice

point preserving piecewise-linear bijection called the transfer map. Other areas like

representation theory and enumerative combinatorics provide more examples of pairs of

polyhedra that are similar to order and chain polytopes.

The goal of this thesis is to analyze this phenomenon and move towards a common

theoretical framework describing these polyhedra and their piecewise-linear bijections.

A first step in this direction was done by Ardila, Bliem and Salazar in [ABS11], where the

authors generalize order and chain polytopes by replacing the defining data with a marked

poset. These marked order and chain polytopes still admit a piecewise-linear transfer map

and include the Gelfand–Tsetlin and Feigin–Fourier–Littelmann–Vinberg polytopes from

representation theory among other examples. We consider more polyhedra associated to

marked posets and obtain new results on their face structure and combinatorial interplay.

Other examples found in the literature bear resemblance to these marked poset polyhedra

but do not admit a description as such. This is our motivation to consider distributive

polyhedra, which are characterized by describing networks in [FK11] analogous to the

description of order polytopes by Hasse diagrams. For a subclass of distributive polyhedra

we are able to construct a piecewise-linear bijection to another polyhedron related to

chain polytopes. We give a description of this transfer map and the defining inequalities

of the image in terms of the underlying network.
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Zusammenfassung

In verschiedenen Bereichen der Mathematik tauchen Paare von Polyedern auf, die durch

eine stückweise lineare Transferabbildung in Bijektion stehen. Das Vorzeigebeispiel für

diese Situation sind die von Stanley in [Sta86] eingeführten Ordnungs- und Kettenpolyto-

pe, deren beschreibende Ungleichungen durch endliche Halbordnungen gegeben sind. Die

beiden Polytope unterscheiden sich in ihren Seitenverbänden, stehen jedoch durch eine

stückweise lineare Transferabbildung in volumen- und gitterpunkttreuer Bijektion. Aber

auch in anderen Bereichen wie der Darstellungstheorie und enumerativen Kombinatorik

findet man solche Paare von Polyedern, deren beschreibende Ungleichungen stark an die

von Ordnungs- und Kettenpolytopen erinnern.

Das Ziel dieser Arbeit ist es, dieses Phänomen strukturell zu analysieren und ein

Theoriewerk zu schaffen, dass es erlaubt, diese Polyeder und ihre stückweise linearen

Bijektionen von einem gemeinsamen Blickpunkt aus zu betrachten. Ein erster Schritt in

diese Richtung wurde von Ardila, Bliem und Salazar bereits in [ABS11] vollzogen. Hier

werden die Polytope aus der Ordnungstheorie verallgemeinert, indem die zugrundeliegen-

den Halbordnungen durch Markierungen ergänzt werden. Die so erhaltenen markierten

Ordnungs- und Kettenpolytope stehen ebenfalls in stückweise linearer Bijektion und

erlauben unter anderem die Beschreibung von Gelfand–Tsetlin- und Feigin–Fourier–

Littelmann–Vinberg-Polytopen aus der Darstellungstheorie. Wir betrachten weitere

markierten Halbordnungen zugeordnete Polyeder und erhalten neue Resultate über

deren Seitenstruktur und kombinatorisches Zusammenspiel. Andere Beispiele aus der

Literatur weisen zwar Ähnlichkeiten zu diesen Polyedern auf, lassen sich aber nicht

als solche beschreiben. Über markierte Halbordnungen hinaus betrachten wir daher

distributive Polyeder, die nach einer Charakterisierung in [FK11] durch gewisse Netzwer-

ke beschrieben werden, ganz analog zur Beschreibung von Ordnungspolytopen durch

Hasse-Diagramme. Für eine große Teilklasse dieser Polyeder lässt sich wieder eine stück-

weise lineare Bijektion zu einem mit Kettenpolytopen verwandten Polyeder herstellen.

Wir konstruieren eine solche Transferabbildung und erhalten eine Beschreibung des

Bildpolyeders durch lineare Ungleichung, die sich aus dem zugrundeliegenden Netzwerk

ablesen lassen.
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Introduction

Polyhedra whose defining inequalities are given by the data of a partially ordered set

historically emerged from two separate branches that just recently merged.

The first branch, started by Geissinger and Stanley in the 1980s, comes from order

theory and combinatorial convex geometry. Given a finite poset P with a global maximum

and a global minimum, Geissinger studied the polytope O(P) in RP consisting of order-

preserving maps P → R sending the minimum to 0 and the maximum to 1 in [Gei81].

He found that vertices of this polytope correspond to non-trivial order ideals of P and

describes how the volume of O(P) is given by the number of linear extensions of P . These
results reappear in [Sta86], where Stanley called O(P) the order polytope associated to

P and introduced a second polytope, the chain polytope C(P) with inequalities given by

saturated chains in P . He introduced a piecewise-linear transfer map O(P) → C(P) that
yields an Ehrhart equivalence of these polytopes. In particular, since the chain polytope

C(P) only depends on the comparability graph of the poset P and has the same volume

as O(P), this setting provides a geometric proof that the number of linear extensions of a

poset only depends on the comparability graph. In the same spirit of comparing these

two polytopes associated to a finite poset, a group around Hibi and Li characterized the

posets such that O(P) and C(P) are unimodular equivalent and constructed a bijection

between the edge sets of both polytope in [HL16] and [HLSS17], respectively.

A second branch begins in the 1950s in representation theory, when Gelfand and

Tsetlin introduced number patterns—now attributed to them as Gelfand–Tsetlin patterns—
to enumerate the elements in a basis of the irreducible representationV (λ) of the general
linear group GLn(C) in [GT50]. The defining conditions of these patterns give rise to the

Gelfand–Tsetlin polytope—or GT polytope for short—associated to the highest weight λ of

the representation, so that the elements in the Gelfand–Tsetlin basis correspond to the

lattice points in the Gelfand–Tsetlin polytope. A different basis of V (λ)—previously con-

jectured to exist by Vinberg—was described by Feigin, Fourier and Littelmann in [FFL11]

and is enumerated by the lattice polytopes of another polytope. Due to their importance in

representation theory, the geometry of Gelfand–Tsetlin and Feigin–Fourier–Littelmann-

Vinberg polytopes—or FFLV polytopes for short—has attracted the attention of different

researchers, see [DM04; KM05; Kir10; KST12; GKT13; Ale16; FM17; ACK18]. While the

description of the Gelfand–Tsetlin polytope shows similarities to order polytopes, the

description of the FFLV polytope resembles that of chain polytopes.

Indeed, the two branches started to merge in 2011, when Ardila, Bliem and Salazar

generalized the two poset polytopes of Stanley to marked poset polytopes in [ABS11],

allowing marking conditions other than just sending minima to 0 and maxima to 1. This

generalization allowed to consider GT and FFLV polytopes as the marked order and

marked chain polytopes associated to the same marked poset (P , λ). Again, these two
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Introduction

polytopes come with a piecewise-linear transfer map O(P , λ) → C(P , λ) that yields an
Ehrhart equivalence and hence a geometric explanation as to why the GT and FFLV

polytopes have the same number of lattice points—the dimension ofV (λ). Further results
in this direction were achieved by Fang and Fourier as well as Jochemko and Sanyal in

[Fou16; FF16] and [JS14], respectively.

The aim of this thesis is to continue this line of research and extend the class of

polyhedra that admit a piecewise-linear transfer map.

Outline

In the first part of this thesis, consisting of Chapters 1 to 4, we introduce various exam-

ples of polyhedra found in the literature, whose descriptions show similarities to poset

polytopes and often come with a transfer map like the one introduced by Stanley. Not all

of the examples are marked poset polytopes and hence ask for a more general theory

that we present in the second part of this thesis.

The second part starts with a review of marked poset polytopes in Chapter 5. Motivated

by the face structure description of order polytopes given by Stanley, we study marked

order polyhedra—a potentially unbounded generalization of marked order polytopes—in

detail in Chapter 6. We follow a categorical approach and describe a functor O from

the category of marked posets to the category of polyhedra and affine maps. The main

results of this chapter are a combinatorial description of the face structure of marked

order polyhedra in terms of partitions of the underlying poset as well as a regularity

condition assuring that the facets of the polyhedron are in bijection with the covering

relations of the poset. The face structure was previously studied by Jochemko and

Sanyal in [JS14] and regularity was introduced by Fourier in [Fou16]. However, both

articles contain minor mistakes resulting in incorrect characterizations of face partitions

and regular marked posets, respectively. We also introduce conditional marked order
polyhedra which are marked order polyhedra with additional linear constraints. These

appear in representation theory as Gelfand–Tsetlin polytopes for weight subspaces of

irreducible representations and in finite frame theory as polytopes of eigensteps. We

generalize a method to determine dimensions of faces given by De Loera and McAllister

for Gelfand–Tsetlin polytopes in [DM04] and show that—up to affine isomorphism—every

polyhedron is a conditional marked order polyhedron.

In Chapter 7 wemodify the transfer map O(P , λ) → C(P , λ) for marked poset polytopes

by introducing a parameter t ∈ [0, 1]ℓ, where ℓ is the number of unmarked elements

in P . The results of this chapter are joint work with Xin Fang, Ghislain Fourier and

Jan-Philipp Litza and have also appeared in [FFLP17]. For t ≡ 0 and t ≡ 1 the resulting

polytopes are marked order and marked chain polytopes, while for t in a subset of {0, 1}ℓ

we obtain the marked chain-order polytopes introduced by Fang and Fourier in [FF16].

Surprisingly, the images under this modified piecewise-linear transfer map are polytopes

for all t ∈ [0, 1]ℓ and their combinatorial types stay constant along relative interiors of

faces of the parametrizing hypercube. We provide a common description of the polytopes

in this continuous family by a system of linear equations and inequalities. Using a theory

2



of continuous degenerations and a subdivision obtained from a tropical hyperplane

arrangement, we are able to describe the vertices of the generic polytope obtained for t
in the interior of the hypercube.

Since some of the examples in the first part are outside the realm of marked poset

polytopes, we consider a generalization that includes these examples in Chapter 8, which

is based on joint work in progress with Raman Sanyal that will also appear in [PS17].

Instead of marked order polyhedra, we consider distributive polyhedra—those that form
a distributive lattice with respect to the dominance order on Rn. These have been

characterized using network matrices by Felsner and Knauer in [FK11] and are a promising

substitute to generalize the transfer map of marked poset polytopes even further. Indeed,

we are able to show that as long as the underlying network of a distributive polyhedron

contains only lossy cycles, we obtain a piecewise-linear bijection to another polyhedron

falling into the class of anti-blocking polyhedra. Their description is very similar to that

of chain polytopes, where instead of chains in a poset we have to consider infinite walks

in a cyclic network.

We conclude the second part with Chapter 9, where we review the obtained results,

formulate open questions and point to further directions of research.

Separated from the rest of this work, Chapter 10 in the appendix is a case study of

certain conditional marked order polyhedra that appear as polytopes of eigensteps for

finite equal norm tight frames. The results of the chapter are joint work with Tim

Haga and have also been published in [HP16]. We provide a non-redundant system

of linear equations and inequalities describing polytopes of eigensteps for equal norm

tight frames and from that deduce their dimension and number of facets. Furthermore,

we identify two affine isomorphisms in this class of polytopes as convex geometrical

counterparts of known operations in finite frame theory, namely frame reversal and

Naimark complements.

Preliminaries

Before looking at various related polyhedra in Part I, we want to introduce the main

concepts from polyhedral geometry here and fix some notation. The rest of this section is

essentially a continuous stream of definitions and well-known facts stated for reference

that may be skipped on first read and only be consulted for unclear definitions later on.

All terms defined here (and later in this thesis) are listed in the index at the end of this

work.

Starting with the very basics, we write A ⊆ B for the inclusion of sets A and B,
and A ⊊ B for proper inclusions, that is, A ⊆ B and A , B. We indicate unions of

disjoint sets by writing A ⊔ B instead of A ∪ B. We denote by N, Z, Q, R and C the sets

of non-negative integers, integers, rational numbers, real numbers and complex numbers,
respectively. Sometimes we use expressions like N>0, R≥0 etc. to denote positive integers,
non-negative real numbers and so on. Given any non-negative integer n ∈ N we denote

by [n] the set {1, 2, . . . ,n} of all positive integers less than or equal to n, in particular

[0] = � is the empty set.

3



Introduction

Throughout the thesis, we will work in vector spaces RS for some finite set S . This is
the set of all maps S → R equipped with pointwise addition and multiplication by real

scalars. A point x ∈ RS has coordinates that we denote by xs or x(s) for s ∈ S . Equipped
with the inner-product ⟨x ,y⟩ =

∑
s∈S xsys it becomes a Hilbert space isometric to Rn,

where n = |S | is the cardinality of S . A linear form on RS is a linear map RS → R and an

affine linear form is a map α : RS → R such that the map given by x ↦→ α(x) − α(0) is
linear.

As a reference for polyhedral geometry we refer to the book of Ziegler [Zie95] and

only restate the most important definitions here, adding those not found there. Any

non-constant affine linear form α on RS defines a hyperplane H and a half-space H+,
consisting of all points x ∈ RS satisfying α(x) = 0 or α(x) ≥ 0, respectively. A polyhedron
in RS is any set Q ⊆ RS that may be expressed as an intersection of finitely many half

spaces Q = H+
1
∩ H+

2
∩ · · · ∩ H+r . Since hyperplanes are intersections of two opposing

half-spaces, this is equivalent to being an intersection of finitely many half-spaces and

hyperplanes. In other words, a polyhedron is any solution set of finitely many linear

equations and inequalities.

Two important subclasses of polyhedra are polytopes and polyhedral cones. A polyhe-

dron Q is a polytope if it is a bounded subset of RS and a polyhedral cone if it admits a

description as an intersection of hyperplanes and half-spaces given by linear forms, that

is, the solution of a system of linear equations and inequalities without constant terms.

One of the fundamental results in polyhedral geometry is that polyhedra, polytopes and

polyhedral cones all admit a second definition using Minkowski sums of convex and coni-

cal hulls of finite sets. To define these terms and state these fundamental results precisely,

we introduce some more terminology. Given finitely many points x1,x2, . . . ,xm ∈ RS , a
linear combination λ1x1+λ2x2+ · · ·+λmxm is said to be a conical combination if all λi ≥ 0,

an affine combination if λ1 + λ2 + · · · + λm = 1 and a convex combination if it is affine and

conical. A set X ⊆ RS is convex if it contains all convex combinations of its points and a

cone if it contains all conical combinations of its points. From the definitions we see that

all polyhedra are convex and polyhedral cones are indeed cones. Each polyhedron Q in

RS comes with an associated polyhedral cone rec(Q), the recession cone of Q . It consists
of all y ∈ RS such that for any x ∈ Q and t ≥ 0 we have x + ty ∈ Q . When Q is given

by linear inequalities αi(x) ≥ 0 for i = 1, 2, . . . , r with each αi an affine linear form on

RS , then rec(Q) is given by the linear inequalities α ′
i (x) ≥ 0, where α ′

i (x) = α(x) − α(0) is
the corresponding linear form. Given any set Y ⊆ RS we define its convex hull conv(Y ),
affine hull aff(Y ) and conical hull cone(Y ) as the sets of all convex, affine and conical

combinations of points in Y , respectively. For finitely many sets X1,X2, . . . ,Xm ∈ RS

theirMinkowski sum X1 +X2 + . . .+Xm is the set consisting of all sums x1 +x2 + · · ·+xm
with xi ∈ Xi for i = 1, . . . ,m. When all summands are convex, the Minkowski sum is

convex as well.

We are now ready to state the aforementioned characterizations of polyhedra, polytopes

and polyhedral cones. A set Q ⊆ RS is a polyhedral cone if and only if it is the conical

hull of finitely many points, it is a polytope if and only if it is the convex hull of finitely

many points and it is a polyhedron if and only if it is the Minkowski sum of a polytope

and a polyhedral cone.
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One of the most important notions in polyhedral geometry is that of a face of a

polyhedron. Given any polyhedron Q ⊆ RS , a face of Q is a subset F ⊆ Q that may be

expressed as

F = Q ∩
{
x ∈ RS : α(x) = 0

}
,

where α is an affine linear form that is non-negative on Q . In particular, for α ≡ 0 and

α ≡ 1, we obtain Q itself and the empty set � as faces of Q . The faces different from
Q are called proper faces. The dimension dim(Q) of a polyhedron Q is defined as the

dimension of its affine hull aff(Q) as an affine subspace of RS and faces of dimension 0, 1

and dim(Q) − 1 are called vertices, edges and facets, respectively. For i ∈ N we denote by

fi(Q) the number of i-dimensional faces of Q and refer to the tuple (f0, f1, . . . , fdimQ ) as

the f -vector of Q . The relative interior relint(Q) of a polyhedron Q is the interior with

the respect to its affine hull or equivalently the set of all points not contained in any

proper face of Q . The relative interiors of the faces of a polyhedron are pairwise disjoint

and hence each point x ∈ Q uniquely determines a face such that x ∈ relint(F ). Ordered
by inclusion, the set of faces F (Q) forms a lattices graded by dimension called the face
lattice of Q . Not every polyhedron has vertices, for example a half-space only has three

faces, the empty face, the bounding hyperplane and the half-space itself, none of which

is a vertex if the dimension of the half-space is at least 2. A polyhedron is called pointed
if it has at least one vertex. The importance of pointed polyhedra lies in the fact that

they are determined by their vertices and recession cones, to be precise: if Q is a pointed

polyhedron with set of vertices V , then Q = conv(V ) + rec(Q).
Polyhedra come with various notions of equivalence. Two polyhedra Q ⊆ RS and

R ⊆ RT are said to be affinely equivalent if there is an affine map RS → RT that restricts

to a bijection Q → R. The bijection is called an affine isomorphism in this case. They

are said to be combinatorially equivalent if their faces lattices F (Q) and F (R) admit an

order-preserving bijection, i.e., they are isomorphic lattices.

Sometimes we are interested in polyhedra in RS that are in a way compatible with

the lattice ZS contained in RS .1 For general reference on lattice points in polyhedra, we

refer to the textbooks [Bar08; BR15] as well as the draft of lecture notes [HNP12]. We

say a polytope Q ⊆ RS is a lattice polytope if all of its vertices are lattice points, that is,
points in ZS . Since polytopes are bounded, they only contain finitely many lattice points

and to each polytope Q ⊆ RS we can associate the counting function EhrQ : N→ N such

that EhrQ (k) is the number of lattice points in kQ = {kx : x ∈ Q}, the k-th dilate of Q .
When Q is a lattice polytope, EhrQ is a polynomial called the Ehrhart polynomial of Q ,
due to Eugène Ehrhart. This yields another notion of equivalence we will come across

in this thesis: two lattice polytopes Q and R are called Ehrhart equivalent if they have

the same Ehrhart polynomial. For polyhedral cones in RS , the appropriate notion of

being compatible with the lattice ZS is that of a rational polyhedral cone. A polyhedral

cone Q ⊆ Rn is called rational, if it may be defined by affine linear forms with rational

coefficients, or equivalently with integral coefficients. In the spirit of the characterization

of cones as conical hulls of finite sets, we see that a polyhedral cone is rational if and

1
Note that lattice in this paragraph refers to a finitely generated subgroup of (RS ,+) while in the previous

paragraphs it refers to a partially ordered set having all finite joins and meets.
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Introduction

only if it is the conical hull of finitely many lattice points. Less common in the literature

but relevant for our work is the notion of a lattice polyhedron, a common generalization

of lattice polytopes and rational polyhedral cones to arbitrary polyhedra. We say that

Q ⊆ RS is a lattice polyhedron if it can be expressed as Minkowski sum of a lattice

polytope and a rational polyhedral cone. It is called integrally closed if it satisfies the

integer decomposition property

ZS ∩ kQ = (ZS ∩Q) + (ZS ∩Q) + · · · + (ZS ∩Q)

for every k ∈ N, where the Minkowski sum on the right hand side has k summands.

A simple fact we will use is that unimodular simplices and their integral dilates are

integrally closed. A lattice simplex ∆ ⊆ RS is unimodular if the vectors emanating from

a fixed vertex form part of a Z-basis of ZS .
Lattice polyhedra ask for a finer notion of equivalence that takes lattice points into

account. The right notion here is unimodular equivalence. An affine isomorphismQ → R
for lattice polyhedra Q ⊆ RS and R ⊆ RT is called a unimodular isomorphism, if the

uniquely determined extension aff(Q) → aff(R) to the affine hulls of Q and R restricts to

a bijection ZS ∩aff(Q) → ZT ∩aff(R). In this case the polytopes are said to be unimodular

equivalent and it follows that they are affinely equivalent, combinatorially equivalent

and Ehrhart equivalent.

We will also consider subdivisions of polyhedra into smaller polyhedral pieces. A

polyhedral subdivision of a polyhedron Q in RS is a finite set S of polyhedra in RS such
that

⋃
S = Q , for each polyhedron in S all its faces are elements of S as well and for

R1,R2 ∈ S the intersection R1∩R2 is a face of both R1 and R2. The inclusion-wise maximal

elements in a polyhedral subdivisionS are called the facets or chambers of the subdivision
while arbitrary elements of S are referred to as faces or cells of the subdivision.

A central role in our discussion of the polyhedral geometry of partially ordered sets

is played by piecewise-linear maps. A continuous map f : P → Q between polyhedra is

called piecewise-linear, if P admits a polyhedral subdivision S such that f restricts to

an affine linear map on each cell in S. In particular f is piecewise-linear if it is given in

each component by taking maxima and/or minima of affine linear forms.
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Part I.

Related Polyhedra in Order Theory,

Combinatorics, Representation Theory

and Finite Frame Theory
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1. Order Theory

We start our showcase of polyhedra in the theory of partially ordered sets themselves,

since the underlying structure is most explicit and visible in this setting. The polyhedra

we are looking at in this chapter are poset polytopes, introduced by Geissinger and Stanley
in the 1980s [Gei81; Sta86].

A partially ordered set (P , ≤) is a set P together with a reflexive, transitive and anti-

symmetric relation ≤. We use the usual short term poset and omit the relation ≤ in

notation when the considered partial order is clear from the context. A finite poset is

determined by its covering relations: we say p is covered by q and write p ≺ q, if p < q
and whenever p ≤ r ≤ q it follows that r = p or r = q. Hence, we usually describe a finite
poset by its Hasse diagram, which is the finite directed graph with nodes the elements of

P and edges given by covering relations. See Figure 1.1 for examples of Hasse diagrams

of finite posets. Instead of directed edges we follow the convention to draw p below q
whenever p ≺ q.

For general reference on the theory of partially ordered sets we refer to [Sta11]. How-

ever, we want to mention some basic notions here to familiarize the reader with our

notation and terminology. Two elements p and q of a poset P are comparable if at least
one of p ≤ q or q ≤ p holds. The partial order is linear or total if any two elements are

comparable. A linear extension of a poset (P , ≤) is a poset (P , ≤′) on the same set, such

that ≤′
is linear and p ≤′ q whenever p ≤ q. A subset I ⊆ P is an order ideal, if whenever

q ∈ I and p ≤ q, we have p ∈ I as well.1 The dual notion is that of filters, i.e., subsets
F ⊆ P such that q ∈ F whenever q ≥ p for some p ∈ F . Note that filters are exactly the

complements of order ideals. Given any subset Q ⊆ P , we obtain a poset (Q , ≤Q ) with

p ≤Q q for p,q ∈ Q if and only if p ≤ q in P . Any poset obtained this way from P is called

an induced subposet of P . A chain in a poset P is an induced subposet that is linear, i.e.,

it is a list of elements p1 < p2 < · · · < pk . A chain is said to be saturated if it is of the

1
Some authors refer to what we call order ideals (filters) as lower sets (upper sets) and require order ideals

(filters) to be non-empty and closed under finite joins (meets).

(a) the star poset (b) a linear poset

or chain

(c) an anti-chain (d) the diamond poset

Figure 1.1.: The Hasse diagrams of some finite posets. Only the posets (a), (b) and (d) are

connected and only the posets (b) and (d) have a 0̂ and 1̂.
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1.1. Order Polytopes

form p1 ≺ p2 ≺ · · · ≺ pk , that is, all the relations are covering relations. An anti-chain
is a subset of P with elements being pairwise incomparable. We say a poset P has a 0̂ if

there is a unique minimal element 0̂ ∈ P . Similarly, P has a 1̂ if there is a unique maximal

element 1̂ ∈ P . We call a poset P connected, if its Hasse diagram is a connected graph.

Having familiarized ourselves with posets, we want to introduce certain polytopes

associated to them. These are order polytopes and chain polytopes. Order polytopes have

been studied by Geissinger in [Gei81] and then reappeared in [Sta86], where Stanley also

introduced chain polytopes and refers to both of them as poset polytopes.

1.1. Order Polytopes

To a finite poset P with 0̂ and 1̂, associate the order polytope O(P) in RP , consisting of

all order-preserving maps f : P → R with f (0̂) = 0 and f (1̂) = 1.
2
Here f being order-

preserving means that f (p) ≤ f (q) whenever p ≤ q. This simple construction yields a

beautiful interplay of polyhedral geometry and order theory that we want to elaborate

on in this section. Instead of denoting elements of RP as maps f : P → R and their values

by f (p) we usually write x ∈ RP and use xp instead of x(p) to stress the fact that x is a

point in a euclidean space with coordinates indexed by P .
Equivalently, the order polytope may be described by its vertices, which are indicator

functions of non-trivial filters of P as shown in [Gei81, p. 127]. Thus, order polytopes are

always lattice polytopes. Regarding the combinatorial structure of the order polytope,

we can observe that the inequalities xp ≤ xq given by covering relations p ≺ q define the

facets of O(P). In fact, these are just the two extreme cases of a combinatorial description

of the face structure of order polytopes. Since non-trivial faces are intersections of facets,

every face F will be described by a partition π of P such that all x ∈ F are constant on

the blocks of π .

Definition 1.1.1. A partition π of a finite poset P is called a face partition of P if it

satisfies the following two conditions:

i) π is P-compatible: the transitive closure of the relation on π defined by B ≤ C if

p ≤ q for some p ∈ B and q ∈ C is anti-symmetric and hence makes π a poset,

ii) π is connected: the blocks of π are connected as induced subposets of P .

Note that face partitions may as well be characterized as surjective order-preserving

maps f : P → P ′ into some poset P ′ such that the fibers f −1(q) are connected for every

q ∈ P ′. Following Geissinger we call these maps contractions of P . Given a face partition

π the corresponding contraction is just the quotient map P → π , where π carries the

induced poset structure given by P-compatibility. Given a contraction f : P → P ′ we
obtain a face partition of P by taking the fibers of f as blocks.

We say a partition π ′ refines π if every block of π ′
is contained in a block of π . When

thinking about a face partition π as a contraction f : P → π , another face partition π ′

2
In Stanley’s original work P is not required to have 0̂ and 1̂. Our O(P) would be Ô(P \ {0̂, 1̂}) in [Sta86].

We chose a different convention to match the setting in later chapters of this work.
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1. Order Theory

with contraction f ′ : P → π ′
refines π if and only if f factors through f ′ by contractions,

that is, f = д ◦ f ′ for a contraction д : π ′ → π .

Theorem 1.1.2 ([Gei81, p. 130], [Sta86, Thm. 1.2]). The face lattice of O(P) is isomorphic
to the lattice of face partitions of P ordered by reverse refinement. The isomorphism is given
by associating to a face partition π the face Fπ consisting of all x ∈ O(P) constant on the
blocks of π .

From the description of a face Fπ as in the previous theorem, it is immediate that

dim(Fπ ) = |π | − 2. Hence, facets correspond to partitions with only one non-trivial block

{p,q} for a covering relation p ≺ q and vertices correspond to partitions with exactly two

blocks or equivalently contractions P → {0, 1}, which are exactly the indicator functions

of non-trivial filters of P .

In addition to the combinatorial description of the face structure of O(P), Stanley
gave a unimodular triangulation—a subdivision into unimodular simplices—with facets

enumerated by linear extensions of P . To a chain of order ideals I : � = I0 ⊊ I1 ⊊ · · · ⊊
Ir = P associate the (r − 2)-dimensional simplex FI in RP consisting of all x ∈ RP taking

constant values on the pairwise disjoint sets Bk = Ik \ Ik−1 such that x(B1) = 0, x(Br ) = 1

and x(Bk) ≤ x(Bk+1). By construction these simplices will always be contained in O(P)
and in fact form a unimodular triangulation when I ranges over all possible chains of

order ideals. The facets of this triangulation correspond to saturated chains of order

ideals where exactly one element is added in each step. These saturated chains of order

ideals are of course nothing else than linear extensions of P .

From this unimodular triangulation it is immediate that the normalized volume of

O(P) is given by the number of linear extensions of P .

1.2. Chain Polytopes and the Transfer Map

A second polytope associated to a finite poset P with 0̂ and 1̂ that will turn out to share

the same volume as the order polytope is the chain polytope C(P). It consists of all

y ∈ RP with non-negative coordinates satisfying y
0̂
= 0, y

1̂
= 1 and for each chain

0̂ < p1 < p2 < · · · < pk < 1̂ an inequality

yp1 + yp2 + · · · + ypk ≤ 1.

It is immediate that of these inequalities it suffices to consider only those given by

saturated chains. In fact, these and the inequalities yp ≥ 0 correspond to the facets

of C(P). As shown in [Sta86, Thm. 2.2], the vertices of C(P) are exactly the indicator

functions of anti-chains in P \ {0̂, 1̂}. As the vertices of O(P) correspond to non-trivial

filters of P , whose sets of minima are exactly the anti-chains in P \ {0̂, 1̂}, we see that

O(P) and C(P) have the same number of vertices.

In fact, there is a piecewise-linear bijection between O(P) and C(P) that preserves
vertices.
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1.2. Chain Polytopes and the Transfer Map

Theorem 1.2.1 ([Sta86, Thm. 3.2]). Let P be a finite poset with 0̂ and 1̂. The two maps
φ,ψ : RP → RP defined by

φ(x)p =

{
xp if p ∈ {0̂, 1̂},

xp −max

{
xq : q is covered by p

}
otherwise,

ψ (y)p =

{
yp if p ∈ {0̂, 1̂},

max

{
yq1 + · · · + yqk : q1 < · · · < qk = p

}
otherwise

are mutually inverse piecewise-linear maps. Furthermore, they restrict to piecewise-linear
bijections φ : O(P) → C(P) and ψ : C(P) → O(P).

Since this statement is slightly stronger than [Sta86, Thm. 3.2.(a)], the proof is not

carried out there, and we will see a variety of generalizations of this theorem later on,

we use the opportunity to give a detailed proof here.

Proof of Theorem 1.2.1. The first thing to notice is that the mapψ satisfies the recursion

ψ (y)p = yp +max

{
ψ (y)q : q is covered by p

}
(1.1)

for all p < {0̂, 1̂}. To see this, first note that in the definition ofψ it is sufficient to consider

only saturated chains q1 ≺ · · · ≺ qk = p. Now each of these saturated chains ending in p
passes through some q covered by p. Hence, maximizing over all of them can be achieved

by taking for each q covered by p the maximum over all chains ending in q—which is

just ψ (y)q—and then taking the maximum of these values and add yp . This yields the
recursion in (1.1).

From the definition of φ and the recursion property ofψ we clearly see that φ ◦ψ is the

identity on RP . To verify thatψ ◦ φ is the identity as well, we use an inductive argument

working our way up from the minimum 0̂ through the poset P . Starting at the bottom,

we have ψ (φ(x))
0̂
= x

0̂
. Now let 0̂ < p < 1̂ and assume by induction thatψ (φ(x))q = xq

for all q < p. It follows that

ψ (φ(x))p = φ(x)p +max

{
ψ (φ(x))q        

xq

: q is covered by p
}
= xp .

This concludes the first part of the theorem: the maps φ andψ are mutually inverse

piecewise-linear self-maps on RP . It remains to show that they restrict to bijections

between O(P) and C(P).
Let x ∈ O(P) and y = φ(x). By definition of φ, we see that all coordinates of y

are non-negative, since xq ≤ xp whenever q ≤ p. Now consider a saturated chain

0̂ ≺ p1 ≺ p2 ≺ · · · ≺ pk ≺ 1̂. We have

yp1 + yp2 + · · · + ypk ≤ xp1 + (xp2 − xp1) + · · · + (xpk − xpk−1) = xpk ≤ x
1̂
= 1

and hence y ∈ C(P). Now let y ∈ C(P) and x = ψ (y). Consider any covering relation

p ≺ q. If p = 0̂ we have 0 ≤ yq = xq . If q = 1̂ we have xp ≤ 1, since the sums along chains
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1. Order Theory

appearing in the definition of ψ (y)p are all bounded by 1 for y ∈ C(P). For a covering
relation not involving 0̂ or 1̂, we have

xp = max

{
yq1 + · · · + yqk : q1 < · · · < qk = p

}
≤ max

{
yq1 + · · · + yqk : q1 < · · · < qk = p

}
+ yq

≤ max

{
yq1 + · · · + yqk + yqk+1 : q1 < · · · < qk < qk+1 = q

}
= xq .

Hence, in all cases xp ≤ xq and we conclude that x ∈ O(P), finishing the proof.

The map φ in Theorem 1.2.1 is called the transfer map, since it allows to transfer

some—but not all—properties from O(P) to C(P). As stated earlier φ sends vertices of

O(P) (indicator functions of filters) to vertices of C(P) (indicator functions of anti-chains
in P \ {0̂, 1̂}), so C(P) is a lattice polytope as well. Even more so, the transfer map is

piecewise-unimodular, so the two polytopes have the same Ehrhart polynomial and

volume. Since the transfer map is unimodular and orientation-preserving on each of

the simplices in the unimodular triangulation of O(P), the transferred simplices form a

unimodular triangulation of C(P). Indeed, we may think of φ as rearranging the simplices

in the unimodular triangulation.

The fact thatO(P) and C(P) share the same volume, which is determined by the number

of linear extension of P , has a subtle consequence that allows an elegant proof in this

setting (cf. [Sta86, Cor. 4.5]): the number of linear extensions of a poset P only depends

on the comparability graph of P , i.e., the simple graph with nodes the elements of P and

edges between comparable elements.

Unfortunately, since the transfer map is only piecewise-linear, it does not behave well

with respect to face structures. In fact, little is known about the face structure of chain

polytopes. To the best of the authors knowledge, the following recent results by Hibi et al.

capture all that is known on the face structure of chain polytopes beyond the description

of facets and vertices mentioned before.

Theorem 1.2.2 ([HL16]). Let P be a finite poset with 0̂ and 1̂. The following are equivalent:
i) the polytopes O(P) and C(P) are unimodular equivalent,
ii) the polytopes O(P) and C(P) have the same number of facets,
iii) the star poset (see Figure 1.1a) does not appear as an induced subposet of P .

Theorem 1.2.3 ([HLSS17]). Let P be a finite poset with 0̂ and 1̂. The number of edges
of the order polytope O(P) is equal to the number of edges of the chain polytope C(P).
Furthermore, the degree sequences of the 1-skeleta of the two polytopes are the same if and
only if the two polytopes are unimodular equivalent.

In this theorem, the 1-skeleton of a polytope is the simple graph given by the vertices

and edges of the polytope. For each vertex of a graph, its degree is the number of adjacent

vertices and the degree sequence of a graph is the non-increasing list of all vertex degrees.

We finish our discussion of poset polytopes with a conjecture stated by Hibi and Li

that we will see generalizations of in later chapters of this thesis.

Conjecture 1.2.4 ([HL16]). Denote by fi the number of i-dimensional faces of O(P) and
by f ′i the number of i-dimensional faces of C(P). It holds that fi ≤ f ′i for all i ∈ N.
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2. Combinatorics

We continue our journey in the realm of combinatorics, where we want to present three

kinds of polytopes that are closely related to poset polytopes. The polytopes we are

dealing with in this chapter are Stanley–Pitman polytopes, Cayley polytopes, as well as

lecture hall cones and polytopes together with a recent generalization.

2.1. Stanley–Pitman Polytopes

In [SP02] Stanley and Pitman study a polytope that is now referred to as the Stanley–
Pitman polytope Πn(ξ ). Given a tuple of positive real numbers ξ = (ξ1, . . . , ξn) the
polytope Πn(ξ ) is the defined to be set of all y ∈ Rn with non-negative coordinates that

satisfy

y1 + · · · + yi ≤ ξ1 + · · · + ξi for i = 1, . . . ,n.

Presented in this context, we immediately notice the shared properties with chain

polytopes: it is defined by non-negativity constraints and some sums of coordinates

being bounded above by constants. Following the analogy, we would expect Πn(ξ ) to be

a piecewise-linear image of a polytope related to order polytopes. Indeed, the authors

consider the unimodular map φ : Rn → Rn given by

φ(x1,x2, . . . ,xn) = (x1,x2 − x1, . . . ,xn − xn−1).

The preimage φ−1(Πn(ξ )) is described by the inequalities 0 ≤ x1 ≤ · · · ≤ xn as well as

xi ≤ ξ1 + · · · + ξi for i = 1, . . . ,n.

Stanley and Pitman realize that φ−1(Πn(ξ )) is related to order polytopes and identify it as

a section of an order cone. This turns out to be a special case of marked order polyhedra
that we will discuss in Chapter 6. We also identify the map φ as an instance of a transfer

map in this setting.

2.2. Cayley Polytopes

Consider the following combinatorial identity of integer partitions.

Theorem 2.2.1 ([Cay57]). For each non-negative integer n ∈ N, the number of positive
integer tuples (a1,a2, . . . ,an) satisfying a1 ≤ 2 and ai+1 ≤ 2ai for i = 1, . . . ,n − 1 is equal
to the total number of partitions of non-negative integers less than 2

n into powers of 2.
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2. Combinatorics

The integer tuples and partitions appearing in Cayley’s theorem are called Cayley
compositions and Cayley partitions, respectively. As an example, consider the case where

n = 3. The Cayley compositions of length 3 are the 26 triples

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4), (2, 1, 1), (2, 1, 2), (2, 2, 1),

(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 1), (2, 3, 2), (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 6),

(2, 4, 1), (2, 4, 2), (2, 4, 3), (2, 4, 4), (2, 4, 5), (2, 4, 6), (2, 4, 7), and (2, 4, 8).

The 26 Cayley partitions of non-negative integers less than 2
3
are

0 = 0,

1 = 1 · 20,

2 = 2 · 20 = 1 · 21,

3 = 3 · 20 = 1 · 21 + 1 · 20,

4 = 4 · 20 = 1 · 21 + 2 · 20 = 2 · 21 = 4 · 20,

5 = 5 · 20 = 1 · 21 + 3 · 20 = 2 · 21 + 1 · 20 = 1 · 22 + 1 · 20,

6 = 6 · 20 = 1 · 21 + 4 · 20 = 2 · 21 + 2 · 20 = 3 · 21 = 1 · 22 + 2 · 20 = 1 · 22 + 1 · 21,

7 = 7 · 20 = 1 · 21 + 5 · 20 = 2 · 21 + 3 · 20 = 3 · 21 + 1 · 20 = 1 · 22 + 3 · 20

= 1 · 22 + 1 · 21 + 1 · 20.

A new proof of Cayley’s theorem appeared in [KP14]. Konvalinka and Pak identify

both Cayley compositions and Cayley partitions with lattice points in certain polytopes

and construct a unimodular map between them. We give a brief summary of these

constructions in the following.

The polytope describing Cayley compositions is the Cayley polytope Cn in R
n
given

by the inequalities 1 ≤ x1 ≤ 2 and 1 ≤ xi+1 ≤ 2xi for i = 1, . . . ,n − 1. These inequalities

do of course not describe an order polytope, but they share the property that each

inequality either compares a coordinate to a constant or just compares two coordinates.

To geometrically describe Cayley partitions, identify a partition

m1 · 2
n−1 +m2 · 2

n−2 + · · · +mn · 1

with the integer tuple (m1,m2, . . . ,mn). Under this identification, Cayley partitions are

exactly the integer tuples satisfying 0 ≤ mi for i = 1, . . . ,n as well as

2
n−1m1 + 2

n−2m2 + · · · +mn ≤ 2
n − 1. (2.1)

Now consider the unimodular map φ̂ : Rn → Rn given by

φ̂(x1,x2, . . . ,xn) = (2 − x1, 2x1 − x2, . . . , 2xn−1 − xn).
1

1
The map φ : Rn → Rn in [KP14] is the inverse of the map φ̂.
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2.3. Lecture Hall Cones and Polytopes

Denote by Bn = φ̂(Cn) the image of the Cayley polytope under this unimodular map.

We immediately obtain the describing inequalities of Bn: the inequalities x1 ≤ 2 and

xi+1 ≤ 2xi translate to 0 ≤ yi for i = 1, . . . ,n, while the inequalities 1 ≤ xi translate to

k∑
i=1

2
k−iyi ≤ 2

k − 1 for k = 1, . . . ,n. (2.2)

We see that k = n yields the defining inequality (2.1) for Cayley partitions and hence φ̂
does indeed map Cayley compositions to Cayley partitions. Furthermore, this assignment

is surjective, since every Cayley partition also satisfies the inequalities in (2.2) for k < n:
let (m1,m2, . . . ,mn) describe a Cayley partition, i.e., it satisfies (2.1). It follows that

k∑
i=1

2
k−imi = 2

k−n
k∑
i=1

2
n−imi ≤ 2

k−n
n∑
i=1

2
n−imi ≤ 2

k−n(2n − 1) = 2
k − 2

k−n .

Since the expression on the left hand side is integral, the stronger inequality (2.2) holds

as well, for all k = 1, . . . ,n.
Note the similarities to chain polytopes and their transfer maps: the polytope Bn is

the image of Cn under a unimodular map with coordinates involving differences Y − X
coming from inequalities X ≤ Y . Its defining inequalities are non-negativity constraints

yi ≥ 0 as well as some weighted sums of coordinates being bounded above by constants.

We will see in Chapter 8 that Cayley polytopes fall into a subclass of distributive
polyhedra that allow a piecewise-linear bijection to anti-blocking polyhedra and identify

the map φ̂ as a transfer map in this very general setting.

2.3. Lecture Hall Cones and Polytopes

The last examples of polyhedra related to poset polytopes we want to present in this

chapter are lecture hall cones, lecture hall polytopes and recent generalizations of those.

Lecture hall cones have been introduced by Bousquet-Mélou and Eriksson in [BE97a]

to study a variant of a theorem of Euler that says that the number of partitions of an

integer N into odd parts is the same as the number of partitions of N into distinct parts.

In their article, they consider partitions of N into small odd parts, which are the odd

integers less than 2n for some fixed n. They find that the number of such partitions equals

the number of lecture hall partitions of N that have length n.
A lecture hall partition of length n is an integral point in the lecture hall cone Ln,

consisting of all points x ∈ Rn satisfying the inequalities

0 ≤
x1
1

≤
x2
2

≤ · · · ≤
xn
n
. (2.3)

The name is motivated by the following setting: consider a lecture hall with n rows of

seats, where the i-th row is positioned i units of measure away from the speaker. If the

i-th row of seats is raised to a height of xi units of measure, the condition in (2.3) asserts

15



2. Combinatorics

Figure 2.1.: The partitions (1, 2, 4, 6) and (1, 4, 5, 6) interpreted as row heights in a lecture

hall. In the first case, the speaker is visible from all rows, while in the second

case the view in the last two rows is obstructed.

that the view from each row is not obstructed by the rows in front. For example (1, 2, 4, 6)

is a lecture hall partition of length 4, while (1, 4, 5, 6) is not, as illustrated in Figure 2.1.

A generalization of these partitions studied in the follow-up article [BE97b] is to

place the i-th row of seats in distance si of the speaker. Thus, for an integer tuple

s = (s1, s2, . . . , sn), they defined the cone L(s)n of s-lecture hall partitions by

0 ≤
x1
s1

≤
x2
s2

≤ · · · ≤
xn
sn
.

A compact variant of this has been studied in [SS12], where the s-lecture hall polytope
P (s)
n is defined by the inequalities

0 ≤
x1
s1

≤
x2
s2

≤ · · · ≤
xn
sn

≤ 1.

We see that the inequalities are similar to those of an order polytope associated to a

chain, just with added scaling factors for each coordinate. Indeed, this observation led to

a recent generalization of lecture hall cones and polytopes to arbitrary finite posets in

[BL16]. Given a finite poset P and an arbitrary map s : P → N>0, they define the lecture
hall order polytope O(P , s) as the set of all x ∈ RP such that

xp

sp
≤

xq

sq
for p ≤ q

and

0 ≤
xp

sp
≤ 1 for all p ∈ P .

Omitting the upper bound, they also define lecture hall order cones.
From the perspective taken in this thesis, we see that all variants of lecture hall cones

and polytopes are similar to order polytopes in the sense that all inequalities either

compare weighted coordinates or coordinates to a constant. We will see in Chapter 8

that all of these fall into the class of distributive polyhedra that may be described by an

edge weighted digraph encoding the inequalities.
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3. Representation Theory

In this chapter we look at polytopes from representation theory. The main examples here

are Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes, both of

which enumerate bases for irreducible representations of the complex general linear

group GLn(C).

We refer to the books of Fulton, Harris [FH91], Hall [Hal15] and Procesi [Pro07] for

detailed introductions to representation theory and only introduce the notions important

for the following discussion here.

A (complex) representation of a group G can be described in various equivalent ways.

The most elementary would be a (left) action ofG on a (complex) vector spaceV by linear

maps. From the description as a group action we immediately obtain the description as

a homomorphism G → GL(V ), sending д ∈ G to the map v ↦→ дv . Here GL(V ) is the

general linear group on V , consisting of all invertible linear maps V → V with the group

operation being composition of maps. Note that the group homomorphism G → GL(V )

linearly extends to a C-algebra homomorphism C[G] → End(V ), where End(V ) denotes

the C-algebra of all linear maps V → V and C[G] is the group algebra of G, which is the

complex vector space with basis G equipped with the product induced from G, i.e.,(
n∑
i=1

αiдi

) (
m∑
j=1

βihj

)
=

n∑
i=1

m∑
j=1

(αiβi)(дihj).

To summarize, a (complex) representation of G on the complex vector space V is one of

the following equivalent structures:

– an action of G on V by invertible linear maps,

– a group homomorphism G → GL(V ),

– a C-algebra homomorphism C[G] → End(V ),

– a C[G]-module structure on V .

Each of these different points of view has its advantages in different contexts. As usual

in the literature, we will omit the action in notation and just call V the representation.

A subspaceW ⊆ V is called invariant or a subrepresentation, if дw ∈W for allw ∈W ,

soW itself is a representation of G . If 0 and V are the only two invariant subspaces of V ,

the representation is said to be irreducible. Equivalently, a representation is irreducible

if the C[G]-module V is simple, i.e., the only two submodules of V are 0 and itself.

Irreducible representations are of particular importance, since in good situations a group

representation V will split into a direct sum of irreducible ones. If this is the case, we say

that V is completely reducible.

17



3. Representation Theory

If G is finite, Maschke’s theorem says that every finite-dimensional representation of

G is completely reducible, so the classification of finite-dimensional representations of G
reduces to the study of irreducible representations of G.

3.1. Representations of the Complex General Linear Group

Let us now move to the representation theory of GLn(C) = GL(Cn), the group of all

invertible complex n × n matrices. In this section, we mainly follow the combinatorial

approach to the representation theory of GLn(C) in [Ful97, Sec. 8], adding a discussion of

the branching rule. A finite-dimensional representation V of GLn(C) is called holomor-
phic, if after choosing a basis for V � Cm, the group homomorphism GLn(C) → GL(V )

is holomorphic when GLn(C) and GL(V ) are considered as subsets of Cn
2

and Cm
2

, re-

spectively. Using Weyl’s unitarian trick (see for example [Ful97, Sec. 8.2]) it follows that

holomorphic finite-dimensional representations of GLn(C) are completely reducible.

3.1.1. Highest Weight Representations

Consider the chain of subgroups Hn ⊆ Bn ⊆ GLn(C), where Hn consists of all invertible

diagonal matrices and Bn consists of all invertible upper triangular matrices.
1
Given

a representation V of GLn(C), a vector v ∈ V is called a weight vector with weight
µ = (µ1, . . . , µn) ∈ Z

n
if

xv = x
µ1
1
· · · x

µn
n v for all x = diag(x1, . . . ,xn) ∈ Hn.

The weight vectors of weight µ together with 0 form the weight subspace Vµ of µ and

similarly to the situation for eigenspaces of diagonalizable matrices, they decompose V
as a direct sum of vector spaces

V =
⨁
µ

Vµ ,

where µ ∈ Zn ranges over all weights of V . Note that this is not a direct sum of repre-

sentations, since the weight spaces are not invariant under the action of GLn(C). The
dimension of Vµ as a subspace of V is called the multiplicity of the weight µ. A weight

vector is said to be of highest weight, if Bnv = C∗v . That is, the invertible upper triangular
matrices act on v by scalar multiplication and all scalars except zero appear. The im-

portance of highest weights in the representation theory of GLn(C) lies in the following

theorem.

Theorem 3.1.1 ([Hum75, Sec. 31.3]). i) A finite-dimensional holomorphic represen-
tation V of GLn(C) is irreducible if and only if it has a highest weight vector v
unique up to scaling. In this case, the weight of v is called the highest weight of V .

ii) Two finite-dimensional holomorphic irreducible representations of GLn(C) are iso-
morphic if and only if they have the same highest weight.

1
The reader familiar with the theory of algebraic groups may recognize Bn as a Borel subgroup of GLn(C)
and Hn as a maximal torus in Bn .
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3.1. Representations of the Complex General Linear Group

Hence, the classification of finite-dimensional holomorphic irreducible representation

of GLn(C) is obtained by classifying the possible highest weights. It turns out that

λ = (λ1, . . . , λn) ∈ Z
n
appears as a highest weight of some irreducible representation of

GLn(C) if and only if λ1 ≥ λ2 ≥ · · · ≥ λn (cf. [FH91, Prop. 15.47]). Given any such λ ∈ Zn,
we denote by V (λ) the irreducible representation of GLn(C) with highest weight λ, it is
determined up to isomorphism.

3.1.2. Young Diagrams and Schur Modules

We continue with a construction of the irreducible representations V (λ) of GLn(C). The
construction we give here is detailed in [Ful97, Sec. 8].

We need a few operations to construct new representations from old ones. Namely,

given representations V andW of a group G, all of the following vector spaces naturally

carry the structure of a representation by G acting on each factor: any exterior power⋀k V , the tensor product V ⊗W , and the direct sum V ⊕W .

Back to the construction of representations for GLn(C), our building blocks will be

the standard representation Cn and the determinantal representations Dk
for k ∈ Z. The

standard representation is just GLn(C) acting on Cn by matrix multiplication and the

determinantal representation Dk
is given by GLn(C) acting on C by A • z = det(A)kz.

Note that Dk
is canonically isomorphic to (

⋀n Cn)⊗k for k ≥ 0, since

⋀n Cn is spanned by

e1 ∧ · · · ∧ en and Ae1 ∧ · · · ∧Aen = det(A)(e1 ∧ · · · ∧ en). Furthermore, Dk ⊗ Dl = Dk+l
for

all k , l ∈ Z under the canonical isomorphism C ⊗ C � C via z ⊗w ↦→ zw .

We first consider the case where λ is a strictly positive weight, so λ1 ≥ λ2 ≥ · · · ≥

λn > 0. Every such tuple is called an integer partition, since partitions of integers N ≥ 0

into sums N = λ1 + λ2 + · · · + λn not taking order of summands into account correspond

to weakly decreasing tuples. Integer partitions are omnipresent in combinatorics and

are often identified with certain diagrams. Given an integer partition λ = (λ1, . . . , λk), its
Young diagram is defined as

D(λ) =
{
(i , j) ∈ N2

: 1 ≤ i ≤ k , 1 ≤ j ≤ λi
}
.

The elements of D(λ) are called boxes as suggested by the usual way we depict Young

diagrams. For example when λ = (4, 3, 1), we have

D(λ) = D(4, 3, 1) =

⎧⎪⎪⎨⎪⎪⎩
(1, 1), (1, 2), (1, 3), (1, 4),

(2, 1), (2, 2), (2, 3),

(3, 1)

⎫⎪⎪⎬⎪⎪⎭ = .

Young diagrams as subsets D ⊆ N2
are characterized by the property that whenever

(i , j) ∈ D and i′ ≤ i , j′ ≤ j we also have (i′, j) ∈ D and (i , j′) ∈ D, i.e., the rows and

columns have no gaps. Since this property is symmetric in the two coordinates, each

Young diagram D comes with a conjugate diagram D′
consisting of all (i , j) such that
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3. Representation Theory

(j, i) ∈ D. For example for D = D(4, 3, 1) as above, we have

D′ = = D(3, 2, 2, 1).

For any integer partition λ there is a unique integer partition λ′ such that D(λ′) = D(λ)′.
It is called the conjugate partition of λ and counts the numbers of boxes in each column

of the Young diagram of λ. In the example, (3, 2, 2, 1) is the conjugate of (4, 3, 1).

To each integer partition λ we associate a representation Eλ of GLn(C) called a Schur
module. Let µ = λ′ = (µ1, . . . , µl ) be the conjugate partition of λ and consider the

representation

Aλ =
⋀µ1

Cn ⊗
⋀µ2

Cn ⊗ · · · ⊗
⋀µl
Cn . (3.1)

That is, for each column in D(λ) we take the exterior power of Cn given by the length of

the column and then take the tensor product of all these. Let e1, . . . , en be the standard
basis of Cn, then Aλ is generated by monomials

eT =
l⨂

j=1

µ j⋀
i=1

eT (i ,j) for T : D(λ) → [n]. (3.2)

Any map from a Young diagram D to some a set of numberM ⊆ N is called a Young
tableau2 of shape D with entries in M and is usually denoted by drawing the actual

diagram and putting numbers in the boxes. For example, a tableau of shape D(4, 3, 1)

would be

T =
3 6 2 1

4 8 4

7

. (3.3)

To construct Eλ we have to define an operation on Young tableaux called an exchange. Let
F : D → M be a tableau of shape D with column lengths µ = (µ1, . . . , µl ). An exchange of

F yields another tableau F ′ : D → M that is obtained by first picking two columns j1 < j2
and equally large sets of boxes B1 in column j1, B2 in column j2 and then interchanging

the entries in B1 and B2, maintaining their vertical order. For example, ifT is the tableau in

(3.3) and we pick j1 = 1, j2 = 2 and B1 = {(1, 1), (3, 1)}, B2 = {(1, 2), (2, 2)}, the exchange

produces the tableau

S =
6 3 2 1

4 7 4

8

.

Denote byT j1,j2,B2
the family of all tableaux that can be obtained fromT by an exchange

given by j1, j2, B2 and any choice of B1. Note that different exchanges might produce

2
What we call a Young tableau is called a filling in [Ful97]. We will refer to a Young tableau in the sense

of [Ful97] as a semistandard Young tableau.
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3.1. Representations of the Complex General Linear Group

the same results, which is why we have to consider T j1,j2,B2
as a family and not a set. For

example for T as in (3.3) we have

T 1,2,{(1,2),(2,2)} =
©­«

6 3 2 1

8 4 4

7

,

6 3 2 1

4 7 4

8

,

3 4 2 1

6 7 4

8

ª®¬ .
Now let Qλ

be the subspace of Aλ spanned by the elements

eT −
∑

T ′∈T j
1
,j
2
,B
2

eT ′ ,

for any tableau T : D(λ) → [n] and choices of j1 < j2 and B2. Using linearity in each

factor we see thatQλ
is invariant under the action of GLn(C) and we can define the Schur

module Eλ as the quotient Aλ/Qλ
.

The elements [eT ] ∈ Eλ for eT the monomial in (3.2) still generate Eλ when T ranges

over all tableaux with entries in [n]. Since we take exterior products in each column, it

is enough to consider tableaux whose entries are strictly increasing from top to bottom

in each column. Furthermore, the relations given by Qλ
yield that Eλ is generated by

monomials [eT ], where T is strictly increasing in the columns and weakly increasing in

the rows. A tableau with these properties is called a semistandard Young tableau or SSYT
for short. The monomials given by SSYTs of shape λ with entries in [n] do in fact form

a basis of the Schur module Eλ as a representation of GLn(C), as is detailed in [Ful97,

Sec. 8.1]. A consequence of this is that for λ = (λ1, . . . , λk) with k > n the representation

Eλ is trivial, since there are no SSYTs with entries in [n] when the first column of D(λ)
has more than n boxes. This is of course easily verified from the definition of Aλ as in
(3.1), since

⋀k Cn is trivial when k > n.
Now assume λ has at most length n. If T is any tableau of shape λ with entries in [n]

and x = diag(x1, . . . ,xn) ∈ Hn is a diagonal matrix, we have

x • [eT ] =

[
l⨂

j=1

µ j⋀
i=1

xeT (i ,j)

]
=

[
l⨂

j=1

µ j⋀
i=1

xT (i ,j)eT (i ,j)

]
= xα1

1
· · · xαnn [eT ],

where αk is the number of times k appears in T . Thus, every [eT ] is a weight vector.
If we take the tableau T given by (i , j) ↦→ i , i.e., all entries in row i are equal to i , we

obtain a vector of weight λ (padded with zeros if k < n). Acting on it with an upper

triangular matrix д ∈ B, we can use the alternating property in each column and see

that д • [eT ] = x • [eT ] for x ∈ Hn the diagonal matrix with the same diagonal as д. We

conclude that this monomial is a highest weight vector and in fact it is the only one up

to multiplication by a scalar (see [Ful97, Sec. 8.2, Lem. 4]). Hence, Theorem 3.1.1 implies

that Eλ is an irreducible GLn(C) module isomorphic to V (λ). So we have a construction

for all holomorphic finite-dimensional irreducible representations of GLn(C) with strictly

positive highest weight.

Finally, we consider the general case where λ = (λ1, . . . , λn) is an arbitrary highest

weight for GLn(C), so the λi are any integers satisfying λ1 ≥ · · · ≥ λn. Let k be an integer

21



3. Representation Theory

such that λn + k > 0 and define the integer partition λ+k by λ+k = (λ1 + k , . . . , λn + k).
Consider the tensor product Eλ+k ⊗ D−k

of a Schur module as discussed above and the

determinantal representation given by multiplication with det(A)−k on C. As a vector
space Eλ+k ⊗ D−k

is isomorphic to Eλ+k via v ⊗ z ↦→ zv . However, as representations they
are not isomorphic for k , 0. Letw ∈ Eλ+k be a weight vector of weight (α1, . . . ,αn) and
x = diag(x1, . . . ,xn) ∈ Hn, then

x • (w ⊗ 1) = (xα1
1
· · · xαnn w) ⊗ ((x1 · · · xn)

−k
1) = xα1−k

1
· · · xαn−kn (w ⊗ 1),

so weights in Eλ+k ⊗D−k
are shifted by −k . We conclude that Eλ+k ⊗D−k

is an irreducible

representation of GLn(C) with highest weight λ, as desired. Note that increasing k by

one adds a tensor factor of

⋀n Cn � D1
in the Schur module part Eλ+k that is canceled

by an additional factor of D−1
in the determinantal part, so the construction does not

depend on the choice of k up to canonical isomorphism.

3.2. Gelfand–Tsetlin Bases and Polytopes

In this section we construct a basis of V (λ) known as the Gelfand–Tsetlin basis with
elements naturally enumerated by the lattice points in a polytope. The main ingredient

for the construction is the following branching rule that describes how an irreducible

representationV (λ) for GLn(C) decomposes into irreducibles when restricted to GLn−1(C).
For a representation V of a group G with a subgroup H ⊆ G, we denote by V |H the

restriction of V to a representation of H , i.e., the representation given by the restriction

of G → GL(V ) to H → GL(V ). We consider GLn−1(C) as the subgroup of GLn(C) given
by matrices of the form

(
A 0

0 1

)
, where A is an invertible (n − 1) × (n − 1) matrix.

Theorem 3.2.1 (Branching Rule, [Žel73, § 66 Thm. 2]). Let λ = (λ1, . . . , λn) ∈ Z
n and

µ = (µ1, . . . , µn−1) ∈ Zn−1 with λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn−1 be highest weights
of the irreducible representations V (λ) of GLn(C) and V (µ) of GLn−1(C), respectively. The
restricted representationV (λ)|GLn−1(C) has a subrepresentationWµ isomorphic toV (µ) if and
only if the interlacing condition

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn

is satisfied. In this situation,Wµ is uniquely determined and furthermore V (λ)|GLn−1(C) de-
composes as the direct sum

V (λ)
��
GLn−1(C)

=
⨁
µ

Wµ �
⨁
µ

V (µ),

where µ ranges over all integer tuples in Zn−1 satisfying the interlacing condition.

Now consider the chain of subgroups

GL1(C) ⊆ GL2(C) ⊆ · · · ⊆ GLn−1(C) ⊆ GLn(C) (3.4)
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3.2. Gelfand–Tsetlin Bases and Polytopes

and iteratively restrict V (λ) to smaller GLk(C), in each step applying the branching rule.

This way we obtain a decomposition

V (λ)|GL1(C) =
⨁
Λ

WΛ

into irreducible subrepresentationsWΛ ⊆ V (λ)|GL1(C) given by triangular patterns

Λ =

λ(n)
1

λ(n)
2

λ(n)
3

· · · λ(n)n

λ(n−1)
1

λ(n−1)
2

· · · λ(n−1)n−1

. . .
. . . . .

.

λ(2)
1

λ(2)
2

λ(1)
1

©­­­­­­­­­­«

ª®®®®®®®®®®¬
∈ Zn(n+1)/2, (3.5)

with first row λ(n) = λ and consecutive rows satisfying the interlacing condition from

Theorem 3.2.1. Such triangular patterns of integers are called Gelfand–Tsetlin patterns
or GT patterns for short, as they first appeared as enumerators for a basis of V (λ) in
[GT50]. Since GL1(C) is abelian, all its irreducible representation are one dimensional

(see [Hal15, Cor. 4.28]) and picking a non-zero vectorwΛ ∈WΛ in each summand yields

the Gelfand–Tsetlin basis for V (λ). This basis is determined up to scalar multiplication

and only depends on the choice of embeddings in the chain of subgroups in (3.4).

For any λ ∈ Rn with λ1 ≥ · · · ≥ λn let GT(λ) be theGelfand–Tsetlin polytope inRn(n+1)/2

given by patterns Λ as in (3.5) but with real entries, still satisfying λ(n) = λ in the first row

as well as the interlacing conditions from Theorem 3.2.1 for consecutive rows. For an

integral highest weight λ for GLn(C), the GT patterns enumerating the Gelfand–Tsetlin

basis of V (λ) are exactly the lattice points in the Gelfand–Tsetlin polytope GT(λ).
It turns out that the vectors in V (λ) given by GT patterns are always weight vectors.

In fact, if wΛ is a vector corresponding the GT pattern Λ as in (3.5), it has weight µ =

(µ1, . . . , µn) with µ1 = λ
(1)

1
and

µk =
k∑
i=1

λ(k)i −

k−1∑
i=1

λ(k−1)i .

In other words, the pattern has row sums µ1, µ1 + µ2, . . . , µ1 + · · ·+ µn from bottom to top.

This motivates the definition of the polytope GT(λ)µ whose integer points enumerate a

basis of the weight subspace V (λ)µ . For general λ, µ ∈ Rn with λ1 ≥ · · · ≥ λn let GT(λ)µ
be the weighted Gelfand–Tsetlin polytope in Rn(n+1)/2 obtained by intersecting GT(λ) with
the subspace described by the row sum conditions

k∑
i=1

λ(k)i = µ1 + · · · + µk for k = 1, . . . ,n.
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3. Representation Theory

In light of the previous sections, we see that the defining inequalities of the unweighted

Gelfand–Tsetlin polytope GT(λ) are similar to those of order polytopes.

Since Gelfand–Tsetlin polytopes appear not just in representation theory, but also in

the geometry of Schubert varieties and flag varieties (e.g., [KM05; Kir10; KST12]), an

increasing number of articles on their combinatoric and geometric properties appeared

in the last decades. Regarding unweighted GT polytopes we want to mention [GKT13],

where the generating function of the number of vertices of GT(λ) is discussed, as well as
[ACK18], where an approach using ladder diagrams is used to determine the exponential

generating function for f -vectors of Gelfand–Tsetlin polytopes. On the side of weighted

GT polytopes we point out [DM04], where a method using tiling matrices to determine

dimensions of faces is used to obtain vertices of weighted Gelfand–Tsetlin polytopes. We

will generalize this approach in Section 6.5.

3.3. Gelfand–Tsetlin Patterns and SSYTs

Since we have described two bases of V (λ)—the GT basis obtained from iteratively

applying the branching rule Theorem 3.2.1 and the basis for the Schur module Eλ �
V (λ) given by semistandard Young tableaux of shape D(λ)—it is natural to ask for a

combinatorial bijection between GT patterns and SSYTs.

Assuming λ is a strictly positive weight—otherwise one can always consider λ+k instead
as done above—we can think of a GT pattern as a list of integer partitions and associate

to each of them a Young diagram. For example, consider the Gelfand–Tsetlin pattern

Λ =

5 3 3 1

4 3 2

4 2

3

©­­«
ª®®¬.

From bottom to top, this yields the Young diagrams

, , , .

Since GT patterns as in (3.5) satisfy λk+1i ≤ λki , each diagram in the list will be contained

in the next. Hence, we may encode the whole list as a Young tableau of shape given

by the first row in the GT pattern: into each box put the number in which step the box

appears when reading the GT pattern bottom to top. In the example we obtain the Young

tableau

1 1 1 2 5

2 2 3

3 3 4

4

.
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3.3. Gelfand–Tsetlin Patterns and SSYTs

The interlacing conditions for GT patterns yield that this tableau will always be semis-

tandard. In fact, this construction gives a bijection between GT patterns with top row

λ = (λ1, . . . , λn) ∈ Nn and SSYTs of shape D(λ) with entries in [n] (cf. [Mac95, Ch. I,

Sec. 1]).

However, this correspondence between GT patterns and SSYTs does not identify the

two bases ofV (λ). Consider the case where n = 3 and λ = (3, 2, 1) is the highest weight of

the irreducible representation V (λ) of GL3(C). The branching rule yields that µ = (3, 1)

gives a GL2(C) invariant subspace Wµ of V (λ) isomorphic to V (µ). This subspace is

spanned by the GT basis vectors corresponding to patterns of the form

3 2 1

3 1

∗

( )
that correspond to the three SSYTs

1 1 1

2 3

3

,

1 1 2

2 3

3

, and

1 2 2

2 3

3

. (3.6)

The subspace of the Schur module Eλ spanned by the basis vectors [eT ] for these three
tableaux is not GL2(C) invariant, as the following calculation shows. We use the notation

u v w
x y

z
= [(u ∧ x ∧ z) ⊗ (v ∧ y) ⊗w] ∈ Eλ for u,v ,w ,x ,y, z ∈ C3.

Using the properties of Aλ, i.e., linearity in each factor and alternating in the columns,

we have ©­«
1 0 0

1 1 0

0 0 1

ª®¬ •

e1 e1 e1
e2 e3
e3

=

e1 e1 e1
e2 e3
e3

+

e1 e2 e2
e2 e3
e3

+

e1 e1 e2
e2 e3
e3

+

e1 e2 e1
e2 e3
e3

.

The first three summands are basis vectors [eT ] for T one of the tableaux in (3.6). The

last one is [eT ] for a non semi-standard tableau T and the relations of Qλ
given by the

exchange for j1 = 2, j2 = 3 and B2 = {(1, 3)} allow to expand it as

e1 e2 e1
e2 e3
e3

=

e1 e1 e2
e2 e3
e3

+

e1 e2 e3
e2 e1
e3

=

e1 e1 e2
e2 e3
e3

−

e1 e1 e3
e2 e2
e3

.

Thus, in the SSYT basis we have

©­«
1 0 0

1 1 0

0 0 1

ª®¬ •

e1 e1 e1
e2 e3
e3

=

e1 e1 e1
e2 e3
e3

+

e1 e2 e2
e2 e3
e3

+ 2

e1 e1 e2
e2 e3
e3

−

e1 e1 e3
e2 e2
e3

,

where the last summand is not one of the three in (3.6). We conclude that the subspace

spanned by the basis vectors [eT ] for tableaux in (3.6) is not GL2(C) invariant and hence

the described correspondence of GT patterns and SSYTs does not identify the GT basis

and SSYT basis of V (λ).
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3. Representation Theory

3.4. Feigin–Fourier–Littelmann–Vinberg Polytopes

As we have seen in the previous sections, in many situations where a polytope with

a description similar to an order polytope appears, there is a second polytope with a

description similar to a chain polytope lurking. In fact, half a decade after Gelfand and

Tsetlin constructed their basis of V (λ), another basis was constructed by Feigin, Fourier

and Littelmann in [FFL11] that has been conjectured to exist by Vinberg five years earlier.

The Feigin–Fourier–Littelmann–Vinberg basis or FFLV basis for short is also enumerated

by certain patterns with integral entries. Given a highest weight λ = (λ1, . . . , λn) ∈ Z
n

for GLn(C), an FFLV pattern is a triangular pattern

Λ =

λ(n)
1

λ(n)
2

λ(n)
3

· · · λ(n)n

λ(n−1)
1

λ(n−1)
2

· · · λ(n−1)n−1

. . .
. . . . .

.

λ(2)
1

λ(2)
2

λ(1)
1

©­­­­­­­­­­«

ª®®®®®®®®®®¬
∈ Zn(n+1)/2,

satisfying the following conditions:

i) the first row is given by λ(n) = λ,
ii) all other entries are non-negative,

iii) for each Dyck path starting and ending in the first row, the sum of the entries along

the path below the top row is less than or equal to the difference of the endpoints.

Here a Dyck path is a sequence of indices ((i1,k1), (i2,k2), . . . , (is ,ks)) such thatk1 = ks = n
and at every step (i ,k) is either followed by (i − 1,k − 1) or (i ,k + 1). Condition iii) is

then precisely

λ(k2)i2
+ · · · + λ(ks−1)is−1

≤ λis − λi1 .

An example for such a pattern with one Dyck path indicated is

Λ =

5 3 3 1

0 0 1

2 0

1

©­­­­«
ª®®®®¬
.

Condition iii) is satisfied for this path since

1 + 0 + 0 + 2 + 0 ≤ 5 − 1.

Without requiring the entries to be integers, the conditions of FFLV patterns describe

a polytope FFLV(λ) in Rn(n+1)/2, whose lattice points correspond to the basis vectors in

the FFLV basis of V (λ) when λ is integral. The description of this polytope is similar to

that of a chain polytope: all entries that are not fixed are required to be non-negative
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3.4. Feigin–Fourier–Littelmann–Vinberg Polytopes

and each Dyck path gives an upper bound on the sum of the entries along the path.

In [ABS11], Ardila, Bliem and Salazar generalized the concept of poset polytopes to

marked poset polytopes, allowing GT(λ) and FFLV(λ) to be considered as the marked

order polytope O(P , λ) and marked chain polytope C(P , λ) associated to a certainmarked
poset (P , λ). They also give a piecewise-unimodular transfer map O(P , λ) → C(P , λ) and
hence provide a combinatorial explanation as to why the two polytopes have the same

number of lattice points—the dimension of V (λ).
We will come back to this generalization of poset polytopes in Chapter 5. It is worth

noting at this point, that the representation theory literature offers many other examples

of polytopes whose lattice points enumerate bases of irreducible representations of

semisimple Lie algebras. Most of them are closely related to poset polytopes and some of

them still fit in the more general framework we will discuss in Part II. See for example

[Lit98], [ABS11] and [BD15].
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4. Finite Frame Theory

In this chapter we discuss polytopes that arise in the theory of finite Hilbert space frames.

Frame theory started in the theory of signal transmission as a generalization of Fourier

analysis that allows for redundancy and adaptation. Generalizing an approach taken by

Gabor [Gab46], the theory was thoroughly introduced by Duffin and Schaeffer in [DS52].

For a detailed account on the historical development, and an introduction to the finite

dimensional theory up to recent research results we refer to the book of Casazza and

Kutyniok [CK13].

Roughly speaking, frame theory addresses the following shortcomings of Fourier

analysis: considering some signal, for example image data, audio data or similar, the

aim of Fourier analysis is to express it in terms of oscillations, i.e., it describes a signal

using frequencies and phases. In the discrete setting, this is merely a change from one

orthonormal basis to another in a finite dimensional Hilbert space. Hence, losing any

of the coefficients due to noise or a lossy transmission, the signal can not be recovered.

Furthermore, the chosen orthonormal basis might not be well suited to capture the

characteristics of the signals to be transmitted or processed. However, the advantage of

an orthonormal basis is the very efficient calculation of coefficients: they are the inner

products with the basis vectors. Frame theory aims to resolve these issues by allowing

redundant spanning sets that might be adapted to the signals characteristic features,

while still offering efficient calculations.

4.1. Basics of Finite Frame Theory

We start with a quick introduction to the theory of finite Hilbert space frames to then

introduce sequences of eigensteps associated to frames as well as the polytopes they

form.

LetH be any Hilbert space, i.e., a real or complex complete vector space with an inner

product ⟨ · , · ⟩. A Hilbert space frame or just frame for H is a sequence F = (f1, f2, . . .)
of vectors inH such that there exist constants 0 < A ≤ B < ∞ satisfying

A ∥x ∥ ≤

∞∑
k=1

|⟨x , fk⟩|
2 ≤ B ∥x ∥ for all x ∈ H . (4.1)

The constants A and B are called frame bounds. If A and B are chosen as big, respectively

small, as possible, they are called optimal frame bounds. One of the most important types

of frames are tight frames, where the optimal frame bounds are equal, that is, one can

choose A = B.
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4.2. The Frame Construction Problem

Since in any application both the dimension of the Hilbert space and the length of the

frame are necessarily finite, the finite version of frame theory gained more and more

interest in the recent years. In this setting, the Hilbert spaceH is of finite dimension d
and a finite frame is a finite sequence F = (f1, f2, . . . , fn) of vectors inH satisfying

A ∥x ∥ ≤

n∑
k=1

|⟨x , fk⟩|
2 ≤ B ∥x ∥ for all x ∈ H . (4.2)

In finite dimensions, this definition might seem overly complicated: the upper frame

bound will exist for any vector configuration and the existence of a lower frame bound is

equivalent to F spanning all ofH . Hence, we could as well define a finite frame just as an

ordered spanning set. However, the usual definition we gave here stresses the harmonic

analysis flavored point of view the theory takes.

As stated above, frame theory wants to keep the efficient calculation method of just

taking inner products for obtaining the coefficients that describe a signal. Hence, for any

frame F , define the analysis operator T and synthesis operator T ∗
by

T : H −→ Cn, T ∗
: Cn −→ H ,

x ↦−→ (⟨x , fk⟩)
n
k=1 , (ak)

n
k=1 ↦−→

n∑
k=1

ak fk .

As the notation suggests and is easily verified, the analysis and synthesis operators of

any frame form an adjoint pair of linear operator, i.e., ⟨Tx ,a⟩ = ⟨x ,T ∗a⟩ for all x ∈ H ,

a ∈ Cn. Here the inner product on Cn is the standard dot product

⟨a,b⟩ =
n∑

k=1

akbk .

The composition S = T ∗T given by Sx =
∑n

k=1⟨x , fk⟩ fk is called the frame operator of
F . Ideally, this is the identity on H , so that taking any signal, storing the inner products

with the frame vectors and just using them as coefficients in a linear combination recovers

the original signal. This is of course true, whenever the vectors in F form an orthonormal

basis. However, there are frames different from orthonormal bases that still satisfy

S = idH . These are called Parseval frames and a frame is Parseval if and only if the

optimal frame bounds are A = B = 1. For tight frames we still have S = A idH and

in general the frame operator is a positive definite operator with smallest and largest

eigenvalues being the frame bounds A and B, respectively. Since the eigenvalues of the
frame operator play an essential role in frame theory, they are usually referred to as the

eigenvalues of the frame itself.

4.2. The Frame Construction Problem

One of the difficulties in frame theory is to construct application specific frames with

certain properties. A particular example is the need for signal encoding that is robust with
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4. Finite Frame Theory

respect to noise and loss of coefficients. One can show that unit norm tight frames—i.e.,

frames that are tight and consist solely of unit vectors—are optimally robust in a certain

sense (cf. [CK03; HP04]). The general problem that was posed in this context is the frame
construction problem (cf. [CFM+13a]): how to construct all frames F = (f1, . . . , fn) for
H = Cd with prescribed norm squares ∥ fk ∥

2 = µk and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd >
0 of the frame operator?

Given the tuples µ = (µ1, . . . , µn) and λ = (λ1, . . . , λd), the existence of a frame for

Cd with these norm squares and eigenvalues can be answered using the Schur–Horn
theorem, that characterizes the possible diagonals of Hermitian matrices with prescribed

eigenvalues.

Identify the frame F with the d × n matrix

F =
©­«
| | |

f1 f2 · · · fn
| | |

ª®¬ .
Hence, F is the matrix of the synthesis operator with respect to the standard bases of Cd

and Cn, while its Hermitian conjugate F ∗ is the matrix of the analysis operator. The norm

squares ∥ fk ∥
2
are the diagonal entries of the Hermitian n ×n matrix F ∗F called the Gram

matrix of F . Note that we have n ≥ d since finite frames are spanning sets. The spectrum

of F ∗F is just a zero-padded version of the spectrum of the frame operator represented by

the d ×d matrix FF ∗. To be precise, if (λ1, . . . , λd) is the spectrum of the frame operator in

weakly decreasing order, then (λ1, . . . , λd , 0, . . . , 0) counting n − d zeros is the spectrum

of the Gram matrix. To see this, consider the singular value decomposition

F = U
©­­«
α1 0 · · · 0

. . .
...
. . .

...
αd 0 · · · 0

ª®®¬V ∗
, (4.3)

whereU and V are unitary matrices of size d × d and n × n, respectively. Hence, we have

FF ∗ = U diag(|α1 |
2

, . . . , |αd |
2)U ∗

, and

F ∗F = V diag(|α1 |
2

, . . . , |αd |
2

, 0, . . . , 0)V ∗.
(4.4)

From this decomposition we can immediately read of the eigenvalues and the spectra

compare as claimed. Hence, we know that any frame F with the desired properties

yields a Gram matrix F ∗F with spectrum (λ1, . . . , λd , 0, . . . , 0). Conversely, given any

positive-definite Hermitian n × n matrixM with spectrum (λ1, . . . , λd , 0, . . . , 0), we can
construct a frame F such that M = F ∗F : since M is Hermitian, it has an orthonormal

eigenbasis, so there is a unitary n × n matrixU such that

M = U diag(λ1, . . . , λd , 0, . . . , 0)U
∗. (4.5)

Hence, we haveM = F ∗F , where F is the d × n matrix

©­­«
√
λ1 0 · · · 0

. . .
...
. . .
...

√
λd 0 · · · 0

ª®®¬ U ∗. (4.6)
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4.3. Polytopes of Eigensteps

We conclude that characterizing the possible norms of frames whose frame operator

has eigenvalues (λ1, . . . , λd) is equivalent to characterizing the possible diagonals of

Hermitian matrices with eigenvalues (λ1, . . . , λd , 0, . . . , 0). We can now state the Schur–

Horn theorem for finite frames.

Theorem 4.2.1 (Schur–Horn, [Hor54]). There exists a frame F = (f1, . . . , fn) for Cd

with norm squares ∥ fk ∥
2 = µk for k = 1, . . . ,n and spectrum (λ1, . . . , λd) if and only

if (µ1, . . . , µn) lies in the convex hull of all permutations of the vector (λ1, . . . , λd , 0, . . . , 0)
in Rn.

Note that this formulation of the Schur–Horn theorem does not require the norm

squares to be in any specific order. In the literature, the theorem is often stated in terms

of majorization: given two vectors a,b ∈ Rn, we say a is majorized by b and write a ⪯ b,
if after permuting the coordinates such that a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn
we have

k∑
i=1

ai ≤
k∑
i=1

bi for 1 ≤ k < n, and

n∑
i=1

ai =
n∑
i=1

bi .

By a result of Rado that appeared in [Rad52], a is majorized by b if and only if a lies in the

convex hull of all permutation of b, which justifies our formulation of the Schur–Horn

theorem.

Unfortunately, the classical proof of the Schur–Horn theorem is non-constructive and

other proofs may construct some, but not all frames with the desired properties. Only

recently, a new approach to the frame construction problem using sequences of eigensteps
led to a complete parametrization in [FMPS13; CFM+13a].

4.3. Polytopes of Eigensteps

In this section, we discuss the approach taken in [FMPS13; CFM+13a] to solve the frame

construction problem. As we will see, one step in the parametrization of all frames

for Cd with norm squares µ = (µ1, . . . , µn) and eigenvalues λ = (λ1, . . . , λd) will be the
parametrization of a certain polytope that coincides with a Gelfand–Tsetlin polytope.

Given any Hermitianm ×m matrixM , we denote by σ (M) ∈ Rm the spectrum ofm in

weakly decreasing order. That is, σ (M) = (σ1(M), . . . ,σm(M)), where σ1(M) ≥ σ2(M) ≥

· · · ≥ σm(M) are the eigenvalues ofM . To a frame F for Cd considered as a n × d matrix

and a non-negative integer k ≤ n associate the truncated frame Fk which is just the matrix

consisting of the first k columns of F .

Definition 4.3.1 (cf. [FMPS13]). To a frame F = (f1, . . . , fn) for C
d
we associate the

sequence of outer eigensteps and the sequence of inner eigensteps of F given by

Λout(F ) =
(
σ (F

0
F ∗
0
), . . . ,σ (FnF

∗
n )

)
, and

Λin(F ) =
(
σ (F ∗

1
F
1
), . . . ,σ (F ∗nFn)

)
,
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4. Finite Frame Theory

respectively. Note that F
0
F ∗
0
is the d × d zero matrix with all eigenvalues zero. We will

usually consider Λout(F ) as the real d × (n + 1) matrix

Λout(F ) =
©­­«
σ1(F0F

∗
0
) · · · σ1(FnF

∗
n )

...
...

σd(F0F
∗
0
) · · · σd(FnF

∗
n )

ª®®¬ ∈ Rd×(n+1)

and refer to it as the outer eigenstep tableau or just outer eigensteps of F . We will usually

consider Λin(F ) as the triangular pattern

Λin(F ) =

©­­­­­­­­­­­«
σ1(F

∗
1
F
1
)
σ2(F

∗
2
F
2
)

σ1(F
∗
2
F
2
)

σ3(F
∗
3
F
3
)

σ2(F
∗
3
F
3
)

σ1(F
∗
3
F
3
)

· · ·

· · ·

· · ·

σn(F
∗
nFn)

σn−1(F
∗
nFn)

...

σ2(F
∗
nFn)

σ1(F
∗
nFn) ª®®®®®®®®®®®¬

∈ Rn(n+1)/2

and refer to it as the inner eigenstep pattern of F .

In the same fashion we compared the spectra of FF ∗ and F ∗F in (4.4), we can do this

for the truncated frames and see that outer and inner eigensteps encode the exact same

information: for i ≤ d , σ (FiF
∗
i ) is just a zero-padded version of σ (F ∗i Fi) while for i ≥ d ,

σ (F ∗i Fi) is a zero-padded version of σ (FiF
∗
i ). In Figure 4.1 we illustrate how the outer

eigenstep tableau Λout(F ) and the inner eigenstep pattern Λin(F ) fit together.
Note that the (outer and inner) eigensteps of a frame F = (f1, . . . , fn) also encode the

norms of the frame vectors as we have

d∑
i=1

σi(FkF
∗
k ) = Tr(FkF

∗
k ) = Tr(F ∗k Fk) =

k∑
j=1



fj

2 (4.7)

for outer eigensteps, and equivalently

k∑
i=1

σi(F
∗
k Fk) = Tr(F ∗k Fk) =

k∑
j=1



fj

2 (4.8)

for inner eigensteps.

Now given a spectrum λ = (λ1, . . . , λd) and norm squares µ = (µ1, . . . , µn), the approach
in [FMPS13; CFM+13a] is to first construct all possible sequences of outer eigensteps

Λ ∈ Rd×(n+1) of frames with the desired norms and eigenvalues and then for each tableau

Λ construct all frames F with Λout(F ) = Λ. Denote by Fµ,λ the set of all frames for Cd

solving the frame construction problem for µ and λ, that is, all frames having norm squares

µ and spectrum λ. As we will see, the sets Λout(Fµ,λ) ⊆ R
d×(n+1)

and Λin(Fµ,λ) ⊆ R
n(n+1)/2

are both polytopes. Part of the description of these polytopes are the conditions on the
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Figure 4.1.: The different zero-paddings of the spectral information of a frame F of length

n for Cd as encoded in the outer eigenstep tableau Λout(F ) and the inner

eigenstep pattern Λin(F ).
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4. Finite Frame Theory

column sums imposed by the trace condition (4.7) or (4.8), respectively. In addition to

these, there are inequalities that describe how the spectra of frame operators and Gram

matrices can change when a frame vector is added. To obtain these, we have to apply the

min-max theorem or Courant–Fischer theorem for eigenvalues of Hermitian matrices.

Theorem 4.3.2 (Min-Max Theorem, [HJ85, Thm. 4.2.11]). Let M be a Hermitianm ×m
matrix. The eigenvalues of M satisfy the equations

σi(M) = max

U⊆Cm

dim(U )=i

min

u∈U
u,0

⟨Mu,u⟩

⟨u,u⟩
= min

U⊆Cm

dim(U )=m−i+1

max

u∈U
u,0

⟨Mu,u⟩

⟨u,u⟩
,

where U ranges over all subspaces of Cm with the given dimension.
Furthermore, if (u1, . . . ,um) is an orthonormal eigenbasis of M with Muj = σj(M)uj

for all j, the maximum and minimum are attained for the subspaces span(u1, . . . ,ui) and
span(ui , . . . ,um), respectively.

This description of the eigenvalues of Hermitian matrices implies the following lemma

that yields interlacing conditions on sequences of inner eigensteps.

Lemma 4.3.3 (Cauchy’s Interlace Theorem, [HJ85, Thm. 4.3.8]). Let M be a Hermitian
m ×m matrix and M′ be the (m − 1) × (m − 1) submatrix obtained from M by removing
the last row and column. The spectra of M and M′ satisfy the interlacing condition

σ1(M) ≥ σ1(M
′) ≥ σ2(M) ≥ σ2(M

′) ≥ · · · ≥ σm−1(M) ≥ σm−1(M
′) ≥ σm(M).

Proof. We fix i ∈ {1, . . . ,m − 1} and show that

σi(M) ≥ σi(M
′) ≥ σi+1(M).

Let u1, . . . ,um−1 ∈ C
m−1

be an orthonormal eigenbasis of M′
such that M′uj = σj(M

′)uj
for all j and consider the subspace S = span(u1, . . . ,ui) ⊆ C

m−1
. Denote by ι : Cm−1 → Cm

the embedding into the firstm−1 coordinates with imageCm−1×0. Applying the min-max

theorem 4.3.2, we obtain

σi(M
′) = min

u∈S
u,0

⟨M′u,u⟩

⟨u,u⟩
= min

u∈ι(S)
u,0

⟨Mu,u⟩

⟨u,u⟩
≤ max

U⊆Cm

dim(U )=i

min

u∈U
u,0

⟨Mu,u⟩

⟨u,u⟩
= σi(M).

Now consider the subspace S′ = span(ui , . . . ,um−1). Applying the min-max theorem

again, we obtain

σi(M
′) = max

u∈S ′
u,0

⟨M′u,u⟩

⟨u,u⟩
= max

u∈ι(S ′)
u,0

⟨Mu,u⟩

⟨u,u⟩
≥ min

U⊆Cm

dim(U )=m−i

max

u∈U
u,0

⟨Mu,u⟩

⟨u,u⟩
= σi+1(M).

Corollary 4.3.4. Let F = (f1, . . . , fn) be a frame for Cd . The sequence of inner eigensteps
Λin(F ) ∈ Rn(n+1)/2 satisfies the interlacing condition

σ1(F
∗
k+1Fk+1) ≥ σ1(F

∗
k Fk) ≥ · · · ≥ σm−1(F

∗
k+1Fk+1) ≥ σm−1(F

∗
k Fk) ≥ σm(F

∗
k+1Fk+1).

for k = 1, . . . ,n − 1.

34



4.3. Polytopes of Eigensteps

Proof. This is immediate from Lemma 4.3.3, since F ∗
k
F
k
is obtained from F ∗

k+1
F
k+1

by

removing the last row and column.

Hence, we conclude that Λin(Fµ,λ) is contained in the polytope described by the trace

conditions in (4.8) given by µ, the final spectrum being equal to (λ1, . . . , λd , 0, . . . , 0), as
well as the interlacing conditions in Corollary 4.3.4.

Interestingly, these are not only necessary but also sufficient conditions and hence

fully characterize the sequences of eigensteps in Λin(Fµ,λ). In fact, there is a converse of

Lemma 4.3.3 that follows from a lemma of Mirsky.

Lemma 4.3.5 ([Mir58, Lem. 2]). Let α1, . . . ,αm, β1, . . . , βm−1 be real numbers such that

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αm−1 ≥ βm−1 ≥ αm,

then there exists a real (symmetric) matrix of the form

©­­­­«
β1 p1
. . .

...
βm−1 pm−1

p1 · · · pm−1 pm

ª®®®®¬
with eigenvalues α1, . . . ,αm.

Corollary 4.3.6. LetM′ be a Hermitian (m−1)×(m−1)matrix. Given a weakly decreasing
tuple (ρ1, . . . , ρm) of real numbers, there exists a vector b ∈ Cm−1 and a real number c such
that them ×m matrix

M =

(
M′ b
b∗ c

)
has spectrum (ρ1, . . . , ρm) if and only if the interlacing condition

ρ1 ≥ σ1(M
′) ≥ ρ2 ≥ σ2(M

′) ≥ · · · ≥ ρm−1 ≥ σm−1(M
′) ≥ ρm

is satisfied.

Proof. The only if part of the statement is exactly Cauchy’s interlace theorem as stated

in Lemma 4.3.3. Now given a Hermitian (m − 1) × (m − 1) matrix M′
and a weakly

decreasing tuple of real numbers (ρ1, . . . , ρm) satisfying the interlacing condition, we use
an orthonormal eigenbasis to obtain

M′ = U diag(σ1(M
′), . . . ,σm−1(M

′))U ∗

and apply Mirsky’s Lemma 4.3.5 to obtain a matrix

P =

©­­­­«
σ1(M

′) p1
. . .

...
σm−1(M

′) pm−1

p1 · · · pm−1 pm

ª®®®®¬
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4. Finite Frame Theory

with eigenvalues ρ1, . . . , ρm. Now let

M =

(
U 0

0 1

)
P

(
U ∗

0

0 1

)
=

(
M′ b
b∗ c

)
,

where

b = U
©­­«
p1
...

pm−1

ª®®¬ and c = pm .

Finally, we arrive at a complete characterization of the eigenstep patterns in Λin(Fµ,λ).

Corollary 4.3.7 (cf. [FMPS13, Def. 2]). Let n ≥ d be non-negative integers, µ = (µ1, . . . , µn)
a tuple of non-negative real numbers and λ = (λ1, . . . , λd) a weakly decreasing tuple of pos-
itive real numbers. A triangular pattern

Λ =

©­­­­­­­­­­«
λ1,1

λ2,2

λ1,2

λ3,3

λ2,3

λ1,3

· · ·

· · ·

· · ·

λn,n

λn−1,n

...

λ2,n

λ1,n ª®®®®®®®®®®¬
∈ Rn(n+1)/2

appears as the sequence of inner eigensteps of a frame F ∈ Fµ,λ if and only if the following
conditions are satisfied:

i) the column sums are given by

k∑
j=1

λj,k =
k∑
j=1

µj , for k = 1, . . . ,n,

ii) the entries in the last column are

(λ1,n, . . . , λn,n) = (λ1, . . . , λd , 0, . . . , 0), and

iii) the interlacing condition

λ1,k+1 ≥ λ1,k ≥ λ2,k+1 ≥ λ2,k ≥ · · · ≥ λk ,k+1 ≥ λk ,k ≥ λk+1,k+1

is satisfied for k = 1, . . . ,n − 1.

Proof. Given a frame F ∈ Fµ,λ the pattern Λ = Λin(F ) satisfies the column sum condition

by (4.8). The last column is the spectrum of F ∗F and is hence given by (λ1, . . . , λd , 0, . . . , 0)
as obtained from the decomposition in (4.4). The interlacing conditions are satisfied by

Corollary 4.3.4.
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4.3. Polytopes of Eigensteps

Conversely, letΛ ∈ Rn(n+1)/2 be a triangular pattern satisfying the above conditions. We

first construct a positive-definite Hermitian n × n matrixM such that for k = 1, . . . ,n the

matrixMk consisting of the first k rows and columns ofM has spectrum (λ1,k , . . . , λk ,k).
Start by letting M1 = (λ1,1) and note that λ1,1 is non-negative since the interlacing

conditions yield λ1,1 ≥ λ2,2 ≥ · · · ≥ λn,n and λn,n is non-negative as an entry of the last

column. We can now iteratively apply Corollary 4.3.6 to obtain the matricesM2, . . . ,Mn =

M and find a frame F = (f1, . . . , fn) for C
d
such that M = F ∗F as previously done in

(4.5)–(4.6). The spectra of the truncated frames Fk are as desired since F ∗
k
F
k
= Mk . Hence,

Λin(F ) = Λ. Furthermore, the frame vectors of F have norm squares µ1, . . . , µn since

the norms are encoded in the eigenstep pattern as in (4.8) and fixed by the column sum

condition. We conclude that F ∈ Fµ,λ, which finishes the proof.

We conclude that Λin(Fµ,λ) is a polytope in R
n(n+1)/2

. Using the translation between

outer and inner eigensteps as depicted in Figure 4.1 we may translate the characterization

of inner eigensteps in Corollary 4.3.7 to outer eigensteps.

Corollary 4.3.8 (cf. [FMPS13, Def. 1], [CFM+13a, Def. 1]). Let n ≥ d be non-negative
integers, µ = (µ1, . . . , µn) a tuple of non-negative real numbers and λ = (λ1, . . . , λd) a
weakly decreasing tuple of positive real numbers. A tableau

Λ =
©­­«
λ1,0 · · · λ1,n
...

...
λd ,0 · · · λd ,n

ª®®¬ ∈ Rd×(n+1)

appears as the sequence of outer eigensteps of a frame F ∈ Fµ,λ if and only if the following
conditions are satisfied:

i) the column sums are given by

d∑
i=1

λi ,k =
k∑
j=1

µj , for k = 1, . . . ,n,

ii) the entries in the last column are

(λ1,n, . . . , λd ,n) = (λ1, . . . , λd),

iii) the entries in the first column are zero

(λ1,0, . . . , λd ,0) = (0, . . . , 0), and

iv) the interlacing condition

λ1,k+1 ≥ λ1,k ≥ λ2,k+1 ≥ λ2,k ≥ · · · ≥ λd ,k+1 ≥ λd ,k

is satisfied for k = 1, . . . ,n − 1.
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4. Finite Frame Theory

We will refer to both Λin(Fµ,λ) and Λout(Fµ,λ) as the polytope of eigensteps as they are

affinely isomorphic by the correspondence depicted in Figure 4.1.

Note that by the Schur–Horn theorem for finite frames (Theorem 4.2.1), the polytopes

Λin(Fµ,λ) and Λ
out(Fµ,λ) described in Corollaries 4.3.7 and 4.3.8 are non-empty if and only

if µ lies in the convex hull of all permutations of
˜λ = (λ1, . . . , λd , 0, . . . , 0), or equivalently

if and only µ is majorized by
˜λ.

Using sequences of eigensteps, the frame construction problem can now be split into

two steps, as done in [FMPS13; CFM+13a]:

Step A. Parametrize the polytope of eigensteps Λout(Fµ,λ) (or Λ
in(Fµ,λ)).

Step B. Construct all frames with a given sequence of outer or inner eigensteps.

An algorithm called Top Kill solving step A, i.e., obtaining all points in Λin(Fµ,λ), is

described in [FMPS13] and an algorithm solving step B is given in [CFM+13a]. We refer

to the book chapter [FMP13] for a detailed account on both results.

4.3.1. Polytopes of Eigensteps and Gelfand–Tsetlin Polytopes

Comparing the description of the polytope Λin(Fµ,λ) with that of the weighted Gelfand–

Tsetlin polytope GT(λ)µ in Section 3.2, we see that

Λin(Fµ,λ) = GT( ˜λ)µ , where
˜λ = (λ1, . . . , λd , 0, . . . , 0).

Furthermore, denoting by Fλ the set of all frames for Cd of length n with spectrum λ,
we obtain a description of the polytopes Λin(Fλ) and Λout(Fλ) by omitting the column

sum conditions in Corollaries 4.3.7 and 4.3.8, respectively. The description obtained this

way is identical to that of an unweighted Gelfand–Tsetlin polytope. To be precise,

Λin(Fλ) = GT( ˜λ), where
˜λ = (λ1, . . . , λd , 0, . . . , 0).

4.3.2. The Case of Equal Norm Tight Frames

When considering only tight frames where all frame vectors have the same norm—so

µ and λ are constant—we can simplify the description of Λin(Fµ,λ) = GT( ˜λ)µ given in

Corollary 4.3.7 to a non-redundant one. From this we can read off the dimension and

number of facets. The details of this can be found in the appendix in Chapter 10. The

results are joint work with Tim Haga and also appeared in [HP16].
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Part II.

Towards a General Framework
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Introduction

This part is devoted to the search for general framework capturing the phenomena

observed in Part I. There we have seen various examples of a scenario that might be

roughly described as the following:

In some mathematical context two polyhedra P ,Q ⊆ Rn appear together with a

piecewise-linear bijection P → Q . The polyhedron P is given by linear equations and

inequalities of some of the following types:

– equations xi = c fixing a coordinate to a constant c ∈ R,
– inequalities xi ≤ xj comparing coordinates,

– inequalities αxi ≤ βxj comparing coordinates weighted by positive constants

α , β > 0.

The polyhedron Q is given by linear equations and inequalities of the following type:

– equations xi = c fixing a coordinate to a constant c ∈ R,
– inequalities xi ≥ 0 for all coordinates that are not fixed,

– inequalities α1xi1 + α2xi2 + · · · + αkxik ≤ c bounding a positive combination of

non-fixed coordinates by a constant c ∈ R.

The first step in this direction was done by Ardila, Bliem and Salazar in [ABS11],

where they extended the definition of poset polytopes and their transfer maps to posets

with so called markings, that give fixed coordinates for the associated polytopes. This

generalization allows to consider the Gelfand–Tsetlin polytope GT(λ) and the Feigin–

Fourier–Littelmann–Vinberg polytope FFLV(λ) discussed in Chapter 3 as the marked

order polytope O(P , λ) and marked chain polytope C(P , λ) of some marked poset (P , λ),
respectively. Since a lot of the results for ordinary poset polytopes do not immediately

generalize to marked poset polytopes, this opened questions that had been answered for

ordinary poset polytopes to be asked for marked poset polytopes as well. In particular,

the elegant combinatorial description of the face structure of order polytopes O(P) given
by Geissinger and Stanley that we have seen in Section 1.1 had to be adapted to marked

order polytopes O(P , λ), since in the marked case even the correspondence between

covering relations and facets breaks down in general. This lead to a notion of regular
marked posets, that still produce marked order polytopes with facets in correspondence

to covering relations in Fourier’s work [Fou16]. However, this definition of regularity

missed some redundant covering relations and we give a corrected definition in Sec-

tion 6.2. Indeed, we provide a combinatorial description of the face structure of marked

order polyhedra—a potentially unbounded generalization of marked order polytopes.

This has previously been attempted by Jochemko and Sanyal in [JS14], but the same
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counterexample that shows Fourier’s regularity condition was not strong enough also

serves as a counterexample for the characterization of face partitions in [JS14, Prop. 2.3].

We discuss both problems in Remark 6.2.20.

Another result that is true for poset polytopes but not for marked poset polytopes is

the transfer map preserving vertices. In the unmarked setting the correspondence of

filters and anti-chains in a poset immediately yields a vertex description of the chain

polytope. In the marked case, a vertex description of C(P , λ) has yet to be found. Even

in the unmarked case, the face structure of chain polytopes still lacks a combinatorial

description. There are necessary and sufficient criteria for order and chain polytopes to be

combinatorially (and unimodularly) equivalent—given by Hibi and Li for the unmarked

case in [HL16] and by Fourier in [Fou16] for the marked case with minor imprecisions

that were corrected in [FF16]—but when these do not hold, close to nothing is known

about the face structure of both unmarked and marked chain polytopes. We take this as

motivation to introduce a time parameter t ∈ [0, 1] in the transfer map for marked poset

polytopes to study how the marked order polytope continuously deforms into the marked

chain polytope. It turns out that the image is a polytope for all t and the combinatorial

type stays constant for intermediate t ∈ (0, 1), so there is a generic marked poset polytope

in between that degenerates to the marked order and chain polytope for t = 0 and

t = 1, respectively. Fang and Fourier suggested to choose a different parameter tp in

each coordinate and this in fact still yields polytopes whose combinatorial types are now

constant along the relative interiors of faces of the parametrizing hypercube [0, 1]ℓ . We

call this the continuous family of marked poset polytopes and study it in Chapter 7. Their

suggestion was inspired by a notion of marked chain-order polytopes they introduced in

[FF16] motivated from representation theory, where the defining inequalities look like

those for order polytopes for some fixed subset of poset elements and like those for chain

polytopes for the other elements. Picking all tp ∈ {0, 1} in the parametrized transfer map,

we recover Fang and Fourier’s marked chain-order polytopes, which did not come with a

transfer map a priori. This construction allows us to partly answer the question about

vertices of marked chain polytopes and marked chain-order polytopes. To be precise,

we give a combinatorial description of the vertices for the generic polytope obtained for

tp ∈ (0, 1). For tp ∈ [0, 1] this still gives a set of points whose convex hull is the polytope,

but the description may become redundant.

Considering the other examples from Part I, we recognize the Stanley–Pitman polytope

Πn(ξ ) discussed in Section 2.1 as a marked chain polytope and the map φ to be the transfer

map from the correspondingmarked order polytope in this setting. TheweightedGelfand–

Tsetlin polytopes GT(λ)µ from Section 3.2 as well as the eigenstep polytopes Λin(Fµ,λ)

and Λout(Fµ,λ) from Section 4.3 have additional sum conditions and hence are not marked

order polytopes. We briefly discuss a generalization we call conditional marked order
polyhedra in Section 6.5 that allows these additional linear constraints. However, this

definition turns out to be too general to allow a lot of results. Indeed, every polyhedron

is affinely isomorphic to a conditional marked order polyhedron.

The descriptions of the Cayley polytope from Section 2.2 and the lecture hall cones

and polytopes from Section 2.3 have coefficients in the inequalities and hence do not fit

into the theory of marked poset polyhedra. In this direction, we recently started a project
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with Raman Sanyal, vastly extending the class of polyhedra that allow a piecewise-linear

deformation into a polyhedron with a description similar to marked chain polytopes.

This is motivated by the work of Felsner and Knauer on distributive polyhedra in [FK11].

They describe distributive polyhedra by underlying directed graphs with edge weights,

generalizing marked order polyhedra described by Hasse diagrams of posets in this

context. We use this characterization in Chapter 8 to construct piecewise-linear bijective

images of a large class of distributive polyhedra. These images have descriptions similar to

marked chain polytopes. The polytopes and the transfer map appearing in the geometrical

proof of Cayley’s theorem in [KP14] as well as the objects in Section 2.3 on lecture hall

cones and polytopes can be treated in this more general setting.
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5. Marked Poset Polytopes

We start by reviewing the definitions and results obtained for marked poset polytopes as

defined by Ardila, Bliem and Salazar in [ABS11].

5.1. Marked Order and Chain Polytopes and their Transfer

Maps

Motivated by the similarity of Gelfand–Tsetlin and Feigin–Fourier–Littelmann–Vinberg

polytopes to order and chain polytopes, respectively, the authors of [ABS11] give the

following definition.

Definition 5.1.1 (cf. [ABS11, Def. 1.2]
1
). Let P be a finite poset and λ : P∗ → R be a

real valued order-preserving map on an induced subposet P∗ ⊆ P . We say (P , λ) is a
marked poset with marking λ, marked elements P∗

and denote by P̃ = P \ P∗
the set of all

unmarked elements.
When P∗

contains all minimal and maximal elements, we associate two marked poset
polytopes to (P , λ). The marked order polytope O(P , λ) ⊆ RP is the set of all x ∈ RP

satisfying the equationsxa = λ(a) for all marked elementsa ∈ P∗
aswell as the inequalities

xp ≤ xq for all p,q ∈ P with p ≤ q. The marked chain polytope C(P , λ) is the set of all
y ∈ Rp satisfying the equations ya = λ(a) for all a ∈ P∗

, the inequalities yp ≥ 0 for all

p ∈ P̃ , as well as the inequalities

yp1 + yp1 + · · · + ypk ≤ λ(b) − λ(a)

for each chain a < p1 < p2 < · · · < pk < b with a,b ∈ P∗
and all pi ∈ P̃ .

Note that both O(P , λ) and C(P , λ) are bounded since P∗
is assumed to contain all

extremal elements.

When P is a poset with 0̂ and 1̂, we recover the poset polytopes as discussed in

Chapter 1 by choosing the marking λ : {0̂, 1̂} → R given by λ(0̂) = 0 and λ(1̂) = 1. When

λ = (λ1, λ2, . . . , λn) ∈ Z
n
is a highest weight for GLn(C), i.e., λ1 ≥ λ2 ≥ · · · ≥ λn, we

obtain the Gelfand–Tsetlin polytope GT(λ) and the Feigin–Fourier–Littelmann–Vinberg

polytope FFLV(λ) as the marked order and marked chain polytope for the Gelfand–Tsetlin
poset depicted in Figure 5.1. We usually describe a marked poset (P , λ) by its marked
Hasse diagram, which is the Hasse diagram of P with the marked elements a ∈ P∗

drawn

as boxes instead of dots and their marking λ(a) written next to it in red.

1
Our definitions slightly differ from those in [ABS11], where O(P , λ) and C(P , λ) are defined as subsets of
RP̃ . We use a different convention to match the rest of this work and avoid case distinctions in proofs.
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5. Marked Poset Polytopes

λ1

λ2

λ3

...

λn

Figure 5.1.: The marked Hasse diagram of the Gelfand–Tsetlin poset for the weight λ =
(λ1, λ2, . . . , λn) ∈ Z

n
.

As in the unmarked case, marked poset polytopes come with a transfer map O(P , λ) →
C(P , λ). To be precise, we have the following generalization of Theorem 1.2.1.

Theorem 5.1.2 (cf. [ABS11, Thm. 3.4]). Let (P , λ) be a marked poset with all minimal and
maximal elements marked. The two maps φ,ψ : RP → RP defined by

φ(x)p =

{
xp if p ∈ P∗

,

xp −max

{
xq : q is covered by p

}
otherwise,

ψ (y)p =

{
yp if p ∈ P∗

,

max

{
ya + yq1 + · · · + yqk : a < q1 < · · · < qk = p,a ∈ P∗

,qi ∈ P̃
}

otherwise,

are mutually inverse piecewise-linear maps. Furthermore, they restrict to piecewise-linear
bijections φ : O(P , λ) → C(P , λ) and ψ : C(P , λ) → O(P , λ).

The statement is slightly stronger than the formulation in [ABS11], still we defer the

proof to Chapter 7, where we give a proof for a larger class of transfer maps. Using this

transfer map, the authors of [ABS11] show that O(P , λ) and C(P , λ) are lattice polytopes
with the same Ehrhart polynomial when λ maps to Z.2 In Chapter 7 we extend this to a

larger family of Ehrhart equivalent polytopes associated to (P , λ), indexed by subsets of

P̃ .
Jochemko and Sanyal study marked poset polytopes from a combinatorial point of

view in [JS14]. They describe the faces of marked order polytopes by partitions of P as

2
We want to point out here that there is a slight mistake in the proof of [ABS11, Lem. 3.5], since the

transfer map is not linear on the cells of the subdivision induced by the partial braid arrangement

xp = xq for all p,q ∈ P̃ . However, if one takes the complete braid arrangement instead, i.e., xp = xq
for all p,q ∈ P , the argument is valid. In the terminology of [ABS11] this means to also consider

hyperplanes xp = λa for a ∈ A = P∗
and p ∈ P \A = P̃ .

44



5.2. A Subdivision into Products of Simplices

Stanley and Geissinger did for order polytopes. However, the conditions given in [JS14,

Prop. 2.3] are not sufficient to guarantee that a partition does indeed define a face of the

marked order polytope. We provide a corrected characterization of face partitions for

marked order polytopes in Theorem 6.2.14. They also generalize Stanley’s unimodular

triangulation of O(P , λ) to a subdivision of O(P , λ) into products of simplices. As this

subdivision will be relevant for our results as well, we quickly review the construction

here.

5.2. A Subdivision into Products of Simplices

Recall from Chapter 1 that ordinary order and chain polytopes admit a unimodular

triangulation with cells corresponding to chains of order ideals, the maximal ones corre-

sponding to linear extensions of the given poset. For marked poset polytopes, there is

still a subdivision with cells given by chains of order ideals that are compatible with the

marking. To be precise, let I : � = I0 ⊊ I1 ⊊ · · · ⊊ Ir = P be a chain of order ideals in P .
For each p ∈ P denote by i(I,p) the smallest index k for which p ∈ Ik . The chain is said

to be compatible with λ, if

i(I,a) < i(I,b) if and only if λ(a) < λ(b)

for all a,b ∈ P∗
. Given a chain I of order ideals of P that is compatible with λ we obtain a

partition of P by letting Bk = Ik \ Ik−1 for k = 1, . . . , r . Let FI be the polytope contained in

O(P , λ) consisting of all points x constant on the blocks Bk with values weakly increasing

along the linear order B1, . . . ,Br of the blocks. This description implies that FI is a

product of simplices as shown in [JS14, Lemma 2.5]. We will see in Chapter 6 how FI is

naturally identified with a marked order polytope itself, with the inclusion into O(P , λ)
induced by a surjective map of marked posets.

The collection of polytopes FI with I ranging over all chains of order ideals compatible

with λ forms a polyhedral subdivision of O(P , λ) into products of simplices. The chambers

in this subdivision (cells of maximal dimension) correspond to chains, where in each step

either exactly one unmarked element not in a constant interval, or a set containing all

marked elements with some equal marking and the elements in the intervals between

them is added. We call these saturated compatible chains.
Given any compatible chain of order ideals I, the transfer map φ : O(P , λ) → C(P , λ)

restricts to a linear map on the cell FI : the appearing maxima are determined by the fact

that x ∈ FI is constant on the blocks Bk and weakly increasing along their linear order.

Hence, we can think of φ as linearly transforming each chamber in the subdivision to a

polytope sitting in C(P , λ). In particular, we obtain a subdivision of C(P , λ) into products

of simplices, by taking images of cells of the subdivision of O(P , λ).
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6. Marked Order Polyhedra

We continue by studying marked order polyhedra, a potentially unbounded general-

ization of marked order polytopes associated to any marked poset (P , λ). We start by

describing different ways to look at marked order polyhedra from an order theoretic, a

convex geometric and a categorical point of view. We then study the face structure of

marked order polyhedra in Section 6.2 and give a complete combinatorial characteriza-

tion of partitions of the underlying poset corresponding to faces of the polyhedron. We

specialize this characterization to facets and show that regular marked posets have facets

in correspondence with the covering relations of the poset. In Section 6.4, we focus on

convex geometrical properties of marked order polyhedra. We describe the recession

cone of the polyhedra, how disjoint unions of posets correspond to products of polyhedra

and give a Minkowski sum decomposition. Furthermore, we show that marked order

polyhedra with integral markings are always lattice polyhedra. We close by adding linear

conditions to marked order polyhedra in Section 6.5, generalizing a result on dimensions

of faces obtained in [DM04] for weighted Gelfand–Tsetlin polytopes to these conditional

marked order polyhedra.

The results of this chapter also appeared in [Peg17].

6.1. Half-Spaces, Extensions and a Functor

Recall from Definition 5.1.1 that a marked poset (P , λ) is a finite poset P together with

a subset P∗ ⊆ P of marked elements and an order-preserving marking λ : P∗ → R. As
before, the set of unmarked elements P \ P∗

is denoted by P̃ . We say the marking λ is

strict if λ(a) < λ(b) whenever a < b.

To study marked posets and the polyhedra we will associate to them, it is sometimes

useful to take a more categorically minded point of view on marked posets. A map

f : (P , λ) → (P ′, λ′) between marked posets is an order-preserving map f : P → P ′ such
that f (P∗) ⊆ (P ′)∗ and λ′(f (a)) = λ(a) for all a ∈ P∗

. With this definition of maps we see

that marked posets form a categoryMPos. Letting Pos denote the category of posets and

order-preserving maps, we can describeMPos as a category of certain diagrams in Pos.
A marked poset (P , λ) is a diagram

P P∗ R
λ

in Pos, where P∗ ↪→ P is the inclusion of an induced subposet P∗
in a finite poset P . A
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6.1. Half-Spaces, Extensions and a Functor

map f : (P , λ) → (P ′, λ′) is a commutative diagram

P P∗ R

P ′ P ′∗ R.

f

λ

f |P∗

λ′

To each marked poset (P , λ) we associate a polyhedron O(P , λ) in RP .

Definition 6.1.1. Let (P , λ) be a marked poset. The marked order polyhedron O(P , λ)
associated to (P , λ) is the set of all x ∈ RP such that xp ≤ xq for all p,q ∈ P with p ≤ q
and xa = λ(a) for all a ∈ P∗

.

Since the coordinates in P∗
are fixed, we use the affinely isomorphic projection Õ(P , λ)

of O(P , λ) to RP̃ in examples.

When P∗
contains all extremal elements of P , the polyhedron O(P , λ) is bounded. In

this case O(P , λ) is the marked order polytope associated to (P , λ) as in Definition 5.1.1.

In more geometric terms, this definition is equivalent to

O(P , λ) =
⋂
p<q

H+p<q ∩
⋂
a∈P∗

Ha ,

where H+p<q is the half-space in R
P
defined by xp ≤ xq and Ha is the hyperplane defined

by xa = λ(a).
An interval [a,b] in a marked poset (P , λ) is called constant if a,b ∈ P∗

and λ(a) = λ(b).
In this case xp = λ(a) for all x ∈ O(P , λ) and p ∈ [a,b]. With this terminology, a marking

λ is strict if and only if (P , λ) contains no non-trivial constant intervals.

We can also think of the marked order polyhedron O(P , λ) as the set of all extensions
of λ to order-preserving maps x : P → R with x |P∗ = λ. That is, the set of all poset maps

x : P → R such that the diagram

P P∗ R
x

λ

commutes. Putting together the diagram of a map f : (P , λ) → (P ′, λ′) between marked

posets and that of a point x ∈ O(P ′, λ′), we see that we obtain a point f ∗(x) in O(P , λ)
given by f ∗(x) = x ◦ f :

P P∗ R

P ′ P ′∗ R.

f

λ

f |P∗

x

λ′

Hence, letting Polyh denote the category of polyhedra and affine maps, we have a

contravariant functor O : MPos → Polyh sending a marked poset (P , λ) to the marked

order polyhedron O(P , λ) and a map f between marked posets to the induced map f ∗

described above.

As we will see in the next proposition, any marking λ can be extended to P and any

strict marking can be extended to a strictly order-preserving map P → R.
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(a) a marked poset (P , λ)
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(b) the polytope Õ(P , λ)

Figure 6.1.: The marked poset (P , λ) from Example 6.1.3 and the associated marked order

polytope Õ(P , λ).

Proposition 6.1.2. Let (P , λ) be a marked poset. The associated marked order polyhedron
is non-empty and if λ is strict, there is a point x ∈ O(P , λ) such that xp < xq whenever
p < q.

Proof. The order on R is dense and unbounded. Hence, whenever a < c in R there is a

b ∈ R such that a < b < c and for any b ∈ R there are a, c ∈ R such that a < b < c . Since
P is finite this allows us to successively extend λ to an order-preserving map on P . In fact,

we can find an order-preserving extension x of λ such that for p < q we have xp = xq
if and only if there are a,b ∈ P∗

such that a ≤ p < q ≤ b and λ(a) = λ(b). In particular,

when λ was strict we can always find a strictly order-preserving extension.

Example 6.1.3. We consider the marked order polytope given by the marked poset (P , λ)
in Figure 6.1a. The blue labels name elements in P , while the red labels correspond to

values of the elements of P∗
under the marking λ. The (projected) associated marked

order polytope Õ(P , λ) is shown in Figure 6.1b. ♢

6.2. Face Structure and Facets

In this section, we study the face structure of O(P , λ). As it turns out, the faces of marked

order polyhedra correspond to certain partitions of the underlying poset P . Our goal is to
characterize those partitions combinatorially. We associate to each point x in O(P , λ) a
partition πx of P , that will suffice to describe the minimal face of O(P , λ) containing x . The
partitions that are obtained in this way from points of the polyhedron will then—ordered

by refinement—capture the polyhedrons face structure.

Definition 6.2.1. Let Q = O(P , λ) be a marked order polyhedron. To each x ∈ Q we

associate a partition πx of P induced by the transitive closure of the relation

p ∼x q if xp = xq and p,q are comparable.
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6.2. Face Structure and Facets

We may think of π as being obtained by first partitioning P into blocks of constant values

under x and then splitting those blocks into connected components with respect to the

Hasse diagram of P .
Given any partition π of P , we call a block B ∈ π free if P∗ ∩ B = � and denote by π̃

the set of all free blocks of π . Note that any x ∈ O(P , λ) is constant on the blocks of πx
and the values on the non-free blocks of πx are determined by λ.

Let x ∈ Q be a point of a polyhedron. We denote the minimal face of Q containing x
by Fx . Hence, Fx is the unique face having x in its relative interior. Equivalently, Fx is the
intersection of all faces of Q containing x .

Proposition 6.2.2. Let x ∈ Q = O(P , λ) be a point of a marked order polyhedron with
associated partition π = πx . We have

Fx = {y ∈ Q : y is constant on the blocks of π }

and dim Fx = |π̃ |.

Proof. For p < q in P let Hp<q = ∂H
+
p<q be the hyperplane defined by xp = xq in R

P
. The

minimal face of a point x ∈ Q is then given by

Fx = Q ∩
⋂
p<q,
xp=xq

Hp<q .

A point y ∈ Q satisfies yp = yq for all p < q with xp = xq if and only if y is constant on

the blocks of πx . Thus, Fx is indeed given by all y ∈ Q constant on the blocks of πx .
To determine the dimension of Fx , we consider its affine hull aff(Fx ). It is obtained

by intersecting the affine hull of Q with all Hp<q such that xp = xq . The affine hull of Q
itself is the intersection of all Ha for a ∈ P∗

and all Hp<q such that yp = yq for all y ∈ Q .
Putting these facts together, we have

aff(Fx ) =
⋂
a∈P∗

Ha ∩
⋂
p<q,

yp=yq∀y∈Q

Hp<q ∩
⋂
p<q,
xp=xq

Hp<q =
⋂
a∈P∗

Ha ∩
⋂
p<q,
xp=xq

Hp<q .

This is exactly the set of all y constant on the blocks of πx and satisfying ya = λ(a) for
all a ∈ P∗

. Such y are uniquely determined by values on the free blocks of πx and thus

dim(Fx ) = |π̃x | as desired.

Corollary 6.2.3. If λ is a strict marking on P , the dimension of O(P , λ) is equal to the
number of unmarked elements in P .

Proof. Since all coordinates in P∗
are fixed by λ, we always have dimO(P , λ) ≤

��P̃ ��. If λ is

strict, there is a point x ∈ O(P , λ) such that xp < xq whenever p < q by Proposition 6.1.2.

Hence, πx is the partition of P into singletons and dim Fx = |π̃x | =
��P̃ ��. We conclude that

Fx = O(P , λ), so x is a relative interior point and the marked order polyhedron has the

desired dimension.
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6. Marked Order Polyhedra

Figure 6.2.: The face partitions of the marked order polytope in Example 6.1.3.

Corollary 6.2.4. Let x ∈ Q = O(P , λ) be a point of a marked order polyhedron. For y ∈ Q
we have y ∈ Fx if and only if πx is a refinement of πy .

Proof. By Proposition 6.2.2, y ∈ Fx if and only if y is constant on the blocks of πx . Let y
be constant on the blocks of πx . Any block B of πx is connected with respect to the Hasse

diagram of P and y takes constant values on B, hence B is contained in a block of πy by
construction and πx is a refinement of πy . Now let y ∈ Q with πx being a refinement of

πy . We conclude that y is constant on the blocks of πx , since it is constant on the blocks

of πy and πx is a refinement of πy .

Corollary 6.2.5. Given any two points x ,y ∈ O(P , λ), we have Fy ⊆ Fx if and only if πx
is a refinement of πy . In particular Fy = Fx if and only if πy = πx .

Hence, the partition of O(P , λ) into relative interiors of its faces is the same as the

partition given by x ∼ y if πx = πy and we can associate to each non-empty face F a

partition πF with πF = πx for any x in the relative interior of F . We call a partition π of P
a face partition of (P , λ) if π = πF for some non-empty face of O(P , λ). We arrive at the

following description of face lattices of marked order polyhedra.

Corollary 6.2.6. Let Q = O(P , λ) be a marked order polyhedron. The poset F (Q) \ {�}
of non-empty faces of Q is isomorphic to the induced subposet of the partition lattice on P
given by all face partitions of (P , λ).

For the marked order polytope from Example 6.1.3, we illustrated the face partitions

in Figure 6.2. The free blocks are highlighted in blue round shapes, non-free blocks in

red angular shapes. We see that the dimensions of the faces are given by the numbers

of free blocks in the associated face partitions and that face inclusions correspond to

refinements of partitions.

In order to characterize the face partitions of a marked poset (P , λ) combinatorially,

we introduce some properties of partitions of P .
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6.2. Face Structure and Facets

Definition 6.2.7. Let (P , λ) be a marked poset. A partition π of P is connected if the

blocks of π are connected as induced subposets of P . It is P-compatible, if the relation ≤

defined on π as the transitive closure of

B ≤ C if p ≤ q for some p ∈ B, q ∈ C

is anti-symmetric. In this case ≤ is a partial order on π . A P-compatible partition π is

called (P , λ)-compatible, if whenever a ∈ B ∩ P∗
and b ∈ C ∩ P∗

for some blocks B ≤ C ,
we have λ(a) ≤ λ(b).

Remark 6.2.8. Whenever a partition π of a poset P is P-compatible, it is also convex.
That is, for a < b < c with a and c in the same block B ∈ π , we also have b ∈ B, since
otherwise the blocks containing a and b would contradict the relation on the blocks being

anti-symmetric. This implies that the blocks in a connected, P-compatible partition are

not just connected as induced subposets of P but even connected as induced subgraphs

of the Hasse diagram of P .

Proposition 6.2.9. Let (P , λ) be a marked poset. A (P , λ)-compatible partition π of P gives
rise to a marked poset (P/π , λ/π ) where P/π is the poset of blocks in π , (P/π )∗ = π \ π̃
and λ/π : (P/π )∗ → R is defined by (λ/π )(B) = λ(a) for any a ∈ B ∩ P∗. Furthermore, the
quotient map P → P/π defines a map (P , λ) → (P/π , λ/π ) of marked posets.

Proof. Since π is P-compatible, the blocks of π form a poset P/π as in Definition 6.2.7.

Since π is (P , λ)-compatible, we have λ(a) = λ(b) whenever a,b ∈ B ∩ P∗
for some

non-free block B ∈ π . Hence, the map λ/π is well-defined. It is order-preserving by the

definition of (P , λ)-compatibility. Furthermore, we have a commutative diagram

P P∗ R

P/π (P/π )∗ R.

λ

λ/π

Thus, we have a quotient map (P , λ) → (P/π , λ/π ).

Proposition 6.2.10. Every face partition πF of (P , λ) is (P , λ)-compatible, connected and
the induced marking on (P/πF , λ/πF ) is strict.

Proof. Let F be a non-empty face of O(P , λ). It is obvious that πF is connected by con-

struction, since it is given by the transitive closure of a relation that only relates pairs

of comparable elements. To verify that πF is P-compatible, we need to check that the

induced relation ≤ on the blocks of πF is anti-symmetric. Assume we have blocks

B,C ∈ πF such that B ≤ C and C ≤ B. Since B ≤ C , there is a finite sequence of blocks
B = X1,X2, . . . ,Xk ,Xk+1 = C such that for i = 1, . . . ,k there are some pi ∈ Xi , qi ∈ Xi+1

with pi ≤ qi . Take any x in the relative interior of F , then xpi ≤ xqi for i = 1, . . . ,k
and since x is constant on the blocks of πF , we have xqi = xpi+1 for i = 1, . . . ,k − 1. To

summarize, we have

xp1 ≤ xq1 = xp2 ≤ xq2 = · · · ≤ · · · = xpk ≤ xqk . (6.1)
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6. Marked Order Polyhedra

Hence, the constant value x takes on B is less than or equal to the constant value x takes

on C . Since we also have C ≤ B, we conclude that x takes equal values on the blocks

B and C . From (6.1) we conclude that x takes equal values on all blocks Xi . From the

definition of πx = πF it follows that the blocks Xi are in fact all equal, in particular B = C
and the relation is anti-symmetric.

To see that πF is (P , λ)-compatible, let B,C ∈ π be non-free blocks with B ≤ C . By the

same argument as above, we know that any x ∈ F has constant value on B less than or

equal to the constant value on C , so λ(a) ≤ λ(b) for marked a ∈ B, b ∈ C . If λ(a) = λ(b)
we have B = C , by the same argument as above, so the induced marking is strict.

Given any partition π of P , we can define a polyhedron Fπ contained in O(P , λ) by

Fπ = {y ∈ Q : y is constant on the blocks of π } .

If π = πF is a face partition of (P , λ), we have Fπ = F by Proposition 6.2.2. However, Fπ is

not a face for all partitions π of P .
As long as π is (P , λ)-compatible, we can show that the polyhedron Fπ is affinely

isomorphic to the marked order polyhedron O(P/π , λ/π ). The isomorphism will be

induced by the quotient map P → P/π . Our first step is to verify that this induced map

is indeed an injection.

Lemma 6.2.11. Let f : (P , λ) → (P ′, λ′) be a map of marked posets. If f is surjective, the
induced map f ∗ : O(P ′, λ′) → O(P , λ) is injective.

Proof. Let x ,y ∈ O(P ′, λ′) such that f ∗(x) = f ∗(y). Given any p ∈ P ′ we need to show

xp = yp . Since f is surjective, p = f (q) for some q ∈ P and thus

xp = x f (q) = f ∗(x)q = f ∗(y)q = y f (q) = yp .

Proposition 6.2.12. Let (P , λ) be a marked poset and π a (P , λ)-compatible partition. The
quotient map q : (P , λ) → (P/π , λ/π ) induces an injection

q∗ : O(P/π , λ/π ) ↪−→ O(P , λ)

with image q∗(O(P/π , λ/π )) = Fπ .

Proof. By Lemma 6.2.11 we know that q∗ is an injection. Hence, we only need to verify

that Fπ is the image of q∗. The image is contained in Fπ , since whenever p and p′ are in
the same block B ∈ π , we have

q∗(x)p = xq(p) = xB = xq(p ′) = q
∗(x)p ′ .

Hence, all q∗(x) are constant on the blocks of π . Conversely, given any point y ∈ O(P , λ)
constant on the blocks of π , we obtain a well defined map x : P/π → R sending each

block to the constant value yp for all p in the block. This map is a point x ∈ O(P/π , λ/π )
mapped to y by q∗.
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The previous proposition tells us, that whenever we have a (P , λ)-compatible partition

π , the marked order polyhedron O(P/π , λ/π ) is affinely isomorphic to the polyhedron

Fπ ⊆ O(P , λ) via the embeddingq∗ induced by the quotient map. From now on, we refer to

affine isomorphisms arising this way as the canonical affine isomorphism O(P/π , λ/π ) �
Fπ .

Corollary 6.2.13. For every non-empty face F of a marked order polyhedron O(P , λ) we
have a canonical affine isomorphism O(P/πF , λ/πF ) � F .

We are now ready to state and prove the characterization of face partitions of marked

posets.

Theorem 6.2.14. A partition π of a marked poset (P , λ) is a face partition if and only if it
is (P , λ)-compatible, connected and the induced marking on (P/π , λ/π ) is strict.

Proof. The fact that face partitions satisfy the above properties is the statement of Propo-

sition 6.2.10. Now let π be a partition of P that is (P , λ)-compatible, connected and induces

a strict marking λ/π . By Proposition 6.1.2, there is a point z ∈ O(P/π , λ/π ) such that

zB < zC whenever B < C . Let x ∈ RP be the point in the polyhedron Fπ ⊆ O(P , λ)
obtained as the image of z under the canonical affine isomorphism O(P/π , λ/π ) ∼−→ Fπ .
We claim that π = πx , so π is a face partition. Since x is constant on the blocks of π and

π is connected, we know that π is a refinement of πx . Now assume that the equivalence

relation ∼x defining πx relates elements in different blocks of π . In this case, there are

blocks B , C of π with elements p ∈ B, q ∈ C such that xp = xq and p < q. This implies

that zB = zC and B < C , a contradiction to the choice of z. Hence, π = πx and π is a face

partition of (P , λ).

Remark 6.2.15. To decide whether a given partition π of a marked poset (P , λ) satisfies
the conditions in Theorem 6.2.14, it is enough to know the linear order on λ(P∗). The

exact values of the marking are irrelevant. Hence, the face lattice of O(P , λ) is determined

solely by discrete, combinatorial data. In fact, since the directions of facet normals do not

depend on the values of λ, we can conclude that the normal fanN(O(P , λ)) is determined

by this combinatorial data. However, the affine isomorphism type of O(P , λ) does depend
on the exact values of λ.

Example 6.2.16. We construct a continuous family (Qt )t∈[0,1] of marked order polytopes,

whose underlying marked posets all yield the same combinatorial data in the sense of

Remark 6.2.15, but Qs and Qt are affinely isomorphic if and only if s = t . Let (P , λt ) be
the marked poset shown in Figure 6.3a. Letting t vary in [0, 1], we obtain for each t a
different affine isomorphism type, since two of the vertices of Qt will move, while the

other three stay fixed and are affinely independent as can be seen in Figure 6.3b. However,

all Qt share the same normal fan and are in particular combinatorially equivalent. ♢

We continue our study of the face structure of marked order polyhedra by having a

closer look at facets. Since inequalities in the description of marked order polyhedra

come from covering relations in the underlying poset, we expect a correspondence of
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Figure 6.3.: The marked poset (P , λt ) from Example 6.2.16 and the associated marked

order polytope Qt = Õ(P , λt ).

facets to certain covering relations. If the marked poset satisfies a certain regularity

condition, the facets are indeed in bijection with the covering relations. Hence, if we can

change the underlying poset of a marked order polyhedron to a regular one, without

changing the associated polyhedron, we obtain an enumeration of facets. We start by

modifying an arbitrary marked poset to a strict one by contracting constant intervals.

Proposition 6.2.17. Given any marked poset (P , λ), the partition π induced by the rela-
tions a ∼ p and p ∼ b whenever [a,b] is a constant interval containing p yields a strictly
marked poset (P/π , λ/π ) such that O(P/π , λ/π ) � Fπ = O(P , λ) via the canonical affine
isomorphism.

Proof. Let x ∈ O(P , λ) be a point constructed as in the proof of Proposition 6.1.2. By

construction we have xp = xq for p < q if and only if there are a,b ∈ P∗
with a ≤ p <

q ≤ b with λ(a) = λ(b). Thus, we conclude that πx = π and π is a face partition of

O(P , λ). Since every point of O(P , λ) satisfies xa = xp = xb whenever [a,b] is a constant
interval containing p, we conclude that Fπ is indeed the whole polyhedron. Hence,

O(P/π , λ/π ) � Fπ = O(P , λ), where λ/π is a strict marking by Proposition 6.2.10.

Definition 6.2.18. Let (P , λ) be a marked poset. A covering relation p ≺ q is called

non-redundant if for all marked elements a,b satisfying a ≤ q and p ≤ b, we have a = b
or λ(a) < λ(b). Otherwise the covering relation is called redundant. The marked poset

(P , λ) is called regular , if all its covering relations are non-redundant.

Apart from the desired correspondence of covering relations and facets, regularity of

marked posets implies some useful properties of the marked poset itself.

Proposition 6.2.19. Let (P , λ) be a regular marked poset. The following conditions are
satisfied:

i) the marking λ is strict,
ii) there are no covering relations between marked elements,
iii) every element in P covers and is covered by at most one marked element.
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Figure 6.4.: The marked poset (P , λ) from Remark 6.2.20 and the associated marked order

polytope Õ(P , λ). The covering relation p ≺ q is redundant.

Proof. i) When a < b are marked elements of P , there is some covering relation p ≺ q
such that a ≤ p ≺ q ≤ b. Since a ≤ q and p ≤ b, we have λ(a) < λ(b) by regularity.

ii) When b ≺ a is a covering relation between marked elements, we have λ(a) < λ(b)
by choosing p = b, q = a in the regularity condition. This is a contradiction to λ
being order-preserving.

iii) When a,b ≺ q for marked a,b, the regularity condition for a ≤ q and b ≤ b implies

a = b or λ(a) < λ(b). By the same argument we get a = b or λ(b) < λ(a). We

conclude that a = b.

Remark 6.2.20. The conditions in Proposition 6.2.19 are necessary, but not sufficient

for (P , λ) to be regular. The marked poset in Figure 6.4a satisfies all three conditions, but

the covering relation p ≺ q is redundant.

In fact, this example shows that the process described by Fourier in [Fou16, Sec. 3] does

not remove all redundant covering relations and hence leads to a notion of regularity

that is not sufficient to have facets in correspondence with covering relations.

The same marked poset also serves as a counterexample to the characterization of

face partitions in [JS14, Prop. 2.3]. Instead of partitions of P in terms of blocks, they

use subposets of P that have all the elements of P but only some of the relations. The

connected components of the Hasse diagram of such a subposet G give a connected

partition πG of P and conversely every connected partition π defines a subposet Gπ on

the elements of P by having p ≤ q in Gπ if and only if p ≤ q in P and p and q are in the

same block of π . When (P , λ) is the marked poset in Figure 6.4 andG is the subposet with

p ≤ q as the only non-reflexive relation—i.e., {p,q} is the only non-singleton block in

πG—the conditions in Proposition 2.3 of [JS14] are satisfied butG does not yield a face of

O(P , λ) as can be seen in Figure 6.4b.

Theorem 6.2.21. Let (P , λ) be a regular marked poset. The facets of O(P , λ) correspond
to the covering relations in (P , λ).

Proof. Since (P , λ) is strictly marked, the dimension of O(P , λ) is equal to the number of

unmarked elements in P . Hence, a facet F corresponds to a (P , λ)-compatible, connected

partition π of P such that λ/π is strict and π has exactly |P̃ | − 1 free blocks. We claim
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that the number of non-free blocks of π is |P∗ |. Assume there are marked elements a , b
in a common block B of π . Since π has

��P̃ ��− 1 free blocks, at most one unmarked element

can be in a non-free block. Since (P , λ) is regular, there are no covering relations between
marked elements. Hence, since B is connected as an induced subgraph of the Hasse

diagram of P and contains both a and b, it also contains the only unmarked element

p in a non-free block, and we have one of the following four situations: a ≺ p ≺ b,
a ≻ p ≻ b, a ≺ p ≻ b or a ≻ p ≺ b. Since a and b are in the same block, they are

identically marked and the first two possibilities contradict λ being strict. The other

two possibilities contradict regularity, since p covers—or is covered by—more than one

marked element. Hence, π has exactly |P∗ | non-free blocks and we conclude that π has

|P | − 1 blocks overall. Therefore, π consists of |P | − 2 singletons and a single connected

2-element block corresponding to a covering relation of P .
Conversely, let p ≺ q be a covering relation of P . We claim that the partition π with

the only non-singleton block {p,q} is a face partition with |P̃ | − 1 free blocks. Since (P , λ)
is regular, it contains no covering relation between marked elements and π has exactly

|P̃ | − 1 free blocks. Since {p,q} is the only non-singleton block and p ≺ q, the partition π
is connected and P-compatible. To verify that π is (P , λ)-compatible and λ/π is strict, let

B,C be non-free blocks of π with a ∈ B∩P∗
and b ∈ C∩P∗

such that B ≤ C . When B = C ,
we have a = b and λ(a) = λ(b). When B < C , we conclude a < b or a ≤ q, p ≤ b, since
{p,q} is the only non-trivial block. In both cases, regularity implies λ(a) < λ(b).

Now that we established a regularity condition on marked posets that guarantees a

bijection between covering relations in P and facets of the marked order polyhedron, we

explain how to transform any given marked poset to a regular one.

Proposition 6.2.22. Let (P , λ) be a strictly marked poset. Redundant covering relations
in P can be removed successively to obtain a regular marked poset (P ′, λ) with the same
associated marked order polyhedron O(P ′, λ) = O(P , λ).

Proof. Let p ≺ q be a redundant covering relation in P . That is, there are marked elements

a , b satisfying a ≤ q, p ≤ b and λ(a) ≥ λ(b). Let P ′ be obtained from P by removing the

covering relation p ≺ q from P . Obviously O(P , λ) is contained in O(P ′, λ).
Now let x ∈ O(P ′, λ). To verify that x is a point of O(P , λ), we have to show xp ≤ xq .

Since λ is a strict marking on P , we can not have a ≤ p. Otherwise a ≤ p ≤ b implies

a < b, in contradiction to λ(a) ≥ λ(b). Hence, removing the covering relation p ≺ q we

still have a ≤′ q in P ′. By the same argument p ≤′ b. Thus, by the defining conditions of

O(P ′, λ), we have

xp ≤ xb = λ(b) ≤ λ(a) = xa ≤ xq .

Therefore, x ∈ O(P , λ) and we conclude O(P ′, λ) = O(P , λ). This process can be repeated

until all redundant covering relations have been removed, resulting in a regular marked

poset defining the same marked order polyhedron.

Remark 6.2.23. Note that Proposition 6.2.22 does not imply, that all covering relations

that are redundant in (P , λ) can be removed simultaneously. Removing a single redundant
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covering relation can lead to other redundant covering relations becoming non-redundant.

In the marked poset

1

p

1

both covering relations are redundant. However, removing any of the two covering

relations renders the remaining covering relation non-redundant.

Given any marked poset (P , λ), we can apply the constructions of Proposition 6.2.17

and Proposition 6.2.22 to obtain a regular marked poset (P ′, λ′) defining the same marked

order polyhedron up to canonical affine isomorphism.

6.3. A Polyhedral Subdivision

In the previous section we have seen how surjective maps f : (P , λ) → (P ′, λ′) give rise
to inclusions f ∗ : O(P ′, λ′) ↪→ O(P , λ). In particular, any (P , λ)-compatible partition π led

to an inclusion of O(P/π , λ/π ) into O(P , λ) whose image we refer to as Fπ . We have seen

that Fπ is a face of O(P , λ) when π is connected and λ/π is strict.

In this section we come back to Jochemko and Sanyal’s subdivision of marked order

polytopes into products of simplices we discussed in Section 5.2. This subdivision im-

mediately generalizes to marked order polyhedra and the above discussion of induced

maps allows to consider the cells as inclusion of marked order polyhedra O(PI , λI) into
O(P , λ).

Let I : � = I0 ⊊ I1 ⊊ · · · ⊊ Ir = P be a chain of order ideals in P compatible with λ,
as defined in Section 5.2. Denote by πI the partition of P with blocks Bk = Ik \ Ik−1 for
k = 1, . . . , r . Note that πI is a (P , λ)-compatible partition since I is compatible with λ, so
we have a marked poset (P/πI , λ/πI I ). The poset P/πI has a linear extension PI given

by Bk ≤ Bl if and only if k ≤ l and since I was compatible with λ, the marking λ/πI
yields a strict marking λI on PI . Hence, we have surjections

(P , λ) −→ (P/πI , λ/πI) −→ (PI , λI),

where the first map is a quotient map of marked posets as in Proposition 6.2.9 and the

second map is the inclusion into a linear extension. These surjective maps of marked

posets gives rise to inclusions of marked order polyhedra

O(PI , λI) ↪−→ O(P/πI , λ/πI) ↪−→ O(P , λ).

The image FI of O(PI , λI) in O(P , λ) consists of all points x ∈ O(P , λ) constant on the

blocks Bk with values weakly-increasing along their linear order B1,B2, . . . ,Br .

Before stating and proving how these polyhedra form a subdivision of O(P , λ) we give
an example of the above construction.
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Example 6.3.1. Consider the marked poset

(P , λ) =

0

p q r

1

.

Its marked order polytope is a unit cube. For the chain of order ideals

I : � ⊊ {0,q} ⊊ {0,q, r } ⊊ {0,p,q, r } ⊊ P

we obtain the surjective maps of marked posets

0

p q r

1

−→

0

p r

1

−→

0

r

p

1

,

where the first map sends both 0 and q to 0. Applying the marked order polyhedron

functor to this diagram yields the inclusions

↪−→ ↪−→ .

♢

Using the above terminology, we are now ready to state the following proposition.

Proposition 6.3.2. Let (P , λ) be a marked poset and denote by S the set of all FI for I
ranging over all chains of order ideals in P compatible with λ together with the empty set.
Then S is a polyhedral subdivision of O(P , λ) in which each cell is a product of simplices
and simplicial cones.

Proof. The fact that FI is always a product of simplices and simplicial cones is a conse-

quence of (PI , λI) being a linear marked poset by construction. It remains to be checked

that S covers all of O(P , λ), is closed under taking faces and intersections of cells FI and

FJ result in a face of both.

Given any x ∈ O(P , λ) enumerate the appearing values x(P) = {a1,a2, . . . ,ar } such
that a1 < a2 < . . . < ar . Define the chain I by letting Ik be the set of all p ∈ P such that

xp < ak+1 for k = 0, . . . , r − 1 and set Ir = P . This chain of order ideals is compatible

with λ and yields a cell FI having x in its relative interior. In fact, this is the only cell

with x in its relative interior, since the relative interior of a cell FI contains exactly those

x ∈ O(P , λ) that are strictly increasing along the blocks Bk = Ik \ Ik−1 for k = 1, . . . , r .
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Given a cell FI we can apply the face description in Theorem 6.2.14 to (PI , λI) to see

that faces of FI are given by cells FJ with J ⊆ I a coarsening, i.e., every ideal in J is

also contained in I.

Given two cells FI and FJ , their intersection FI ∩ FJ consists of all x ∈ O(P , λ) such
that x is constant and weakly increasing on both Bk = Ik \ Ik−1 for k = 1, . . . , r and

Ck = Jk , \Jk−1 for k = 1, . . . , s . Let K = I ∩ J : K0 ⊊ K1 ⊊ . . . ⊊ Kt be the chain

consisting of all order ideals contained in both I and J . We claim that FI ∩ FJ = FK if

K is compatible with λ and FI ∩ FJ = � otherwise.

First assume that K = I ∩ J is compatible with λ. We have FK ⊆ FI ∩ FJ , since FK
is a face of both FI and FJ by the previous paragraph. Now let x ∈ FI ∩ FJ and consider

a block Dj = Kj \ Kj−1. The chains I and J both contain Kj−1 and Kj , but in between

the order ideals in I and J are pairwise distinct. For sake of contradiction assume that

there are p,p′ ∈ Dj with xp < xp ′, so x is not constant on Dj . Denote by L the set of all

q ∈ P such that xq < xp ′. Note that L is an order ideal and has to be in both I and J

since all values x takes on P \ L are strictly larger than those on L. We conclude that

Kj−1 ⊊ L ⊊ Kj , a contradiction to K = I ∩ J . Hence, x is constant on the blocks Kk .

The fact that the values of x are weakly-increasing along the linear order K1,K2, . . . ,Kt

is a consequence of K being a coarsening of I and x being weakly increasing along the

blocks B1,B2, . . . ,Br given by I, since each block Kk is a union of consecutive blocks

Bi ,Bi+1, . . . ,Bj .

When K = I ∩ J is not compatible with λ, the reason might be one of the following

two situations:

a) there are a,b ∈ P∗
with λ(a) < λ(b) but i(K ,a) = i(K ,b),

b) there are a,b ∈ P∗
with λ(a) ≤ λ(b) but i(K ,a) > i(K ,b).

In case a), assume x ∈ FI∩FJ and conclude that xa = xb by the above argument. This is a

contradiction to λ(a) < λ(b) and hence FI ∩FJ = �. In case b), sinceK is a coarsening of

I, we can conclude that already I was not compatible with λ, so this case is excluded.

6.4. Products, Minkowski Sums and Lattice Polyhedra

In this section we study some convex geometric properties of marked order polyhedra. We

describe recession cones, a correspondence between disjoint unions of posets and products

of polyhedra, characterize pointedness and use these results to obtain a Minkowski sum

decomposition. At the end of the section we show that marked posets with integral

markings always give rise to lattice polyhedra.

Proposition 6.4.1. The recession cone of O(P , λ) is O(P , 0), where 0 : P∗ → R is the zero
marking on the same domain as λ.

Proof. The recession cone of a polyhedron Q ⊆ Rn defined by a system of linear inequal-

ities Ax ≥ b is given by Ax ≥ 0. Hence, replacing all constant terms in the description of

O(P , λ) by zeros we see that rec(O(P , λ)) = O(P , 0).
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Proposition 6.4.2. Let (P1, λ1) and (P2, λ2) be marked posets on disjoint sets. Let the
marking λ1 ⊔ λ2 : P∗

1
⊔ P∗

2
→ R on P1 ⊔ P2 be given by λ1 on P∗

1
and λ2 on P∗

2
. The marked

order polyhedron O(P1⊔P2, λ1⊔λ2) is equal to the product O(P1, λ1) ×O(P2, λ2) under the
canonical identification RP1⊔P2 = RP1 × RP2 .

Proof. The defining equations and inequalities of a product polyhedronQ1×Q2 inR
P1×RP2

are obtained by imposing both the defining conditions of Q1 and Q2. In case of Q1 =

O(P1, λ1) and Q2 = O(P2, λ2) these are exactly the defining conditions of O(P1 ⊔ P2, λ1 ⊔
λ2).

Note that this relation between disjoint unions of marked posets and products of

the associated marked order polyhedra may be expressed as the contravariant functor

O : MPos → Polyh sending coproducts to products.

We now characterize marked posets whose associated polyhedra are pointed. A pointed

polyhedron is one that has at least one vertex, or equivalently does not contain a line.

The importance of pointedness lies in the fact that pointed polyhedra are determined by

their vertices and recession cone. To be precise, a pointed polyhedron is the Minkowski

sum of its recession cone and the polytope obtained as the convex hull of its vertices.

Proposition 6.4.3. A marked order polyhedron O(P , λ) is pointed if and only if each con-
nected component of P contains a marked element.

Proof. Let P1, . . . , Pk be the connected components of P with λi = λ |Pi the restricted

markings. By inductively applying Proposition 6.4.2, we have a decomposition

O(P , λ) = O(P1, λ1) × · · · × O(Pk , λk).

Hence, O(P , λ) is pointed if and only if each O(Pi , λi) is pointed, reducing the statement

to the case of P being connected.

Let (P , λ) be a connected marked poset and suppose v ∈ O(P , λ) is a vertex. By

Proposition 6.2.2 the corresponding partition π has no free blocks. Hence, either P is

empty or it has at least as many marked elements as the number of blocks in π .
Conversely, if P is connected and contains marked elements, the following procedure

yields a vertex v of O(P , λ): start by setting va = λ(a) for all a ∈ P∗
. Pick any p ∈ P such

that vp is not already determined and p is adjacent to some q in the Hasse-diagram of

P with vq already determined. Set vp to be the maximum of all determined vq with p
covering q or the minimum of all determined vq with p covered by q. Continue until all
vp are determined.

In each step, the defining conditions of O(P , λ) are respected and the procedure deter-

mines all vp since P is connected and contains a marked element. By construction, each

block of πv will contain a marked element and thus v is a vertex by Proposition 6.2.2.

Proposition 6.4.4. Let λ1, λ2 : P∗ → R be markings on the same poset P . The Minkowski
sum O(P , λ1)+O(P , λ2) is contained in O(P , λ1+λ2), where λ1+λ2 is the marking sending
a ∈ P∗ to λ1(a) + λ2(a).
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Proof. Let x ∈ O(P , λ1) and y ∈ O(P , λ2). For any relation p ≤ q in P we have xp ≤ xq and
yp ≤ yq , hence xp +yp ≤ xq +yq . For a ∈ P∗

we have xa +ya = λ1(a)+λ2(a) = (λ1+λ2)(a).
Thus, x + y ∈ O(P , λ1 + λ2).

We are now ready to give a Minkowski sum decomposition of marked order polyhe-

dra, such that the marked posets associated to the summands have 0-1-markings. The

decomposition is a generalization of [SP02, Theorem 4] and [JS14, Corollary 2.10], where

the bounded case with P∗
being a chain in P is considered.

Theorem 6.4.5. Let (P , λ) be a marked poset with P∗ , � and λ(P∗) = { c0, c1, . . . , ck }
with c0 < c1 < · · · < ck . Let c−1 = 0 and define markings λi : P∗ → R for i = 0, . . . ,k by

λi(a) =

{
0 if λ(a) < ci ,

1 if λ(a) ≥ ci .

Then O(P , λ) decomposes as the weighted Minkowski sum

O(P , λ) =
k∑
i=0

(ci − ci−1) O(P , λi).

Proof. Since
λ = c0λ0 + (c1 − c0)λ1 + · · · + (ck − ck−1)λk

and in general O(P , cλ) = c O(P , λ), one inclusion follows immediately from Proposi-

tion 6.4.4. For the other inclusion, first assume that O(P , λ) is pointed. In this case, it

is enough to consider vertices and the recession cone. Since the underlying posets and

sets of marked elements agree for all polytopes in consideration, they all have the same

recession cone O(P , 0) by Proposition 6.4.1. Let v ∈ O(P , λ) be a vertex. The associated
face partition π has no free blocks and on each block v takes some constant value in

λ(P∗). For fixed i ∈ {0, . . . ,k} we enumerate the blocks of π wherev takes constant value

ci by Bi ,1, . . . ,Bi ,ri . For a block B ∈ π denote bywB =
∑

p∈B ep ∈ RP the labeling of P with

all entries in B equal to 1, all other entries equal to 0. This yields a description of v as

v =
k∑
i=0

ci

ri∑
j=1

wBi ,j .

For i = 0, . . . ,k define points v(i) ∈ RP by

v(i) = (ci − ci−1)
k∑
l=i

rl∑
j=1

wBl ,j .

This gives a decomposition of v as v(0) + · · · + v(k)
. It remains to be checked that each

v(i)
is a point in the corresponding Minkowski summand. Since v(0)

is just constant c0
on the whole poset and λ0 is the marking of all ones, we have v(0) ∈ c0 O(P , λ0). Fix
i ∈ {1, . . . ,k}. For p ≤ q we have vp ≤ vq and thus p ∈ Bi ,j , q ∈ Bi ′,j ′ for i ≤ i′ by the
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chosen enumeration of blocks. Hence, by definition of v(i)
, the inequality v(i)

p ≤ v(i)
q is

equivalent to one of the three inequalities 0 ≤ 0, 0 ≤ ci − ci−1 or ci − ci−1 ≤ ci − ci−1, all
being true. The marking conditions of O(P , (ci − ci−1)λi) are satisfied by v(i)

as well, so

v(i) ∈ (ci − ci−1) O(P , λi). We conclude that

v =
k∑
i=1

v(i) ∈

k∑
i=0

(ci − ci−1) O(P , λi)

for each vertex v of O(P , λ). Hence, the proof is finished for the case of O(P , λ) being
pointed.

When O(P , λ) is not pointed, we can decompose P = P ′ ⊔ P ′′ where P ′ consists of all
connected components without marked elements and P ′′ consists of all other components.

Letting λ′ and λ′′ be the respective restrictions of λ, we haveO(P , λ) = O(P ′, λ′)×O(P ′′, λ′′)
by Proposition 6.4.2, where O(P ′, λ′) is not pointed while O(P ′′, λ′′) is, by Proposition 6.4.3.
Applying the previous result to O(P ′′, λ′′) we obtain

O(P , λ) = O(P ′, λ′) ×

(
k∑
i=0

(ci − ci−1) O(P ′′, λ′′i )

)
.

Since P ′ contains no marked elements, it is equal to its recession cone and we have

O(P ′, λ′) =
k∑
i=0

O(P ′, λ′).

Therefore, using the identity

∑k
i=0 Pi ×

∑k
i=0Qi =

∑k
i=0(Pi ×Qi) for products of Minkowski

sums, we obtain

O(P , λ) =

(
k∑
i=0

O(P ′, λ′)

)
×

(
k∑
i=0

(ci − ci−1) O(P ′′, λ′′i )

)
=

k∑
i=0

(
O(P ′, λ′) × O(P ′′, (ci − ci−1)λ

′′
i )

)
=

k∑
i=0

O(P ′ ⊔ P ′′, λ′ ⊔ (ci − ci−1)λ
′′
i ).

Since P ′ did non contain any markings that could be affected by scaling, the factors

(ci − ci−1) can be put as dilation factors in front of the polyhedra. Again, since P ′ is
unmarked, we have λ′ ⊔ λ′′i = λi and P ′ ⊔ P ′′ = P , so we obtain the desired Minkowski

sum decomposition.

Remark 6.4.6. When O(P , λ) is a polytope, O(P , 1) is just a point and the marked poset

polytopes O(P , λi) appearing in the Minkowski sum decomposition of Theorem 6.4.5

may all be expressed as ordinary poset polytopes as discussed by Stanley [Sta86] and

Geissinger [Gei81] by contracting constant intervals and dropping redundant conditions.
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Example 6.4.7. We apply the Minkowski sum decomposition of Theorem 6.4.5 to the

marked order polytope O(P , λ) from Example 6.1.3. Since λ(P∗) = {0, 1, 3, 4} in this

example, we obtain the four new markings λ0, λ1, λ2 and λ3 given by

1

p

q
1

1

1

,

0

p

q
1

1

1

,

0

p

q
1

0

1

and

0

p

q
1

0

0

,

respectively. The associated marked order polytopes and their weighted Minkowski sum

are

0 + 1 + 2 + 1 = . ♢

We finish this section by considering marked posets with integral markings. When

all markings on a poset P are integral, we will see that O(P , λ) is a lattice polyhedron.
A simple fact about lattice polyhedra we will need is that products of lattice polyhedra

are lattice polyhedra. This is an immediate consequence of the Minkowski sum identity

(Q +R) × (Q′+R′) = (Q ×Q′)+ (R ×R′) we already used, together with products of lattice

polytopes being lattice polytopes and products of rational cones being rational cones.

Proposition 6.4.8. Let (P , λ) be a marked poset such that λ(P∗) ⊆ Z. Then the marked
order polyhedron O(P , λ) is a lattice polyhedron.

Proof. When O(P , λ) is pointed, it is enough to show that all vertices are lattice points

and the recession cone is rational. By Proposition 6.2.2 the face partitions associated to

vertices have no free blocks. Hence, all coordinates are contained in λ(P∗), so vertices are

lattice points. The recession cone is obtained as O(P , 0) by Proposition 6.4.1, which is a

rational polyhedral cone.

If O(P , λ) is not pointed, we use the decomposition P = P ′ ⊔ P ′′ of P into unmarked

connected components in P ′ and the other components in P ′′. As in the previous proof, we
obtain a product decomposition O(P , λ) = O(P ′, λ′)×O(P ′′, λ′′) by Proposition 6.4.2. Since
P ′∗ is empty we know that O(P ′, λ′) is a rational polyhedral cone. Since all connected
components of P ′′ contain marked elements, we know that O(P ′′, λ′′) is pointed and

hence a lattice polyhedron by the previous argument. We conclude that O(P , λ) is a
lattice polyhedron.

6.5. Conditional Marked Order Polyhedra

In this section we study intersections of marked order polyhedra with affine subspaces.

We describe an affine subspaceU of RP by a linear map s : RP → Rk and a vector b ∈ Rk ,
such thatU = s−1(b). Hence,U is the space of solutions to the linear system s(x) = b.
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Definition 6.5.1. Given a marked poset (P , λ), a linear map s : RP → Rk and b ∈

Rk , we define the conditional marked order polyhedron O(P , λ, s ,b) as the intersection

O(P , λ) ∩ s−1(b).

The faces of O(P , λ, s ,b) correspond to the faces of O(P , λ) whose relative interior

meets s−1(b). Hence, they are also given by face partitions. However, given a face

partition π of O(P , λ), deciding whether it is a face partition of O(P , λ, s ,b) can not be

done combinatorially in general. The problem is in determining whether the linear

system s(x) = b admits a solution in the relative interior of Fπ . We come back to this

issue later in the section. Still, given a point x ∈ O(P , λ, s ,b), we obtain a face partition

πx and we can find the dimension of Fx ⊆ O(P , λ, s ,b) by calculating a kernel of a linear

map associated to πx .
Given a partition π of P , we define the linear injection rπ : R

π̃ → RP by

rπ (z)p =

{
zB if p is an element of the free block B ∈ π̃ ,

0 otherwise.

We can describe rπ as taking a labeling z of the free blocks of π with real numbers and

making it into a labeling of P with real numbers, by putting the values given by z on

elements in free blocks, while labeling elements in non-free blocks with zero. If π is a

face partition of O(P , λ), we have seen in the proof of Proposition 6.2.2 that the affine hull

of Fπ ⊆ O(P , λ) is a translation of im(rπ ). The following proposition is a generalization

of this observation to conditional marked order polyhedra.

Proposition 6.5.2. Let x be a point of O(P , λ, s ,b) with associated face partition π = πx .
Let U be the linear subspace of RP parallel to the affine hull of the face Fx ⊆ O(P , λ, s ,b).
The map rπ restricts to an isomorphism ker(s ◦rπ ) ∼−→ U . In particular, the dimension of Fx
is the same as the dimension of ker(s ◦ rπ ).

Proof. Let F ′x be the minimal face of O(P , λ) containing x , so that Fx = F ′x ∩ s−1(b). For
the affine hulls we also have aff(Fx ) = aff(F ′x ) ∩ s−1(b). LettingU ′

be the linear subspace

parallel to aff(F ′x ), just asU is the linear subspace parallel to aff(Fx ), we obtain

U = U ′ ∩ ker(s) = im(rπ ) ∩ ker(s),

since ker(s) is the linear subspace parallel to s−1(b). This description implies that rπ
restricts to an isomorphism ker(s ◦ rπ ) ∼−→ U .

Remark 6.5.3. In the special case of Gelfand–Tsetlin polytopes with linear conditions

given by a weight µ, this result appeared in [DM04] in terms of tiling matrices associated

to points in the polytope. The tiling matrix is exactly the matrix associated to the linear

map s ◦ rπ .

Example 6.5.4. Let (P , λ) be the linear marked poset

0 ≺ p ≺ q ≺ r ≺ s ≺ 5
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xp

xq

1 2

1

2

3

u
v
w

Figure 6.5.: The conditional marked order polytope O(P , λ, s ,b) from Example 6.5.4 to-

gether with three points on faces of different dimensions.

and impose the linear conditions xp + xr = 4 and xq + xs = 6 on O(P , λ). We describe

these conditions by intersecting with s−1(b) for the linear map s : RP → R2 given by

s(x) = (xp + xr ,xq + xs) and b = (4, 6). Any point in O(P , λ, s ,b) is determined by xp and
xq , so we can picture the polytope in R2. Expressing the five inequalities in terms of xp ,
xq using the linear conditions, we obtain

0 ≤ xp , xp ≤ xq , xq ≤ 4 − xp , xq ≤ 2 + xp , 1 ≤ xq .

The resulting polytope in R{p,q} � R2 is illustrated in Figure 6.5.

We want to calculate the dimensions of the minimal faces of O(P , λ, s ,b) containing
the points u = (1, 2), v = (1.5, 2.5) and w = (2, 2) in R2. In RP these points and their

associated partitions of P are

0 | 1 | 2 | 3 | 4 | 5, 0 | 1.5 | 2.5 2.5 | 3.5 | 5, and 0 | 2 2 2 | 4 | 5.

Hence, we have 4, 3 and 2 free blocks, respectively. The associated linear maps s ◦ rπ can

be represented by the matrices(
1 0 1 0

0 1 0 1

)
,

(
1 1 0

0 1 1

)
, and

(
2 0

1 1

)
,

respectively. The kernels of these maps have dimension 2, 1 and 0 corresponding to the

dimensions of the minimal faces containing u, v andw as one can see in Figure 6.5. ♢

Given any (P , λ)-compatible partition of P , we obtained a polyhedron F ′π contained in

O(P , λ) in the previous section. Hence, we have a polyhedron Fπ contained in O(P , λ, s ,b)
given by Fπ = F ′π ∩ s−1(b). As in the unconditional case, these polyhedra are canonically

affine isomorphic to conditional marked order polyhedra given by the quotient (P/π , λ/π ).

Proposition 6.5.5. Let (P , λ) be a marked poset, π a (P , λ)-compatible partition, s : RP →

Rk a linear map and b ∈ Rk . Define s/π to be the composition s ◦ q∗, where q∗ is
the inclusion RP/π ↪→ RP induced by the quotient map of marked posets. The polyhe-
dron Fπ ⊆ O(P , λ, s ,b) is affinely isomorphic to the conditional marked order polyhedron
O(P/π , λ/π , s/π ,b) via the canonical isomorphism obtained by restricting q∗.
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Proof. By definition, Fπ is the intersection of the face F ′π of O(P , λ) with s−1(b). We know

that q∗ restricts to an affine isomorphism O(P/π , λ/π ) ∼−→ F ′π . Hence, Fπ is contained in

the image of q∗ as well and we have

Fπ = F ′π ∩ s−1(b) = F ′π ∩ imq∗ ∩ s−1(b) = F ′π ∩ q∗((s ◦ q∗)−1(b)).

We may write F ′π as q∗(O(P/π , λ/π )) and use injectivity of q∗ to obtain

Fπ = q
∗(O(P/π , λ/π )) ∩ q∗((s/π )−1(b)) = q∗(O(P/π , λ/π ) ∩ (s/π )−1(b)).

By definition of conditional marked order polyhedra, this is just the injective image of

O(P/π , λ/π , s/π ,b) under q∗, which finishes the proof.

When F is a non-empty face of O(P/π , λ/π , s/π ,b) we have an associated partition

π = πF , so that F = Fπ . Thus, we obtain the same corollary on faces of conditional

marked order polyhedra as in the unconditional case.

Corollary 6.5.6. For every non-empty face F of a conditional marked order polyhedron
O(P , λ, s ,b) we have a canonical affine isomorphism

O(P/πF , λ/πF , s/πF ,b) � F .

The next proposition will allow us to consider any polyhedron as a conditional marked

order polyhedron up to affine isomorphism. Thus, there is little hope to understand

general conditional marked order polyhedra any better than we understand polyhedra in

general.

Proposition 6.5.7. Every polyhedron is affinely isomorphic to a conditional marked order
polyhedron.

Proof. Let Q ⊆ Rn be a polyhedron given by linear equations and inequalities

n∑
i=1

akixi = ck for k = 1, . . . , s ,

n∑
i=1

blixi ≤ dl for l = 1, . . . , t .

Define a poset P with ground set {p1, . . . ,pn,q1, . . . ,qt , r } and covering relations ql ≺ r
for l = 1, . . . , t . Define a marking on P∗ = {r } by λ(r ) = 0. The marked poset obtained

this way is depicted in Figure 6.6. Let the linear system s(x) = b for x ∈ RP be given by

n∑
i=1

akixpi = ck for k = 1, . . . , s ,

n∑
i=1

blixpi − xql = dl for l = 1, . . . , t .

The conditional marked order polyhedron O(P , λ, s ,b) is affinely isomorphic to Q by the

map O(P , λ, s ,b) → Q sending x ∈ RP to (xp1 , . . . ,xpn ) ∈ R
n
.
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p1 p2
· · ·

pn q1 q2
· · ·

qt

0

Figure 6.6.: The marked poset constructed in the proof of Proposition 6.5.7.

We may now come back to the question of when a face partition π of (P , λ) still
corresponds to a face of O(P , λ, s ,b). As discussed at the beginning of this section, we

have to decide whether s(x) = b admits a solution in the relative interior of the face F ′π
of O(P , λ), that is, relint(F ′π ) ∩ s−1(b) , �. Using the affine isomorphism induced by the

quotient map this is equivalent to

relint (O(P/π , λ/π )) ∩ (s/π )−1(b) , �.

Hence, we reduced the problem to deciding whether a linear system s(x) = b admits a

solution in the relative interior of a marked order polyhedron O(P , λ). However, even
deciding whether s(x) = b admits any solution in O(P , λ) is equivalent to deciding

whetherO(P , λ, s ,b) is non-empty, which is in general just as hard as determining whether

an arbitrary system of linear equations and linear inequalities admits a solution by

Proposition 6.5.7.

We conclude that the concept of conditional marked order polyhedra is too general to

obtain meaningful results. Still, in special cases the structure of an underlying poset and

faces still corresponding to a subset of face partitions might be useful. An interesting

class of conditional marked order polyhedra might consist of those, where P is connected

and conditions are given by fixing sums along disjoint subsets of P , as is the case for
Gelfand–Tsetlin polytopes with weight conditions.

In Chapter 10 we study a special case of such Gelfand–Tsetlin polytopes with weight

conditions in the context of frame theory, namely polytopes of eigensteps as in Section 4.3

for the case of equal norm tight frames. We see that even determining the dimension and

facets of such a conditional marked order polyhedron is a non-trivial task.
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7. A Continuous Family of Marked Poset

Polyhedra

Having studied marked order polyhedra in Chapter 6, we want to move towards marked

chain polytopes in this chapter. As already mentioned in Chapter 1, little is known about

the combinatorics even of ordinary unmarked chain polytopes. In the marked setting, the

situation is even worse, since the transfer map O(P , λ) → C(P , λ) from the marked order

polytope to the marked chain polytope does not even preserve vertices. In this chapter,

we take the following approach to gain knowledge about marked chain polytopes: given

a marked poset (P , λ) introduce a parameter t ∈ [0, 1] to the transfer map to obtain a

homotopy φt between the identity on O(P , λ) and the transfer map to C(P , λ). It turns
out that φt (O(P , λ)) is a polytope for all t ∈ [0, 1] and the combinatorial type does not

change when t varies in (0, 1). Thus, we may think of the marked order polytope O(P , λ)
at t = 0 and the marked chain polytope C(P , λ) at t = 1 as continuous degenerations of

a generic marked poset polytope obtained for t ∈ (0, 1). We will give a precise definition

of what we mean by continuous degeneration and indicate how this point of view might

help understanding the face structure of marked chain polytopes.

Inspired by previous representation theoretically motivated work of Fang and Fourier

on marked chain-order polytopes in [FF16], we allow the parameter t to be different in

each coordinate and obtain a family of polytopes Ot (P , λ) for t ∈ [0, 1]P̃ that we refer

to as the continuous family of marked poset polytopes. Analogous to the case of just one

parameter, the combinatorial type stays constant along the relative interiors of the faces

of the parametrizing hypercube. We recover the marked chain-order polytopes of Fang

and Fourier at some of the cube’s vertices, hence putting them in an elegant unified

framework.

The results of this chapter are joint work with Xin Fang, Ghislain Fourier and Jan-

Philipp Litza and have also appeared in [FFLP17].

7.1. Definition

Instead of defining Ot (P , λ) as an image of the marked order polyhedron under a modified

transfer map, we give a description in terms of linear equations and inequalities, and

provide the transfer map in the next section.

Definition 7.1.1. Let (P , λ) be a marked poset such that P∗
contains at least all minimal

elements of P . For t ∈ [0, 1]P̃ define the marked poset polyhedron Ot (P , λ) as the set of all
x ∈ RP satisfying the following conditions:
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7.2. Transfer Maps

i) for each a ∈ P∗
an equation xa = λ(a),

ii) for each saturated chain p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P∗
, pi ∈ P̃ for i ≥ 1,

p ∈ P and r ≥ 0 an inequality

(1 − tp)
(
tp1 · · · tprxp0 + tp2 · · · tprxp1 + · · · + xpr

)
≤ xp , (7.1)

where tp = 0 if p ∈ P∗
. Note that the inequalities for p ∈ P∗

and r = 0 may be

omitted, since they are consequences of λ being order-preserving.

Since the coordinates in P∗
are fixed, we sometimes consider the projection Õt (P , λ) of

Ot (P , λ) in R
P̃
instead.

In this chapter we assume (P , λ) to have at least all minimal elements marked through-

out, so that Definition 7.1.1 always applies.

When not just the minimal but in fact all extremal elements of P are marked, the

polyhedra Ot (P , λ) will all be bounded and hence referred to as marked poset polytopes.
In the rest of this chapter, whenever a terminology using the word “polyhedron” is

introduced, the same term with “polyhedron” replaced by “polytope” is always implicitly

defined for the case of all extremal elements of (P , λ) being marked.

We will refer to the family of all Ot (P , λ) for t ∈ [0, 1]P̃ as the continuous family of
marked poset polyhedra associated to themarked poset (P , λ). When at least one parameter

tp is in (0, 1), we call Ot (P , λ) an intermediate marked poset polyhedron and when all tp
are in (0, 1) a generic marked poset polyhedron.

7.2. Transfer Maps

We will continue by proving that the polyhedra defined in Definition 7.1.1 are in fact

images of the marked order polyhedron under a parametrized transfer map.

Theorem 7.2.1. The maps φt ,ψt : RP → RP defined by

φt (x)p =

{
xp if p ∈ P∗,
xp − tp maxq≺p xq otherwise,

ψt (y)p =

{
yp if p ∈ P∗,
yp + tp maxq≺pψt (y)q otherwise,

are mutually inverse. Furthermore, φt restricts to a piecewise-linear bijection from O(P , λ)
to Ot (P , λ).

Note that ψt is well-defined, since all minimal elements in P are marked. Given

t , t ′ ∈ [0, 1]P̃ the mapsψt and φt ′ compose to a piecewise-linear bijection

θt ,t ′ = φt ′ ◦ψt : Ot (P , λ) −→ Ot ′(P , λ),

such that φt = θ0,t andψt = θt ,0. We call the maps θt ,t ′ transfer maps.
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7. A Continuous Family of Marked Poset Polyhedra

Proof. We start by showing that the maps are mutually inverse. For p ∈ P∗
—so in

particular for p minimal in P—we immediately obtainψt (φt (x))p = xp and φt (ψt (y))p = yp .
Hence, let p be non-minimal, unmarked and assume by induction that ψt (φt (x))q = xq
and φt (ψt (y))q = yq hold for all q < p. We have

ψt (φt (x))p = φt (x)p + tp max

q≺p
ψt (φt (x))q = φt (x)p + tp max

q≺p
xq = xp

and

φt (ψt (y))p = ψt (y)p − tp max

q≺p
ψt (y)q = yp .

Hence, the maps are mutually inverse.

We now show that φt maps O(P , λ) into Ot (P , λ). Let x ∈ O(P , λ) and y = φt (x). Given
any saturated chain p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P∗

, pi ∈ P̃ for i ≥ 1 and p ∈ P ,
we have ypi ≤ xpi − tpixpi−1 for i ≥ 1 by definition of φt . Hence,

(1 − tp)
(
tp1 · · · tpryp0 + tp2 · · · tpryp1 + · · · + ypr

)
≤ (1 − tp)

(
tp1 · · · tprxp0 + tp2 · · · tpr (xp1 − tp1xp0) + · · · + (xpr − tprxpr−1)

)
= (1 − tp)xpr ≤ (1 − tp)maxq≺p xq ≤ xp − tp maxq≺p xq = yp .

(7.2)

Thus, we have shown that y ∈ Ot (P , λ) as it satisfies (7.1) for all chains.
Finally, we show that ψt maps Ot (P , λ) into O(P , λ). Let y ∈ Ot (P , λ) and x = ψt (y).

Now consider any covering relation q ≺ p. If q is marked, the inequality (7.1) given by

the chain q ≺ p yields

yp ≥ (1 − tp)xq .

If q is not marked, set pr B q and inductively pick pi−1 such that xpi−1 = maxq′≺pi xq′ until
ending up at a marked element p0. Inequality (7.1) given by the chain

p0 ≺ p1 ≺ · · · ≺ pr = q ≺ p.

still yields

yp ≥ (1 − tp)
(
tp1 · · · tpryp0 + tp2 · · · tpryp1 + · · · + ypr

)
= (1 − tp)

(
tp1 · · · tprxp0 + tp2 · · · tpr (xp1 − tp1xp0) + · · · + tpr (xpr−1 − tpr−1xpr−2) + yq

)
= (1 − tp)

(
tprxpr−1 + yq

)
= (1 − tp)

(
tq max

q′≺q
xq′ + yq

)
= (1 − tp)xq .

Hence, if p is not marked, we have

xp = yp + tp max

q′≺p
xq′ ≥ yp + tpxq ≥ xq .

If p is marked, tp = 0 so xp = yp ≥ xq . Thus, all defining conditions of O(P , λ) are
satisfied.
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Remark 7.2.2. In contrast to the previous transfer maps in Theorems 1.2.1 and 5.1.2,

the inverse transfer mapψt in Theorem 7.2.1 is given using a recursion. Unfolding the

recursion, we might as well express the inverse transfer map for p ∈ P̃ in the closed form

ψt (y)p = max

c

(
tp1 · · · tpryp0 + tp2 · · · tpryp1 + · · · + ypr

)
,

where the maximum ranges over all saturated chains c : p0 ≺ p1 ≺ · · · ≺ pr with p0 ∈ P∗
,

pi ∈ P̃ for i ≥ 1 and r ≥ 0 ending in pr = p.

In examples it is often convenient to consider the projected polyhedra Õt (P , λ) in R
P̃
.

Accordingly we define projected transfer maps.

Definition 7.2.3. Denote by πP̃ the projection RP → RP̃ and by ιλ : R
P̃ → RP the

inclusion given by ι(x)a = λ(a) for all a ∈ P∗
. Define the projected transfer maps

φ̃t ,ψ̃ t : R
P̃ → RP̃ by πP̃ ◦ φt ◦ ιλ and πP̃ ◦ψt ◦ ιλ, respectively.

7.3. Marked Chain-Order Polyhedra

Of particular interest are the marked poset polyhedra for t ∈ {0, 1}P̃ . Each such t uniquely
corresponds to a partition P̃ = C ⊔O such that t is the characteristic function χC , i.e.,

tp = χC(p) =

{
1 for p ∈ C ,

0 for p ∈ O .

In this case, we denote the marked poset polyhedron Ot (P , λ) by OC ,O (P , λ) and refer to it
as a marked chain-order polyhedron. The elements of C will be called chain elements and
the elements of O order elements. Specializing Definition 7.1.1 we obtain the following

description:

Proposition 7.3.1. Given any partition P̃ = C ⊔ O , the marked chain-order polyhedron
OC ,O (P , λ) is given by the following linear equations and inequalities:

i) for each a ∈ P∗ an equation xa = λ(a),

ii) for each chain element p ∈ C an inequality 0 ≤ xp ,

iii) for each saturated chain a ≺ p1 ≺ p2 · · · ≺ pr ≺ b between elements a,b ∈ P∗ ⊔ O
with all pi ∈ C and r ≥ 0 an inequality

xp1 + · · · + xpr ≤ xb − xa .

As before, the case a,b ∈ P∗ and r = 0 can be omitted.
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Proof. Let t = χC ∈ {0, 1}P̃ and consider a chain p0 ≺ p1 ≺ · · · ≺ pr ≺ p with p0 ∈ P∗
,

pi ∈ P̃ for i ≥ 1, p ∈ P and r ≥ 0. This chain yields an inequality

(1 − tp)
(
tp1 · · · tprxp0 + tp2 · · · tprxp1 + · · · + xpr

)
≤ xp , (7.3)

where tp = 0 if p ∈ P∗
.

When p ∈ C we have tp = 1 and (7.3) becomes 0 ≤ xp . Since all minimal elements are

marked, there is such a chain ending in p for each p ∈ C and hence we get 0 ≤ xp for all
p ∈ C this way.

When p ∈ P∗ ⊔O , we have tp = 0 and (7.3) reads

tp1 · · · tprxp0 + tp2 · · · tprxp1 + · · · + xpr ≤ xp .

Since tpi = χC(pi), letting k ≥ 0 be maximal such that pk ∈ P∗ ⊔O , we obtain

xpk + xpk+1 + · · · + xpr ≤ xp ,

which is equivalent to

xpk+1 + · · · + xpr ≤ xp − xpk .

Conversely, consider any chain a ≺ p1 ≺ p2 · · · ≺ pr ≺ b between elements a,b ∈ P∗⊔O
with all pi ∈ C . If a ∈ P∗

, the chain is of the type to give a defining inequality as in

Definition 7.1.1 and we immediately get

xp1 + · · · + xpr ≤ xb − xa .

If a ∈ O , extend the chain downward to a marked element to obtain a chain

q0 ≺ q1 ≺ · · · ≺ ql ≺ a ≺ p1 ≺ · · · ≺ pr ≺ n.

Since a is the last element in the chain contained in P∗ ⊔O , the above simplification for

the inequality given by this chain yields

xp1 + · · · + xpr ≤ xb − xa .

Remark 7.3.2. The term “marked chain-order polytope” is used differently in [FF16].

Their definition only allows partitions P̃ = C ⊔O such that there is no pair p ∈ O , q ∈ C
with p < q, i.e., C is an order ideal in P̃ . We call such a partition an admissible partition
and refer to OC ,O (P , λ) as an admissible marked chain-order polyhedron (polytope). In

this thesis, we allow arbitrary partitions for marked chain-order polyhedra instead of

referring to this more general construction as “layered marked chain-order polyhedra”

as suggested in [FF16].

Note that in particular we obtain the marked order polyhedron when all tp = 0 and

the marked chain polytope when all tp = 1 and all maximal elements marked.
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7.4. Integrality, Integral Closure and Unimodular

Equivalence

When (P , λ) comes with an integral marking, so λ(a) ∈ Z for all a ∈ P∗
, the authors of

[ABS11] already showed that O(P , λ) and C(P , λ) are Ehrhart equivalent lattice polytopes
in the bounded case. In [Fou16] Fourier gives a necessary and sufficient condition

for O(P , λ) and C(P , λ) to be unimodular equivalent and together with Fang this was

generalized to admissible marked chain-order polytopes in [FF16]. They also show that

all the admissible marked chain-order polytopes are integrally closed lattice polytopes.

In this section we assume integral markings containing all extremal elements through-

out and generalize the results above to non-admissible partitions. Let us start by showing

that under these assumptions all the marked chain-order polytopes are lattice polytopes.

Proposition 7.4.1. For t ∈ {0, 1}P̃ the marked chain-order polytope Ot (P , λ) is a lattice
polytope.

Proof. When t ∈ {0, 1}P̃ , the transfermapφt : O(P , λ) → Ot (P , λ) is piecewise-unimodular.

In particular, it maps lattice points to lattice points. When im(λ) ⊆ Z, we know

that the marked poset polytope O(P , λ) is a lattice polytope. In fact, considering the

subdivision into products of simplices from Section 6.3, each cell FI is a lattice poly-

tope as the image of the lattice polytope O(PI , λI) under the lattice-preserving maps

O(PI , λI) → O(P/πI , λ/πI) → O(P , λ). Hence, all vertices in the subdivision of O(P , λ)
are lattice points. Applying φt we obtain a subdivision of Ot (P , λ) with still all vertices

being lattice points. Since the vertices of Ot (P , λ) have to appear as vertices in the

subdivision, we conclude that Ot (P , λ) is a lattice polytope.

Corollary 7.4.2. The polytopes Ot (P , λ) for t ∈ {0, 1}P̃ are all Ehrhart equivalent.

Proof. This is an immediate consequence of the transfer map being piecewise-unimodular

and bijective.

Proposition 7.4.3. The polytopes Ot (P , λ) for t ∈ {0, 1}P̃ are all integrally closed.

Proof. Wewill reduceOt (P , λ) being integrally closed to the fact that unimodular simplices

are integrally closed. Since we have a polyhedral subdivision of Ot (P , λ) into cells φt (FI),
it suffices to show that each cell is integrally closed. On the cell FI , the transfer map φt
is the restriction of a unimodular map RP → RP . Hence, it is enough to show that each

cell FI in the subdivision of O(P , λ) is integrally closed. In fact, since FI is the image

of O(PI , λI) under a map that identifies the affine lattices spanned by the polytopes, it

suffices to show that marked order polytopes associated to linear posets with integral

markings are integrally closed. Since these are products of marked order polytopes

associated to linear posets with integral markings only at the minimum and maximum,

it is enough to show that these are integrally closed. However, these are just integral

dilations of unimodular simplices.
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Having identified a family of Ehrhart equivalent integrally closed lattice polytopes, we

now move on to the question of unimodular equivalences within this family.

Given a marked poset (P , λ), we call an element p ∈ P̃ a star element if p is covered by

at least two elements and there are at least two different saturated chains from a marked

element to p. This notion has been used in [FF16] to study unimodular equivalence of

admissible marked chain-order polytopes.

A finer notion we will use in our discussion is that of a chain-order star element with
respect to a partition C ⊔O of P̃ .

Definition 7.4.4. Given a partition P̃ = C ⊔O , an element q ∈ O is called a chain-order
star element if there are at least two different saturated chains s ≺ q1 ≺ · · · ≺ qk ≺ q
with s ∈ P∗ ⊔ O and all qi ∈ C and there are at least two different saturated chains

q ≺ q1 ≺ · · · ≺ qk ≺ s with s ∈ P∗ ⊔O and all qi ∈ C .

Note that if C ⊔O and (C ⊔ {q}) ⊔ (O \ {q}) are admissible partitions for some q ∈ O ,

i.e., C is an order ideal in P̃ and q is minimal in O , then q is an (O ,C)-star element if and

only it is a star element in the sense of [FF16].

Proposition 7.4.51. LetC⊔O be a partition of P̃ and q ∈ O not a chain-order star element.
Let O′ = O \ {q} and C′ = C ⊔ {q}, then OC ,O (P , λ) and OC ′

,O ′(P , λ) are unimodular
equivalent.

Proof. We have to consider the following two cases.

(1) There is exactly one saturated chain s ≺ q1 ≺ · · · ≺ qk ≺ q with s ∈ P∗ ⊔O and all

qi ∈ C . Define the unimodular map Ψ : RP → RP by letting

Ψ(x)p =

{
xq − xs − · · · − xqk if p = q,

xp otherwise.

We claim that Ψ(OC ,O (P , λ)) = OC ′
,O ′(P , λ). The defining inequalities of OC ,O (P , λ)

involving xq are the following:

i) for each saturated chain q ≺ p1 ≺ p2 · · · ≺ pr ≺ b with b ∈ P∗ ⊔O , pi ∈ C and

r ≥ 0 an inequality

xp1 + · · · + xpr ≤ xb − xq ,

ii) the inequality

xq1 + · · · + xqk ≤ xq − xs .

Applying Ψ, these translate to

i) for each saturated chain q ≺ p1 ≺ p2 · · · ≺ pr ≺ b with b ∈ P∗ ⊔O , pi ∈ C and

r ≥ 0 an inequality

xq1 + · · · + xqk + xq + xp1 + · · · + xpr ≤ xb − xs , (7.4)

1
In the proof of Proposition 7.4.5 we do not use integrality of the marking or P∗

containing all extremal

elements. Hence, the statement still holds when P∗
only contains all minimal elements and the marking

is not integral.
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ii) the inequality

0 ≤ xq . (7.5)

These are exactly the defining properties of OC ′
,O ′(P , λ) involving xq : the saturated

chains a ≺ p1 ≺ p2 · · · ≺ pr ≺ b with a,b ∈ P∗ ⊔O′
and all pi ∈ C′

involving q at

index k , must have a = s and pi = qi for i ≤ k , so they yield the inequalities in (7.4).

The inequality in 7.5 is what we get from q ∈ C′
.

(2) There is exactly one saturated chain q ≺ q1 ≺ · · · ≺ qk ≺ s with s ∈ P∗ ⊔ O
and all qi ∈ C . An analogous argument as above shows that in this case the map

Ψ : RP → RP defined by

Ψ(x)p =

{
xs − xq − · · · − xqk if p = q,

xp otherwise

yields an unimodular equivalence of OC ,O (P , λ) and OC ′
,O ′(P , λ). In this case every

chain involving q that is relevant for OC ′
,O ′(P , λ) must end in · · · ≺ q ≺ q1 ≺ · · · ≺

qk ≺ s .

7.5. Combinatorial Types

Having studied the marked chain-order polyhedra obtained for t ∈ {0, 1}P̃ , we will

now consider intermediate and generic t ∈ [0, 1]P̃ . In this section we show that the

combinatorial type of Ot (P , λ) stays constant when t varies inside the relative interior of
a face of the parametrizing hypercube [0, 1]P̃ .

The idea is to translate whether a defining inequality of Ot (P , λ) is satisfied for some

φt (x) with equality into a condition on x depending only on the face of [0, 1]P̃ the

parameter t is contained in.

The key ingredient will be a relation on P depending on x ∈ O(P , λ).

Definition 7.5.1. Given x ∈ O(P , λ) let ⊣x be the relation on P given by

q ⊣x p ⇐⇒ q ≺ p and xq = max

q′≺p
xq′ .

Proposition 7.5.2. Let x ∈ O(P , λ). Given a saturated chain p0 ≺ p1 ≺ · · · ≺ pr ≺ p
with p0 ∈ P∗, pi ∈ P̃ for i ≥ 1 and p ∈ P , the corresponding defining inequality (7.1) is
satisfied with equality by φt (x) if and only if one of the following is true:

i) tp = 1 and xp = maxq≺p xq ,

ii) tp < 1 and xp = xpr as well as

pk−1 ⊣x pk ⊣x · · · ⊣x pr ,

where k ≥ 1 is the smallest index such that tpi > 0 for all i ≥ k .
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a1 a2
· · ·

ak

p1

p2

pr

p

Figure 7.1.: The condition on p ∈ P in Proposition 7.5.4.

Proof. Let y = φt (x) ∈ Ot (P , λ). When tp = 1, the inequality (7.1) for y reads 0 ≤ yp
which is equivalent to

max

q≺p
xq ≤ xp .

When tp < 1 we may simplify (7.1) to

(1 − tp)
(
tpk · · · tprypk−1 + · · · + ypr

)
≤ yp , (7.6)

where k ≥ 1 is the smallest index such that tpi > 0 for all i ≥ k . The coefficients on the

left hand side of (7.6) are all strictly positive and inspecting the estimation in (7.2) yields

equality if and only if

xpi−1 = max

q≺pi
xq for i ≥ k and

xpr = xp .

Since the conditions of Proposition 7.5.2 only depend on each tp being 0, 1 or in between,
we obtain the following corollary.

Corollary 7.5.3. The combinatorial type of Ot (P , λ) is constant along relative interiors of
faces of the parametrizing hypercube [0, 1]P̃ .

Furthermore, some of the tp do not affect the combinatorial type at all:

Proposition 7.5.4. The combinatorial type of Ot (P , λ) does not depend on tp for p ∈ P̃

such that there is a (unique) chain p1 ≺ p2 ≺ · · · ≺ pr ≺ pr+1 = p, where all pi ∈ P̃ , p1
covers only marked elements and pi is the only element covered by pi+1 for i = 1, . . . , r .

The condition on p in Proposition 7.5.4 is equivalent the subposet of all elements below

p being of the form depicted in Figure 7.1.
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7.6. Tropical Arrangements and Subdivisions

Proof. Let t , t ′ ∈ [0, 1]P̃ such that tq = t ′q for q , p and consider the transfer map θt ,t ′ . For
y ∈ Ot (P , λ) and q , p we have

θt ,t ′(y)q = φt ′(ψt (y))q = ψt (y)q − t ′q max

q′≺q
ψt (y)q′ = ψt (y)q − tq max

q′≺q
ψt (y)q′ = yq .

For the p-coordinate note that the given condition means walking down from p in the

Hasse diagram of (P , λ) we are forced to walk along p ≻ pr · · · ≻ p1 and p1 covers only
marked elements. Hence, we have

θt ,t ′(y)p = ψt (y)p − t ′p max

q≺p
ψt (y)q = ψt (y)p − t ′pψt (y)pr

= yp + tpypr + tptprypr−1 + tptpr−1tprypr−2 · · · + tptp1tp2 · · · tpr max

a≺p1
λ(a)

− t ′p

(
ypr + tprypr−1 + tpr−1tprypr−2 · · · + tp1tp2 · · · tpr max

a≺p1
λ(a)

)
= yp + (tp − t ′p)

(
ypr + tprypr−1 + tpr−1tprypr−2 · · · + tp1tp2 · · · tpr max

a≺p1
λ(a)

)
.

We conclude that θt ,t ′ restricts to an affine isomorphism Ot (P , λ) ∼−→ Ot ′(P , λ).

Corollary 7.5.5. Letting k be the number of elements in P̃ not satisfying the condition
in Proposition 7.5.4, there are at most 3k different combinatorial types of marked poset
polyhedra associated to a marked poset (P , λ).

7.6. Tropical Arrangements and Subdivisions

As discussed in Section 5.2 and Section 6.3, the marked order polyhedron O(P , λ) comes

with a subdivision S into products of simplices and simplicial cones. Since the transfer

map φ as well as the parametrized transfer map φt is linear on each cell of S, we have a

transferred subdivision St of Ot (P , λ) for all t ∈ [0, 1]P̃ .

In this section we introduce a coarsening of S into linearity regions of φ, obtained by

intersecting O(P , λ) with the cells in a tropical hyperplane arrangement determined by

(P , λ). Our main reason to consider this subdivision is a result in Section 7.8, where we

will show that the vertices of generic marked poset polyhedra are given by the vertices

in this subdivision and hence can be obtained by first subdividing the marked order

polyhedron to then transfer the vertices in the subdivision. The notation we use here

is close to [FR15], where the combinatorics of tropical hyperplane arrangements are

discussed in detail.

7.6.1. Tropical Hyperplane Arrangements

In tropical geometry, the usual ring structure (R,+, ·) we use for Euclidean geometry is

replaced by the tropical semiring (R∪ {−∞}, ⊕, ⊙), where a ⊕b = max(a,b), a ⊙b = a+b
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7. A Continuous Family of Marked Poset Polyhedra

and −∞ is the identity with respect to ⊕. Hence, a tropical polynomial is a convex

piecewise-linear function in ordinary terms:⨁
a∈Nn

ca ⊙ x⊙a1
1

⊙ · · · ⊙ x⊙an
n = max

{
a1x1 + · · · + anxn + ca : a ∈ Nn

}
.

Given a tropical linear form

α =
n⨁
i=1

ci ⊙ xi = max

{
xi + ci : i = 1, . . . ,n

}
,

where some—but not all—coefficients are allowed to be −∞, one defines a tropical hyper-
plane Hα consisting of all x ∈ Rn such that α is non-differentiable at x or equivalently,

the maximum in α(x) is attained at least twice.

We may pick some of the coefficients ci to be −∞ to obtain tropical linear forms only

involving some of the coordinates. For example when n = 3 we could have

α = (1 ⊙ x1) ⊕ (3 ⊙ x2) = max{1 + x1, 3 + x2} = (1 ⊙ x1) ⊕ (3 ⊙ x2) ⊕ (−∞ ⊙ x3)

and the tropical hyperplane Hα would just be the usual hyperplane 1 + x1 = 3 + x2.
Given a tropical hyperplane, one obtains a polyhedral subdivision of Rn with facets the

linearity regions of α and the skeleton of codimension 1 beingHα as follows: for a tropical

hyperplane H = Hα in Rn define the support supp(H ) as the set of all i ∈ [n] such that

the coefficient ci is different from −∞ in α . For any non-empty subset L ⊆ supp(H ) we

have a cell

FL(H ) =

{
x ∈ Rn : cl + xl = max

i∈supp(H )
(xi + ci) for all l ∈ L

}
.

The facets F{l} for l ∈ supp(H ) are the linearity regions of α and the cells FL for |L| ≥ 2

form a subdivision of Hα . Given any x ∈ Rn, we define its signature sigH (x) as the unique
L ⊆ supp(H ) such that x is in the relative interior of FL. Equivalently, the signature of x
is the set of indices achieving the maximum in α(x),

sigH (x) = argmax

i∈supp(H )

(xi + ci).

Using this terminology, we may also describe FL(H ) as the set of all points x ∈ Rn with
L ⊆ sigH (x)
Now let H = {H1,H2, . . . ,Hm} be a tropical hyperplane arrangement, that is, each Hi

is a tropical hyperplane Hαi ⊆ R
n
for a tropical linear form αi . The common refinement

T(H) of the polyhedral subdivision of H1,H2, . . . ,Hm gives a polyhedral subdivision

of Rn whose facets are the largest regions on which all αi are linear and whose (n − 1)-

skeleton is a subdivision of

⋃
H . To each x ∈ Rn we associate the tropical covector

tc(x) : [m] → 2
[n]

recording the signatures with respect to all hyperplanes, that is

tc(x) =
(
sigH1

(x), sigH2

(x), . . . , sigHm
(x)

)
.
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x1

x2 H3 H2H1

(13, 12, 1)

(123, 2, 1)(23, 2, 13) (1
,
2
,
1
)

(1, 1, 1)

(2, 2, 3)

(3, 2, 3)

(3, 2, 13)

Figure 7.2.: The tropical hyperplane arrangement from Example 7.6.1 sliced at x3 = 0

with some of the appearing tropical covectors listed.

Hence, the cells of T(H) are enumerated by the appearing tropical covectors when x
varies over all points in Rn. The set of all these tropical covectors is called the combinato-
rial type of H and denoted TC(H). For each τ ∈ TC(H) the corresponding cell is given

by

Fτ =
m⋂
i=1

Fτi (Hi)

and its relative interior consists of all x ∈ Rn such that tc(x) = τ .
To digest all these definitions, let us look at a small example before using the introduced

terminology to define a subdivision of marked poset polyhedra.

Example 7.6.1. Let n = 3 and consider the following tropical linear forms:

α1 = ((−2) ⊙ x1) ⊕ ((−1) ⊙ x2) ⊕ (0 ⊙ x3) = max{x1 − 2,x2 − 1,x3},

α2 = ((−2) ⊙ x1) ⊕ (0 ⊙ x2) ⊕ ((−∞) ⊙ x3) = max{x1 − 2,x2},

α3 = ((−1) ⊙ x1) ⊕ ((−∞) ⊙ x2) ⊕ (0 ⊙ x3) = max{x1 − 1,x3}.

LetH = {H1,H2,H3} be the tropical hyperplane arrangement with Hi given by αi for i =
1, 2, 3. The supports of the three hyperplanes are supp(H1) = {1, 2, 3}, supp(H2) = {1, 2}

and supp(H3) = {1, 3}. Since tropical hyperplanes are invariant under translations along

the all-one vector (1, 1, . . . , 1) ∈ Rn, we obtain a faithful picture of the subdivision T(H)

by just looking at the slice xn = 0. This is done in Figure 7.2 for the example at hand with

some of the appearing tropical covectors listed. ♢

7.6.2. The Tropical Subdivision

We are now ready to introduce the tropical subdivision of marked poset polyhedra. As

before, let (P , λ) be a marked poset with at least all minimal elements marked. The

transfer maps φt of Theorem 7.2.1 give rise to the tropical linear forms

αp = max

q≺p
xq =

⨁
q≺p

xq for p ∈ P̃ .
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7. A Continuous Family of Marked Poset Polyhedra

When p is not covering at least two elements, the tropical linear form αp has just one
term and defines an empty tropical hyperplane since the maximum can never be achieved

twice. Hence, let R denote the set of all p ∈ P̃ covering at least two elements and define

a tropical hyperplane arrangement H(P , λ) in RP with tropical hyperplanes Hp = Hαp

for all p ∈ R. By construction, the facets of T(H(P , λ)) are the linearity regions of φt for
t ∈ (0, 1]P̃ .

The reason this subdivisionwill help study the combinatorics ofmarked poset polytopes

is the following: by Proposition 7.5.2 the combinatorics of Ot (P , λ) can be determined by

pulling points back to O(P , λ) and looking at the relation ⊣x . But for r ∈ R and p ∈ P we

have p ⊣x r if and only if p ∈ tc(x)r , so the information encoded in ⊣x is equivalent to

knowing the minimal cell of T(H(P , λ)) containing x .
Using this tropical hyperplane arrangement, we can define a polyhedral subdivision of

O(P , λ).

Definition 7.6.2. Let T(H(P , λ)) be the polyhedral subdivision of RP associated to the

marked poset (P , λ). The tropical subdivision T(P , λ)of O(P , λ) is given by the intersection
of faces of O(P , λ) with the faces of T(H(P , λ)):

T(P , λ) = { F ∩G | F ∈ F (O(P , λ)),G ∈ T (H(P , λ)) } .

For t ∈ [0, 1]P̃ define the tropical subdivision of Ot (P , λ) as

Tt (P , λ) = {φt (Q) |Q ∈ T (P , λ)} .

Note that Tt (P , λ) is polyhedral subdivision of Ot (P , λ) since φt is linear on each G ∈

T (P , λ) by construction. In particular, Tt (P , λ) is a coarsening of the subdivision St into

products of simplices and simplicial cones.

7.7. Continuous Degenerations

By Corollary 7.5.3, the combinatorial type of Ot (P , λ) is constant along the relative

interiors of the faces of the hypercube [0, 1]P̃ . Assume we are looking at some Ot (P , λ)
with tp ∈ (0, 1) for a fixed p. Continuously changing tp to 0 or 1, the combinatorial

type of the polyhedron stays constant until it possibly jumps, when reaching 0 or 1,

respectively. This motivates to think of the two polyhedra for tp = 0 and tp = 1 as

continuous degenerations of the polyhedron for any tp ∈ (0, 1).

In this section we formally introduce a concept of continuous degenerations of polyhe-

dra to then apply it to marked poset polyhedra.

7.7.1. Continuous Degenerations of Polyhedra

We start by defining continuous deformations of polyhedra, mimicking the situation in

the continuous family.

Definition 7.7.1. Given two polyhedra Q0 and Q1 in R
n
, a continuous deformation from

Q0 to Q1 consists of the following data:
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7.7. Continuous Degenerations

i) A continuous map ρ : Q0×[0, 1] → Rn, such that each ρt = ρ(−, t) is an embedding,

ρ0 is the identical embedding of Q0 and the image of ρ1 is Q1.

ii) Finitely many continuous functions f 1, f 2, . . . , f k : Rn × [0, 1] → R such that for

all i and t the maps f it = f i(−, t) : Rn → R are affine linear forms and satisfy

ρt (Q0) =
{
x ∈ Rn

�� f it (x) ≥ 0 for all i
}
.

Hence, the images ρt (Q0) are all polyhedra and we write Qt for ρt (Q0) and say (Qt )t∈[0,1]
is a continuous deformation when the accompanying maps ρ and f i are clear from the

context.

Note that a continuous deformation of polyhedra as defined here consists of both a

map moving the points around and a continuous description in terms of inequalities for

all t ∈ [0, 1].

Definition 7.7.2. A continuous deformation (Qt )t∈[0,1] as in Definition 7.7.1 is called a

continuous degeneration if for all x ∈ Q0, t < 1 and i = 1, . . . ,k we have f it (ρt (x)) = 0 if

and only if f i
0
(x) = 0.

From this definition we immediately obtain the following.

Proposition 7.7.3. If (Qt )t∈[0,1] is a continuous degeneration, the polyhedra Qt for t < 1

are all combinatorially equivalent and ρt preserves faces and their incidence structure.

Proof. Let the data of the continuous degeneration be given as in Definition 7.7.1. For

y ∈ Qt denote by It (y) the set of all i ∈ [k] such that f it (y) = 0. The set of all It (y) for
y ∈ Qt ordered by reverse inclusion is isomorphic to F (Qt ) \ {�} since relative interiors

of faces of Qt correspond to regions of constant It .

Since for all x ∈ Q0, t < 1 and i = 1, . . . ,k we have f it (ρt (x)) = 0 if and only if f i
0
(x) = 0,

the sets It (ρt (x)) are fixed for t < 1 and hence ρt preserves the face structure.

We continue by illustrating the definition of continuous degenerations in an example

before proceeding with the general theory.

Example 7.7.4. For t ∈ [0, 1] let Qt ⊆ R2 be the polytope defined by the inequalities

0 ≤ x1 ≤ 2, 0 ≤ x2 as well as

x2 ≤ (1 − t)x1 + 1, and

x2 ≤ (1 − t)(2 − x1) + 1.

For t = 0, t = 1

2
and t = 1 we have illustrated the polytope in Figure 7.3. Together with

the map ρt : Q0 → R
2
given by ρt (x)1 = x1 for all t and

ρt (x)2 =

{
x2

(1−t)x1+1
x1+1

for x1 ≤ 1,

x2
(1−t)(2−x1)+1

(2−x1)+1
for x1 ≥ 1
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x1

x2

1 2

1

2

(a) Q0
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(b) Q 1
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(c) Q1

Figure 7.3.: The polytopes in the continuous degeneration from Example 7.7.4 for t = 0,

t = 1

2
and t = 1.

we obtain a continuous degeneration. Starting from the pentagon in Figure 7.3a at t = 0

we see increasingly compressed pentagons with the two top edges becoming more flat-

angled until ending up with the rectangle in Figure 7.3c at t = 1. The map ρt just scales
the x2 coordinates accordingly, preserving the face-structure for t < 1. ♢

The key result on continuous degenerations that will allow conclusions on face struc-

ture of degenerations is that during a continuous degeneration, relative interiors of faces

always map into relative interiors of faces. In other words, continuous degenerations can

not “fold” faces of Q0 so they split into different faces of Q1, but only “straighten” some

adjacent faces of Q0 to become one face of Q1.

Proposition 7.7.5. Let (Qt )t∈[0,1] be a continuous degeneration of polyhedra. Whenever F
is a face of Q0, there is a unique face G of Q1 such that

ρ1(relint F ) ⊆ relintG .

Proof. As in the previous proof, let It (y) denote the set of indices i ∈ [k] such that

f it (y) = 0. Using these incidence sets we may rephrase the proposition as follows:

whenever x ,x′ ∈ Q0 satisfy I0(x) = I0(x), they also satisfy I1(ρ1(x)) = I1(ρ1(x
′)).

Let F be the face of Q0 having both x and x′ in its relative interior and assume there

exists a j ∈ I1(ρ1(x)) \I1(ρ1(x
′)) for sake of contradiction. Hence, we have f j

1
(ρ1(x)) = 0

while f j
1
(ρ1(x

′)) > 0. Let d denote the dimension of F then relint F is a manifold of

dimension d . Since ρ1 is an embedding, ρ1(relint F ) is a manifold of dimension d as

well. Since the affine hull of ρt (relint F ) is of dimension d for all t < 1, we conclude

that the affine hull of ρ1(relint F ) is of dimension at most d . To see this, take any d + 1
points y0, . . . ,yd in ρ1(relint F ). Their images ρt (ρ

−1
1
(y0)), . . . , ρt (ρ

−1
1
(yd)) in ρt (relint F )

are affinely dependent for t < 1, so they have to be affinely dependent for t = 1 as well

by the continuity of ρ in t .
But as ρ1(relint F ) is a manifold of dimension d , we conclude that its affine hull has

dimension exactly d and ρ1(relint F ) is an open subset of its affine hull. Given that both

ρ1(x) and ρ2(x
′) are points in ρ1(relint F ), we conclude that there exists an ε > 0 such
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that the point

z = ρ1(x) + ε(ρ1(x) − ρ1(x
′))

is still contained in ρ1(relint F ). In particular, z ∈ Q1. However, since f j
1
is an affine linear

form, we have

f j
1
(z) = (1 + ε)f j

1
(ρ1(x)) − ε f

j
1
(ρ1(x

′)) < 0.

This contradicts z ∈ Q1, which finishes the proof.

The consequence of Proposition 7.7.5 is that continuous degenerations induce maps

between face lattices.

Corollary 7.7.6. When (Qt )t∈[0,1] is a continuous degeneration of polyhedra, we have a
surjective order-preserving map of face lattices

dg : F (Q0) −→ F (Q1)

determined by the property

ρ1(relint F ) ⊆ relint dg(F ).

for non-empty F and dg(�) = �. Furthermore, the map satisfies dim(dg(F )) ≥ dim F for
all F ∈ F (Q0).

We will refer to the map in Corollary 7.7.6 as the degeneration map. Before coming

back to marked poset polyhedra, we finish with a result on the f -vectors of continuous
degenerations.

Proposition 7.7.7. Let (Qt )t∈[0,1] be a continuous degeneration of polyhedra. We have
fi(Q1) ≤ fi(Q0) for all i .

Proof. Let G be an i-dimensional face of Q1. We claim that there is at least one i-
dimensional face F of Q0 such that dg(F ) = G. Since every polyhedron is the disjoint

union of the relative interiors of its faces and ρ1 is a bijection, we have

relintG =
⨆

F∈dg−1(G)

ρ1(relint F ).

Since relintG is a manifold of dimension dimG and each ρ1(relint F ) is a manifold of

dimension dim F ≤ dimG , there has to be at least one F ∈ dg
−1(G) of the same dimension

as G.

7.7.2. Continuous Degenerations in the Continuous Family

We are now ready to apply the concept of continuous degenerations to the continuous

family of marked poset polyhedra. Let us first identify for which pairs of parameters

u,u′ ∈ [0, 1]P̃ we expect to have a continuous degeneration from Ou(P , λ) to Ou ′(P , λ) and
then specify the deformation precisely.

83



7. A Continuous Family of Marked Poset Polyhedra

Definition 7.7.8. Letu ∈ [0, 1]P̃ and let I ⊆ P̃ be the set of indices p, such thatup ∈ {0, 1}.

Any u′ ∈ [0, 1]P̃ such that u′p = up for p ∈ I is called a degeneration of u.

Proposition 7.7.9. Let u′ be a degeneration of u. The map

ρ : Ou(P , λ) × [0, 1] −→ RP ,

(x , ξ ) ↦−→ θu,ξu ′+(1−ξ )u(x)

is a continuous degeneration with the accompanying affine linear forms given by the equa-
tions and inequalities in Definition 7.1.1 for t = ξu′ + (1 − ξ )u.

Proof. The map ρ together with the affine linear forms given by Definition 7.1.1 is a

continuous deformation by Theorem 7.2.1. The fact that ρ is a continuous degeneration

follows from Proposition 7.5.2.

Now the machinery of continuous degenerations immediately yields degeneration

maps and results on the f -vectors of marked poset polyhedra.

Corollary 7.7.10. Let u,u′ ∈ [0, 1]P̃ such that u′ is a degeneration of u. The continuous
degeneration in Proposition 7.7.9 yields a degeneration map dgu,u ′ : Ou(P , λ) → Ou ′(P , λ)
in the sense of Corollary 7.7.6. In particular, the f -vectors satisfy

fi(Ou ′(P , λ)) ≤ fi(Ou(P , λ)) for all i .

Furthermore, given a degeneration u′′ of u′, the degeneration maps satisfy

dgu,u ′′ = dgu ′
,u ′′ ◦ dgu,u ′ .

Proof. After applying Proposition 7.7.5, Corollary 7.7.6 and Proposition 7.7.7 to the

situation at hand, all that remains to be proven is the statement about compositions of

degeneration maps. This is an immediate consequence of θu,u ′′ = θu ′
,u ′′ ◦ θu,u ′ .

7.8. Vertices in the Generic Case

Using the tropical subdivision from Section 7.6 and the concept of continuous degener-

ations from Section 7.7, we are ready to to prove a theorem describing the vertices of

generic marked poset polyhedra.

Theorem 7.8.1. The vertices of a generic marked poset polyhedron Ot (P , λ) with t ∈ (0, 1)

are exactly the vertices in its tropical subdivision Tt (P , λ).

As a consequence, the vertices of the generic marked poset polyhedron can be obtained

by subdividing the marked order polyhedron using the associated tropical subdivision

and transferring the obtained vertices via the transfer map φt to Ot (P , λ). Furthermore,

even for arbitrary t ∈ [0, 1], the set of points obtained this way will always contain the

vertices of Ot (P , λ).
Before proceeding with the proof of Theorem 7.8.1 let us illustrate the situation with

an example.
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4

p q

r

0

3

2

Figure 7.4.: The marked poset from Example 7.8.2

Example 7.8.2. Let (P , λ) be the marked poset given in Figure 7.4. The hyperplane

arrangement H(P , λ) consists of just one tropical hyperplane given by the tropical linear

form

αr = max{x2,xp ,xq} = x2 ⊕ xp ⊕ xq .

It divides the space RP into three regions where either x2, xp or xq is maximal among the

three coordinates. Intersecting this subdivision with O(P , λ) we obtain the the tropical

subdivision shown in Figure 7.5a, where the hyperplane itself is shaded in red. We see

the 11 vertices of the polytope depicted in green and 3 additional vertices of the tropical

subdivision that are not vertices of O(P , λ) in red. Since tp and tq are irrelevant for the
affine type of Ot (P , λ) by Proposition 7.5.4—and in fact only get multiplied by 0 in the

projected transfer map φ̃t—we only need to consider the parameter tr . In Figure 7.5b we

see the tropical subdivision of Ot (P , λ) for tr =
1

2
. Now all vertices that appear in the

subdivision are green, i.e., they are vertices of the polytope, as stated in Theorem 7.8.1.

When tr = 1, we obtain the tropic subdivision of the marked chain polytope C(P , λ) as
shown in Figure 7.5c. Again, some of the vertices in the subdivision are not vertices of

the polytope. ♢

To prove Theorem 7.8.1, we first need a lemma simplifying the description of vertices

in T(P , λ). Recall that the tropical hyperplane arrangement introduced in Section 7.6 has

tropical hyperplanes enumerated by R, the set of all unmarked elements in P covering at

least two other elements.

Lemma 7.8.3. Let v be a vertex in the tropical subdivision T(P , λ) of a marked order
polyhedron O(P , λ) and denote by F and G the minimal faces of O(P , λ) and T(H(P , λ))
containing v , respectively, so that {v} = F ∩ G. Denote by RG the set of all r ∈ R such
that | tc(v)r | ≥ 2 and let

G′ =
{
x ∈ RP

��xq = xq′ for all r ∈ RG , q,q′ ∈ tc(v)r
}

Then
{v} = F ∩G = F ∩G′.

Proof. By definition of the tropical subdivision T(H(P , λ)) of RP , we have

G =
{
x ∈ RP

��
tc(v)r ⊆ tc(x)r for all r ∈ R,

}
,
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xp

xq

xr

(a) Õ(P , λ)

xp

xq

xr

(b) Õ 1

2

(P , λ)

xp

xq

xr

(c) C̃(P , λ)

Figure 7.5.: Tropical subdivision of the marked poset polytope from Example 7.8.2 for

tr = 0,
1

2
and 1. For generic t the vertices of the subdivision coincide with the

vertices of the polytope.

where tc(v)r ⊆ tc(x)r is equivalent to xq = xq′ for q,q
′ ∈ tc(v)r and xq′′ ≤ xq for q

′′ ≺ r
with q′′ < tc(v)r and q ∈ tc(v)r . Hence, we may write

G = G′ ∩ H ∩ L,

where

G′ =
{
x ∈ RP

��xq = xq′ for all r ∈ RG , q,q
′ ∈ tc(v)r

}
,

H =
{
x ∈ RP

��xq′′ ≤ xq for all r ∈ RG , q
′′ ≺ r with q′′ < tc(v)r , q ∈ tc(v)r

}
,

L =
{
x ∈ RP

��
tc(v)r ⊆ tc(x)r for all r ∈ R \ RG

}
.

Since vq′′ < vq for q
′′
,q ≺ r with q′′ < tc(v)r and q ∈ tc(v)r , we know that v is an interior

point ofH . Since for r < RG the set tc(v)r has exactly one element, there are no conditions

xq = xq′ for q,q
′ ∈ tc(v)r and by the previous argument v is also an interior point of L.

Hence, we have

{v} = (F ∩G′) ∩ (H ∩ L),

where v is an interior point of H ∩ L. Since RP is Hausdorff and F ∩G′
is connected, this

implies {v} = F ∩G′
.

We are now ready to prove Theorem 7.8.1.

Proof of Theorem 7.8.1. Let v be a vertex in the tropical subdivision T(P , λ) of O(P , λ),
so that {v} = F ∩G, where F is the minimal face of O(P , λ) containing v and G is the

minimal cell in T(H(P , λ)) containingv . Let tc(G) be the tropical covector corresponding
to G and denote by RG the set of all r ∈ R such that | tc(G)r | ≥ 2. In other words, RG
consists of all p ∈ P̃ such that at least two different q ≺ p maximize vq . Fix u ∈ [0, 1]P̃

with up ∈ (0, 1) for p ∈ RG and up = 0 otherwise.

86



7.8. Vertices in the Generic Case

We claim that φu(v) is a vertex of Ou(P , λ). Since u is a degeneration of any t ∈ (0, 1)P̃ ,

we can conclude by Proposition 7.7.5 that φt (v) is then also a vertex of Ot (P , λ) whenever
t ∈ (0, 1)P̃ .

By Lemma 7.8.3 we have {v} = F ∩G′
, where G′

is defined by the conditions xq = xq′

for r ∈ RG , q,q
′ ∈ tc(v)r . Let Q be the minimal face of Ou(P , λ) containing φu(v). If we

can showψu(Q) ⊆ F andψu(Q) ⊆ G′
, we can conclude that Q is a single point and hence

φu(v) a vertex. Since 0 ∈ [0, 1]P̃ is a degeneration of u, we haveψu(relintQ) ⊆ relint F by

Proposition 7.7.5 and concludeψu(Q) ⊆ F by taking closures.

To show that ψu(Q) ⊆ G′
, let r ∈ RG and q ∈ tc(G)r = tc(v)r . For y ∈ Q with

image z = ψu(y) in O(P , λ), we will show q ⊣z r , so q ∈ tc(z)r . Hence, we obtain

tc(v)r ⊆ tc(z)r for r ∈ RG which implies z ∈ G′
. Our strategy is as follows: construct a

chain c corresponding to a defining inequality of Ou(P , λ) satisfied by φu(v) with equality,

such that q ⊣v r is one of the corresponding conditions on v in Proposition 7.5.2. Since

the inequality is satisfied by φu(v) with equality, the same holds for y ∈ Q . Again, by
Proposition 7.5.2, this implies that q ⊣z r .

What remains to be done is constructing the chain c. In the following, we need a

relation slightly stronger than ⊣x . Let a =|x b denote the relation on P defined by b ∈ RG
and a ⊣x b. That is, a =|x b holds if and only if b ∈ RG , a ≺ b and xa = maxq≺b xq .

First construct a chain from q downward to a marked element that is of the kind

a ≺ · · · ≺ p′ ≺ p′
1
=|v · · · =|v p

′
l = q,

where l ≥ 1 and p′
1
< RG . That is, walk downwards in RG along relations =|v as long as

possible, then arbitrarily extend the chain to some marked element a ∈ P∗
. Let

c : a ≺ · · · ≺ p′ ≺ p′
1
≺ · · · ≺ p′l−1.

When q was marked, c is just the empty chain. When q < RG , we have l = 1, p′
1
= q and c

ends in p′.

Now construct a maximal chain

q =|v r =|v p1 =|v · · · =|v pk ,

where k ≥ 0. Let p−1 = q, p0 = r , and let B ∈ πF be the block of the face partition of

F containing pk . We claim that B can not be a singleton: since F ∩ G′
is a point, the

conditions imposed by the face partition πF together with the conditions given by G′

determine all the coordinates, in particular xpk . However, pk is neither marked, since

it is an element of RG ⊆ P̃ , nor does it appear in one of the equations for G′
, since the

chain was chosen maximal. Hence, the coordinate xpk must be determined by pk sitting
in a non-trivial block with some other coordinate already determined by the conditions

imposed by λ, πF and G
′
.

If there exists p ∈ B with pk ≺ p, let

d : p1 ≺ · · · ≺ pk ≺ p.
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7. A Continuous Family of Marked Poset Polyhedra

The chain c ≺ q ≺ r ≺ d yields a defining inequality for Ou(P , λ). Since up ′
1

= 0, while

up ′
2

, . . . ,up ′l ,ur ,up1 , . . . ,upk > 0 and up , 1 in case of p ∈ P̃ , the describing inequality of

Ou(P , λ) given by c ≺ q ≺ r ≺ d is satisfied with equality for some φu(x) if and only if

p′
1
⊣x · · · ⊣x p

′
l = q ⊣x r ⊣x p1 ⊣x · · · ⊣x pk and xpk = xp .

For x = v , all these conditions are satisfied. Hence, they are also satisfied by z. In

particular q ⊣z r as desired.
If there exists no p ∈ B with pk ≺ p, there must be some p ∈ B with p ≺ pk , since B is

not a singleton. In this case vp = vpk so in particular p ⊣v pk . Since pk−1 ⊣v pk as well, we
conclude vpk−1 = vp = vpk . Now let

d : p1 ≺ · · · ≺ pk .

The inequality for Ou(P , λ) given by c ≺ q ≺ r ≺ d is satisfied with equality for φu(x) if
and only if

p′
1
⊣x · · · ⊣x p

′
l = q ⊣x r ⊣x p1 ⊣x · · · ⊣x pk−1 and xpk−1 = xpk .

Again, all these conditions hold for x = v , hence also for z and we can conclude q ⊣z r as
before.

7.9. Poset Transformations

Since having a strict or even regular marking already played an essential role in the

theory of marked order polyhedra, it is a natural question to ask whether we can apply

the poset transformation used in Section 6.2 and still obtain the same marked poset

polyhedra up to affine equivalence for arbitrary t ∈ [0, 1]P̃ . In this section we show that

the answer is positive: modifying a marked poset to be strictly marked and modifying a

strictly marked poset to be regular does not change the affine isomorphism type.

Proposition 7.9.1. Contracting constant intervals in (P , λ) yields a strictly marked poset
(P/π , λ/π ) such that Ot ′(P/π , λ/π ) is affinely isomorphic to Ot (P , λ) for all t ∈ [0, 1]P̃ ,
where t ′ is the restriction of t to elements not contained in any non-trivial constant intervals.

Proof. Let (P ′, λ′) be the strictly marked poset obtained from (P , λ) by contracting constant
intervals. Hence, P ′ is obtained from P by taking the quotient under the equivalence

relation generated by a ∼ p and p ∼ b whenever a ≤ b are marked elements such

that λ(a) = λ(b) and a ≤ p ≤ b. The elements of P ′ are either singletons {p} for p not

contained in any non-trivial constant interval or non-trivial blocks B that are unions

of non-trivial constant intervals. All non-trivial blocks B are marked and among the

singletons {p} only those with p ∈ P̃ are unmarked.

By Proposition 6.2.17, we have an affine isomorphism q∗ : O(P ′, λ′) → O(P , λ) in-
duced by the quotient map q : (P , λ) → (P ′, λ′). Now consider the two transfer maps
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φt : O(P , λ) → Ot (P , λ) and φ
′
t ′ : O(P ′, λ′) → Ot ′(P

′
, λ′). When B is a non-trivial block in

P ′—in other words an equivalence class with at least two elements—we have

φt (x)p = (1 − tp)λ
′(B)

for all unmarked p ∈ B and x ∈ O(P , λ). When p is an unmarked element outside of

constant intervals, we have φt (q
∗(x))p = φ

′
t ′(x){p} for all x ∈ O(P ′, λ′) by construction.

Hence, the affine map γ : RP̃
′

→ RP̃ defined by

γ (x)p =

{
(1 − tp)λ

′(B) if p ∈ P̃ ∩ B for a non-trivial block B,

x{p} otherwise

restricts to an affine map Õt ′(P
′
, λ′) → Õt (P , λ), such that the diagram

Õ(P ′, λ′) Õ(P , λ)

Õt ′(P
′
, λ′) Õt (P , λ)

q∗

φ̃ ′
t ′ φ̃t

γ

commutes. Thus, it is an affine isomorphism.

Proposition 7.9.2. If (P , λ) is strictly marked, removing a redundant covering relation
yields a marked poset (P ′, λ) such that Ot (P , λ) = Ot (P

′
, λ) for all t ∈ [0, 1]P̃ .

Proof. Let p ≺ q be a redundant covering relation in P . That is, there are marked elements

a , b satisfying a ≤ q, p ≤ b and λ(a) ≥ λ(b). Let P ′ be obtained from P be removing the

covering relation p ≺ q.
Comparing the transfer maps φt and φ

′
t associated to (P , λ) and (P ′, λ) defined on the

same marked order polyhedron O(P , λ) = O(P ′, λ) by Proposition 6.2.22, we see that they

can only differ in the q-coordinate, which can only happen when q is unmarked. To be

precise,

φt (x)q = xq − tq max

q′≺q
xq′ and φ′t (x)q = xq − tq max

q′≺q
q′,p

xq′ .

Since λ is strict, we can not have a ≤ p. Otherwise we had a < b in contradiction to

λ(a) ≥ λ(b). Hence, when q is unmarked, there is a p′ , p such that a ≤ p′ ≺ q. For all
x ∈ O(P ′, λ) = O(P , λ) we have

xp ′ ≥ λ(a) ≥ λ(b) ≥ xp

and excluding p from the maximum does not change the transfer map at all. We conclude

that

Ot (P
′
, λ) = φ′t (O(P ′, λ)) = φt (O(P , λ)) = Ot (P , λ).

Using the above transformations, we can always replace a marked poset (P , λ) by a

regular marked poset (P ′, λ′) yielding affinely equivalent marked poset polyhedra.
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7.10. Facets and the Hibi–Li Conjecture

In Chapter 6 we have seen that regular marked posets yield a one-to-one correspondence

of covering relations in (P , λ) and facets of O(P , λ). We strongly believe the same regu-

larity condition implies that both the inequalities in Definition 7.1.1 for t ∈ (0, 1)P̃ and

the inequalities in Proposition 7.3.1 for all partitions P̃ = C ⊔ O—i.e., all t ∈ {0, 1}P̃—

correspond to the facets of the described polyhedra. In fact, we can show that the latter

implies the former and the conjecture is true for certain ranked marked posets.

Definition 7.10.1. A marked poset (P , λ) is called tame if the inequalities given in

Proposition 7.3.1 correspond to the facets of OC ,O (P , λ) for all partitions P̃ = C ⊔O .

Conjecture 7.10.22. A marked poset (P , λ) is tame if and only if it is regular.

We know that regularity is a necessary condition for being tame, since otherwise (P , λ)
either contains non-trivial constant intervals and the covering relations in those do not

correspond to facets of O(P , λ) or the marking is strict but there are redundant covering

relations that do not correspond to facets of O(P , λ).
We start by considering marked chain polyhedra. We can show that any chain in (P , λ)

that does not contain redundant covering relations defines a facet of C(P , λ).

Lemma 7.10.3. Let (P , λ) be a marked poset and c : a ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ b be
a saturated chain between elements a,b ∈ P∗ with all pi ∈ P̃ and r ≥ 1. If none of the
covering relations in c are redundant, the inequality

xp1 + · · · + xpr ≤ xb − xa (7.7)

is not redundant in the description of C(P , λ) = OP̃ ,�(P , λ) given in Proposition 7.3.1.

In particular we obtain the following result.

Corollary 7.10.43. Let (P , λ) be regular. The description of the marked chain polyhedron
C(P , λ) = OP̃ ,�(P , λ) given in Proposition 7.3.1 is non-redundant.

Proof of Lemma 7.10.3. Our strategy is as follows. First show that (7.7) can be strictly

satisfied by some point in C(P , λ), so the polyhedron is not contained in the corresponding
hyperplane. Then construct a point x ∈ C(P , λ) such that (7.7) is satisfied with equality

but all other inequalities that can be strictly satisfied by points in C(P , λ) are strictly
satisfied by x . This shows that (7.7) is the only inequality describing a facet with x in its

relative interior.

To see that (7.7) can be strictly satisfied, just take x ∈ RP with xa = λ(a) for a ∈ P∗
and

xp = 0 for p ∈ P̃ . Note that λ(a) < λ(b) since otherwise all covering relations in c would
be redundant.

2
In [FF16, Proposition 4.5], the statement of Conjecture 7.10.2 is given without proof for the case of

admissible partitions and bounded polyhedra. At the time of writing this thesis, no proof of this

statement is known.

3
The result of Corollary 7.10.4 was previously stated without proof in [Fou16, Lemma 1] for bounded

polyhedra.
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For the second step, first linearly order the set of all markings in [λ(a), λ(b)], so that

λ(P∗) ∩ [λ(a), λ(b)] = {λ1, . . . , λk}

with λ(a) = λ1 < · · · < λk = λ(b) and k > 1. For i = 1, . . . ,k − 1 we define the following

sets:

Z↑

i = {p ∈ c : p ≥ d for some d ∈ P∗
with λ(d) ≥ λi+1 } ,

Z↓

i = {p ∈ c : p ≤ e for some e ∈ P∗
with λ(e) ≤ λi } ,

Zi = c \
(
Z↑

i ⊔ Z↓

i

)
.

Note that Z↑

i and Z↓

i are disjoint, since any p in their intersection would give d ≤ p ≤ e
with λ(d) ≥ λi+1 > λi ≥ λ(e) contradicting λ being order-preserving.

For p ∈ Z↑

i all elements of c greater than p are also contained in Z↑

i and for p ∈ Z↓

i

all elements of c less than p are also contained in Z↓

i . Furthermore, we have a ∈ Z↓

i and

b ∈ Z↑

i for all i . Thus, the chain c decomposes into three connected subchains Z↓

i , Zi , Z
↑

i .

We claim that the middle part Zi is always non-empty as well. Otherwise, the chain c

contains a covering relation p ≺ q with p ∈ Z↓

i and q ∈ Z↑

i and hence we had d , e ∈ P∗

with e ≥ p ≺ q ≥ d and λ(e) ≤ λi < λi+1 ≤ λ(d) so that p ≺ q is redundant.

We also claim that each pj ∈ c is contained in at least one of the Zi . Since a ≤ pj , we
can choose i0 ∈ [k] maximal such that pj ≥ d for some d with λ(d) ≥ λi0 . In the same

fashion, choose i1 ∈ [k] minimal such that pj ≤ e for some e with λ(e) ≤ λi1 . We have

i0 < i1, since otherwise there are d ≤ pj ≤ e with λ(d) ≥ λ(e), either rendering λ non

order-preserving or any covering relation above or below pj redundant. We conclude

that pj ∈ Zi for i = i0, . . . , i1 − 1.

Define a point x ∈ RP by letting xa = λ(a) for all a ∈ P∗
and for p ∈ P̃ :

xp =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

i=1,...,k−1,
p∈Zi

λi+1 − λi
|Zi |

for p ∈ c and

ε for p ∈ P̃ \ c,

where ε > 0 is small enough to satisfy the finitely many constraints in the rest of this

proof. Note that all |Zi | > 0 since the Zi are non-empty and all xp > 0 for p ∈ P̃ since

each pj ∈ c is contained in at least one of the Zi .

The inequality given by c is satisfied with equality, since

r∑
j=1

xpj =
r∑
j=1

∑
i=1,...,k−1,

pj∈Zi

λi+1 − λi
|Zi |

=

k−1∑
i=1

∑
j=1,...,r
pj∈Zi

λi+1 − λi
|Zi |

=

k−1∑
i=1

(λi+1 − λi) = λk − λ1 = xb − xa .
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Now consider any chain d : a′ ≺ q1 ≺ · · · ≺ qs ≺ b′ different from c. We have to show

that the inequality

xq1 + · · · + xqs ≤ xb ′ − xa′ (7.8)

either can not be strictly satisfied by any point in C(P , λ) or is strictly satisfied by x .
If λ(a′) = λ(b′) the inequality can never be satisfied strictly by points in C(P , λ). If

λ(a′) < λ(b′) we have

s∑
j=1

xqj =
∑
q∈d̃

xq = ε
�� d̃ \ c̃ �� + ∑

q∈d̃∩c̃

∑
i=1,...,k−1,

q∈Zi

λi+1 − λi
|Zi |

, (7.9)

where c̃ and d̃ denote the unmarked parts of c and d, respectively.

Let S denote the double sum in (7.9) and consider the following cases:

i) We have λ(a) < λ(a′) < λ(b′) < λ(b). Let 1 < i0 < i1 < k be the indices such that

λi0 = λ(a
′), λi1 = λ(b

′). Note that all elements of d̃ are above a′ with λ(a′) = λi0 so

d̃ ∩ c̃ ⊆ Z↑

i0−1
and we have d̃ ∩ Zi = � for i < i0. By the same reasoning d̃ ∩ Zi = �

for i ≥ i1. Hence, we have

S =
∑
q∈d̃∩c̃

∑
i=i0,...,i1−1,

q∈Zi

λi+1 − λi
|Zi |

≤ λ(b′) − λ(a′),

with equality achieved if and only if Zi ⊆ d̃ for i = i0, . . . , i1 − 1.

Let p ∈ c̃ be maximal such that p ∈ Zi1−1. Then there is a covering relation p ≺ q

in c with q ∈ Z↑

i1−1
. We have p < d, since otherwise p < b′ and q > d for some

d with λ(d) ≥ λi1 = λ(b), rendering p ≺ q redundant. Hence, p ∈ Zi1−1 \ d̃ and

S < λ(b′) − λ(a′).

We conclude that (7.8) is strictly satisfied for small enough ε .

ii) We have λ(a′) < λ(b′) ≤ λ(a) or λ(b) ≤ λ(a′) < λ(b′). In this case we have d ⊆ Z↓

i

for all i or d ⊆ Z↑

i for all i , respectively, so that S = 0. Choosing ε small enough

yields strict inequality in (7.8).

iii) We have λ(a) < λ(a′) < λ(b) ≤ λ(b′) or λ(a′) ≤ λ(a) < λ(b′) < λ(b). By reasoning

similar to item i) we have S < λ(b) − λ(a′) or S < λ(b′) − λ(a), respectively. In both

cases S < λ(b′) − λ(a′) and choosing ε small enough yields strict inequality in (7.8).

iv) We have λ(a′) ≤ λ(a) < λ(b) ≤ λ(b′). In case d̃ ∩ c̃ = c̃ we have λ(a′) < λ(a)
and λ(b) < λ(b′) since otherwise the covering relation a ≺ p1 or pk ≺ b would be

redundant. Hence∑
q∈d̃

xq = ε
�� d̃ \ c̃ �� + (λ(b) − λ(a)) < λ(b′) − λ(a′)
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for ε small enough.

In case d̃ ∩ c̃ , c̃, at least one summand is missing in S to achieve λ(b) − λ(a) since
each p ∈ c̃ is in at least one of the Zi . Thus, S < λ(b) − λ(a) and we may choose ε
small enough to obtain∑

q∈d̃

xq < λ(b) − λ(a) ≤ λ(b′) − λ(a′).

In all cases (7.8) is satisfied by x with strict inequality and we conclude that (7.7) is not

redundant in the description of C(P , λ) given in Proposition 7.3.1.

For ranked marked posets, we can use Lemma 7.10.3 to show that Conjecture 7.10.2

holds.

Definition 7.10.5. A marked poset (P , λ) is called ranked if there exists a rank function
rk : P → Z satisfying

i) rkp + 1 = rkq for all p,q ∈ P with p ≺ q,
ii) λ(a) < λ(b) for all a,b ∈ P∗

with rka < rkb.

Note that the rank function of a ranked marked poset is uniquely determined up to a

constant on each connected component.

Proposition 7.10.6. Let (P , λ) be regular and ranked, then (P , λ) is tame.

Proof. Let rk : P → Z be a rank function such that min{rkp : p ∈ P} = 0 and let

r = max{rkp : p ∈ P}. Since λ(a) < λ(b) for marked elements with rka < rkb, we can
choose real numbers ξ0 < ξ1 < · · · < ξr+1 such that λ(a) ∈ (ξi , ξi+1) for a ∈ P∗

with

rka = i .
Let P̃ = C ⊔O be any partition. All inequalities 0 ≤ xp for p ∈ C are non-redundant in

the description ofOC ,O (P , λ) given in Proposition 7.3.1. To see this, take any x ∈ OC ,O (P , λ)
and let x′ ∈ RP be given by x′q = xq for q , p and xp = −1.

Now consider any chain c : a ≺ p1 ≺ · · · ≺ pr ≺ b with a,b ∈ P∗ ⊔O and all pi ∈ P̃ . If
r = 0, we have to show that xa ≤ xb is a non-redundant inequality provided at least one

of a and b is not marked. For this, define x ∈ OC ,O (P , λ) by

xp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(p) for p ∈ P∗
,

ξrkp for p ∈ O \ {a,b} with rkp ≤ rka,

ξrkp+1 for p ∈ O \ {a,b} with rkp ≥ rkb,

ξrkb for p ∈ {a,b} if a,b ∈ O ,

λ(a) for p ∈ {a,b} if a < O ,

λ(b) for p ∈ {a,b} if b < O ,

mini{ξi+1 − ξi} for p ∈ C .

Using the fact that (P , λ) is ranked it is routine to check that x satisfies all inequalities of

Proposition 7.3.1 strictly except for xa ≤ xb .
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Now consider the case where r ≥ 1. The idea is to extend the marking λ to a marking

λ′ defined on P∗ ⊔O such that (P , λ′) has no redundant covering relations in c. We then

have OC ,O (P , λ) ∩ U = C(P , λ′) with U given by xp = λ′(p) for p ∈ O . Note that the

description of C(P , λ′) in Proposition 7.3.1 is exactly the description given for OC ,O (P , λ)
in Proposition 7.3.1 with the additional equations xp = λ

′(p) for p ∈ O . In the description

of C(P , λ′) the inequality given by c is not redundant by Lemma 7.10.3 and hence the

same inequality is not redundant in the description of OC ,O (P , λ) ∩U . Thus, it can not be

redundant in the description of OC ,O (P , λ) itself either.
It remains to construct the extended marking λ′. Let λ′(p) = λ(p) for p ∈ P∗

and for

p ∈ O with rkp = i choose

λ′(p) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξi , ξi+1) for i < {rka, rkb},

(max {ξi , max{λ(d) : rkd = i}} , ξi+1) for p = a if a ∈ O ,

(ξi , min {ξi+1, min{λ(d) : rkd = i}}) for p = b if b ∈ O ,

(ξi , λ
′(a)) for i = rka, p , a,

(λ′(b), ξi+1) for i = rkb, p , b.

The appearing open intervals are all non-empty so these choices are possible. Given any

such λ′, we still have λ′(d) ∈ (ξi , ξi+1) when rkd = i , so (P , λ′) is still a ranked marked

poset. Let us verify that c contains no redundant covering relation with respect to (P , λ′).

i) The covering relation a ≺ p1 is non-redundant since λ
′(d) < λ′(a) for all marked

elements d ≤ p1, d , a.
ii) The covering relation pr ≺ b is non-redundant since λ′(d) > λ′(b) for all marked

elements d ≥ pr , d , b.
iii) All covering relations pj ≺ pj+1 are non-redundant since (P , λ) is ranked.

Hence, we can apply Lemma 7.10.3 to C(P , λ′) and obtain the desired result.

Remark 7.10.7. In light of the proof of Proposition 7.10.6, a possible strategy to prove

Conjecture 7.10.2 in general would be to extend markings such that along a given chain

the covering relations stay non-redundant. However, we did not succeed in doing this

for arbitrary (non-ranked) marked posets.

Remark 7.10.8. The marked posets relevant in representation theory appearing in

[ABS11; BD15] are all ranked and regular after applying the transformations of Section 7.9

if necessary. Hence, they are tame and Proposition 7.3.1 gives non-redundant descriptions

for all associated marked chain-order polyhedra.

At the beginning of this chapter, we mentioned that (P , λ) being tame also implies

the description given for generic marked poset polyhedra Ot (P , λ) in Definition 7.1.1 is

non-redundant.

Proposition 7.10.9. Let (P , λ) be a tame marked poset. The description of any generic
marked poset polyhedron Ot (P , λ) for t ∈ (0, 1)P̃ given in Definition 7.1.1 is non-redundant.

94



7.10. Facets and the Hibi–Li Conjecture

Proof. The way we will prove non-redundance of the description in Definition 7.1.1 is

to reconsider the proof of Proposition 7.3.1. We have seen that picking a parameter

u = χC ∈ {0, 1}P̃ for a partition P̃ = C ⊔O we obtain the description in Proposition 7.3.1

but there might be multiple chains as in Definition 7.1.1 such that (7.1) degenerates

to the same inequality listed in Proposition 7.3.1. Since we know the description in

Proposition 7.3.1 is non-redundant for tame marked posets, we can do the following:

take a chain c giving an inequality for Ot (P , λ) as in Definition 7.1.1 and construct a

partition P̃ = C ⊔ O such that no other chain yields the same inequality as c for the

marked chain-order polyhedron OC ,O (P , λ). Knowing that the description of OC ,O (P , λ) is
non-redundant we conclude that c can not be omitted in the description of Ot (P , λ) either
whenever u = χC is a degeneration of t , in particular when t ∈ (0, 1)P̃ .

Consider any chain c : p0 ≺ p1 ≺ p2 ≺ · · · ≺ pr ≺ p with p0 ∈ P∗
, pi ∈ P̃ for i ≥ 1, p ∈ P

and r ≥ 0. Let C = {p1, . . . ,pr }, O = P̃ \ (P∗ ⊔C) and note that p ∈ P∗ ⊔O . Since p0 ∈ P∗

and p < C , no other chain gives the same inequality in the proof of Proposition 7.3.1.

We finish this chapter with a discussion of the Hibi–Li conjecture already mentioned in

Chapter 1 as Conjecture 1.2.4 for ordinary poset polytopes. For marked order and chain

polytopes as well as admissible marked chain-order polytopes an analogous conjecture

was stated in [Fou16; FF16]. Let us state the conjecture in full generality here—for possibly

unbounded marked chain-order polyhedra with arbitrary partitions P̃ = C ⊔ O—and
report on what can be said about the conjecture from the above discussion.

Conjecture 7.10.10. Let (P , λ) be a marked poset with all minimal elements marked.
Given partitions P̃ = C ⊔O and P̃ = C′ ⊔O′ such that C ⊆ C′, we have

fi
(
OC ,O (P , λ)

)
≤ fi

(
OC ′

,O ′(P , λ)
)

for all i ∈ N.

This refined version of the conjecture was stated in case of admissible partitions and

bounded polyhedra by Fang and Fourier in [FF16]. It is clear, that it is enough to consider

only the caseC′ = C ⊔{q} for some q ∈ O and by the results of Section 7.9 we can assume

(P , λ) is regular. When q is not a chain-order star element, we know that OC ,O (P , λ) and
OC ′

,O ′(P , λ) are unimodular equivalent by Proposition 7.4.5 and hence their f -vectors are
identical. In fact, the statement of Proposition 7.4.5 is a necessary and sufficient condition

for unimodular equivalence for tame marked posets and we can count facets to show

Conjecture 7.10.10 holds for tame marked posets in codimension 1:

Proposition 7.10.11. Let (P , λ) be a tame marked poset and P̃ = C ⊔ O any partition.
Given q ∈ O let C′ = C ⊔ {q} and O′ = O \ {q}, then OC ,O (P , λ) and OC ′

,O ′(P , λ) are
unimodular equivalent if and only if q is not a chain-order star element. Otherwise, the
number of facets increases by

(k − 1)(l − 1),

where k is the number of saturated chains s ≺ q1 ≺ · · · ≺ qk ≺ q with s ∈ P∗ ⊔ O and
all qi ∈ C and l is the number of saturated chains q ≺ q1 ≺ · · · ≺ qk ≺ s with s ∈ P∗ ⊔O
and all qi ∈ C .
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Proof. If q is not a chain-order star element, the polyhedra are unimodular equivalent

by Proposition 7.4.5. For a tame marked poset, the number of facets of OC ,O (P , λ) is the
number of inequalities in Proposition 7.3.1, and hence equal to

|C | + |{ a ≺ p1 ≺ · · · ≺ pr ≺ b | r ≥ 0,a,b ∈ P∗ ⊔O ,pi ∈ C }| .

Changing an order element q to be a chain element, the first summand increases by 1,

while in the second summand the k + l chains ending or starting in q are replaced by the

kl chains now going through q. Hence, the number of facets increases by

1 − (k + l) + kl = (k − 1)(l − 1).

If Conjecture 7.10.2 holds, we can conclude that the Hibi–Li conjecture as formulated

in Conjecture 7.10.10 holds in codimension 1. For smaller dimensions, we have a common

bound on all f -vectors of marked chain-order polyhedra associated to a marked poset

(P , λ) by the f -vector of the generic marked poset polyhedron obtained from Corol-

lary 7.7.10. Unfortunately, this does not help for obtaining a comparison as in the Hibi–Li

conjecture.
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8. Distributive and Anti-Blocking

Polyhedra

In this chapter we aim to generalize the concept of piecewise-linear transfer maps to

a larger class of polyhedra. The results of this chapter are joint work in progress with

Raman Sanyal and will also appear in [PS17].

Motivated by the work of Felsner and Knauer in [FK11], we replace marked order

polyhedra by so called distributive polyhedra. A polyhedron Q ⊆ Rn is called distributive

if the set of points in Q forms a distributive lattice with respect to the dominance order
given by x ≤ y if and only if xi ≤ yi for i = 1, . . . ,n. An equivalent definition is that

whenever x ,y ∈ Q , the component-wise minimum min(x ,y) and maximum max(x ,y) are
contained in Q as well. The reason distributive polyhedra are good candidates to replace

marked order polyhedra is that by the characterization given in [FK11], a polyhedron

Q ⊆ Rn is distributive if and only if it can be defined using only inequalities xi ≤ αxj + c
for α , c ∈ R, α ≥ 0. Hence, their describing inequalities can be encoded in a directed

graph with nodes [n] and an edge from i to j with two weights α , c for each defining

inequality xi ≤ αxj + c .
The order polytopes of Chapter 1 and the marked order polyhedra of Chapter 5 are

distributive and the associated directed graph is essentially the Hasse diagram of P with

markings replaced by weighted loops. To generalize the transfer map O(P , λ) → C(P , λ),
note that the term maxq≺p xq for some p ∈ P̃ may as well be described as the maximum

over all left hand sides of inequalities · · · ≤ xp describing O(P , λ). Hence, we can describe

the transfer map geometrically by noting

φ(x)p = xp −max

q≺p
xq = max{µ ≥ 0 : x − µep ∈ O(P , λ)}.

Since this description does not depend on the poset structure at all, we may just do the

same for any polyhedron Q ⊆ Rn and define a “transfer map” φ : Q → Rn by

φ(x)i = max{µ ≥ 0 : x − µei ∈ Q},

assuming that each xi appears on the right hand side of some inequality. In case of

P = Õ(P , λ)—the marked order polyhedron projected to RP̃—this is exactly the transfer

map to the projected marked chain polyhedron C̃(P , λ). In general, it is not clear whether

φ is injective or even whether the image is still a polyhedron.

Wewill show in this chapter that for a large class of distributive polyhedra, we do get an

injective piecewise-linear map with image a polyhedron, hence generalizing the transfer

maps of marked order polyhedra. The images φ(P) will be anti-blocking polyhedra as
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8. Distributive and Anti-Blocking Polyhedra

introduced by Fulkerson in [Ful71]. A polyhedron Q ⊆ Rn is called anti-blocking, if its

defining inequalities are xi ≥ 0 for i = 1, . . . ,n together with inequalities of the form

a1x1 + · · · + anxn ≤ 1 where all ai ≥ 0. Equivalently, Q is contained in the non-negative

orthant Rn
≥0

and whenever x ∈ Q and y ∈ Rn
≥0

with y ≤ x with respect to the dominance

order, then y ∈ Q as well.

8.1. Distributive Polyhedra and Marked Networks

We start by defining the underlying data of the distributive polyhedra we are considering.

Definition 8.1.1. A marked network Γ = (V ,E,α , c , λ) consists of

i) a finite set of nodes V ,

ii) a finite set of directed edges E with source s(e) ∈ V and target t(e) ∈ V such that

s(e) , t(e) for all e ∈ E,
iii) a positive edge weight α : E → R>0,
iv) a real edge weight c : E → R,
v) a marking λ : V ∗ → R on a subset V ∗ ⊆ V of marked nodes.

Note that different edges may have the same source and destination, so we are describ-

ing a loop-free directed multigraph equipped with two edge weights and a real marking

of a subset of its nodes. We will denote an edge e ∈ E such that s(e) = v and t(e) = w by

v e
−→ w . Analogous to marked posets, we denote the set of unmarked nodes by Ṽ = V \V ∗

.

To each such network we associate a distributive polyhedron.

Definition 8.1.2. Let Γ = (V ,E,α , c , λ) be amarked network. The distributive polyhedron

D(Γ) is the set of all x ∈ RV such that αexw + ce ≤ xv for each edge v e
−→ w and xa = λ(a)

for each marked node a ∈ V ∗
.

Since the coordinates in V ∗
are fixed, it is sometimes convenient to consider the

projection D̃(Γ) in RṼ instead. We will denote by πṼ the projection RV → RṼ and by ιλ
the embedding RṼ → RV such that ιλ(x)a = λ(a) for all a ∈ V ∗

. Using this notation, we

have D̃(Γ) = πṼ (D(Γ)) and D(Γ) = ιλ
(
D̃(Γ)

)
.

Note that every distributive polyhedron P ⊆ Rn is given as P = D̃(Γ) by some marked

network Γ with Ṽ = [n] by the Felsner–Knauer characterization. The difference between

our marked networks and the networks used in [FK11] is that instead of allowing loops

with α ∈ {0, 2} to obtain inequalities involving only one variable we have marked nodes,

no loops and require α > 0. Furthermore, the weights α are reciprocal to those in [FK11].
1

For a marked poset (P , λ), let Γ(P , λ) be given by the Hasse diagram of P with trivial

weights and marking λ. To be precise, Γ(P , λ) is given by V = P , an edge ep,q from p
to q with weights αep ,q = 1 and cep ,q = 0 for every covering relation q ≺ p and the

marking is just λ. Note that in the usual way to draw Hasse diagrams, our edges are now

pointing to the bottom. Comparing Definitions 6.1.1 and 8.1.2 we see that the marked

order polyhedron O(P , λ) is exactly the distributive polyhedron D(Γ(P , λ)).

1
The reason for choosing a different convention of underlying networks in comparison to [FK11] is that

loops would interfere with our definition of the transfer map and we want to have terminology closer

to that of marked poset polyhedra.
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0

wv
2,−2

2,−2

(a) a network Γ

xv

xw

x

1

1

(b) the polytope D̃(Γ)

xv

xw

φ̃(x)
1

1

(c) the image φ̃
(
D̃(Γ)

)
Figure 8.1.: The marked network Γ of Example 8.2.2 with the associated distributive

polytope and its “folded” image under the non-injective transfer map.

8.2. Transfer Maps and Failure of Injectivity

We are now ready to define transfer maps for distributive polyhedra whose underlying

marked networks have at least all sinks marked. As usual, by a sink we mean a node

v ∈ V such that no edge in E has source v .

Definition 8.2.1. Let Γ = (V ,E,α , c , λ) be a marked network with at least all sinks

marked. Define the transfer map φ : RV → RV by

φ(x)v =

{
xv if v ∈ V ∗

,

xv −max
v

e
→w

(αexw + ce) otherwise.

Furthermore, let φ̃ : RṼ → RṼ be given by φ̃ = πṼ ◦ φ ◦ ιλ.

Unfortunately, transfer maps given by marked networks are not always injective.

When Γ is acyclic, we can show injectivity similar to the injectivity of transfer maps in

the continuous family of marked poset polyhedra. However, when Γ contains cycles, the

behavior of the transfer map becomes more delicate.

In the following we will depict an edge v e
−→ w with weights αe and ce as

v w
αe ,ce

,

where blue labels are node names. Marked nodes are drawn as squares with red labels

and when edge weights are omitted, we always assume αe = 1 and ce = 0.

Example 8.2.2. Let Γ be the marked network depicted in Figure 8.1a. The distributive

polyhedron D̃(Γ) is a kite given by the inequalities 0 ≤ xv , 0 ≤ xw , 2xv − 2 ≤ xw and

2xw − 2 ≤ xv as shown in Figure 8.1b. The transfer map for this network is given on RṼ

by

φ̃

(
xv
xw

)
=

(
xv −max{0, 2xw − 2}

xw −max{0, 2xv − 2}

)
.
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2

v w

1

2
,0

1,−1

1

2
,0

(a) a network Γ

xv

xw

1

1

(b) the polytope D̃(Γ)

xv

xw

1

1

(c) the image φ̃
(
D̃(Γ)

)
Figure 8.2.: The marked network Γ of Example 8.2.3 with the associated distributive

polytope and its injective image under the transfer map.

It is not injective on D̃(Γ) as for example the vertices (0, 0) and (2, 2) both get mapped to

the origin. In fact, the map is 2-to-1 and “folds” the polytope along the thick blue line in

Figure 8.1b. The dashed lines in the lower left half stay fixed under the transfer map and

have the same image as the dashed lines in the upper right half. The geometric behavior

of the transfer map mentioned in the introduction is shown for some x ∈ D̃(Γ) using
dotted lines. Given x ∈ D̃(Γ) the transfer map measures how far we can shift x in each

direction −ev for v ∈ Ṽ while still staying inside D̃(Γ). ♢

Example 8.2.3. Let Γ be the marked network depicted in Figure 8.2a. The distributive

polyhedron D̃(Γ) is a quadrilateral given by the inequalities
1

2
xv ≤ xw ,

1

2
xw ≤ xv ,

xw − 1 ≤ xv and xv ≤ 2 as shown in Figure 8.2b. The transfer map for this network is

given on RṼ by

φ̃

(
xv
xw

)
=

(
xv −max{ 1

2
xw ,xw − 1}

xw − 1

2
xv

)
.

In this example, the transfer map is injective and maps D̃(Γ) to the anti-blocking polytope
depicted in Figure 8.2c. The dashed line divides D̃(Γ) into the two linearity regions of

the transfer map. We will come back to this example in Section 8.3.2 after constructing

inverse transfer maps and describing the inequalities for φ(D(Γ)). ♢

As we have seen in Examples 8.2.2 and 8.2.3, some cyclic networks lead to injective

transfer maps while others do not. The important difference in the two examples is the

product of weights along the cycles.

Definition 8.2.4. Let Γ = (V ,E,α , c , λ) be a marked network. A finite walk in Γ is a

finite alternating sequence of nodes and edges (v1, e1,v2, e2, · · · ,vr , er ,vr+1) starting and

ending with a node such that vi
ei−→ vi+1 for i = 1, . . . , r . We usually denote a finite walk

by

γ : v1
e1
−→ v2

e2
−→ · · ·

er
−→ vr+1.
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The length of γ is given by |γ | = r and its weight is defined as the product over the edge

weights αe , that is,

αγ =
r∏
i=1

αei .

If vr+1 = v1, we call γ a cycle. Following [FK11] a cycle γ is called lossy if αγ < 1, gainy
if αγ > 1 and breakeven if αγ = 1. We call a cycle elementary if apart from v1 = vr+1 no
node is visited by γ twice.

In the following section, we will show that the observation made in Examples 8.2.2

and 8.2.3 is true in general: when Γ contains only lossy cycles, the transfer map is injective.

8.3. Lossy Cycles and Infinite Walks

Throughout this section we assume that Γ = (V ,E,α , c , λ) is a marked network such that

every sink is marked and every cycle is lossy. Our goal is to construct an inverse to the

transfer map φ defined in Definition 8.2.1 and show that the projection of φ(D(Γ)) to RṼ

is an anti-blocking polyhedron by giving explicit inequalities determined by walks in Γ.
If wewant tomimic the recursive definition of the inverse transfer map in Theorem 7.2.1

or the closed form in Remark 7.2.2, a cyclic network brings new challenges: the recursion

does not terminate for cyclic networks, while the closed form might have to involve

infinite walks and hence infinite series. Inspecting the proof of Theorem 7.2.1, we see

that the appearing chains are those obtained by starting at an unmarked element and

walking down in the Hasse diagram of P along covering relations until ending up at some

marked element. If we start at an unmarked node in a cyclic network and walk along

edges we either end up at a marked element after finitely many steps or continue visiting

unmarked elements indefinitely. Thus, we define a possibly infinite set of walks in Γ.

Definition 8.3.1. To Γ associate the set of walksW consisting of finite walks

v1
e1
−→ v2

e2
−→ · · ·

er
−→ vr+1 with vi ∈ Ṽ for i ≤ r and vr+1 ∈ V ∗

, (8.1)

as well as infinite walks

v1
e1
−→ v2

e2
−→ v3

e3
−→ · · · with all vi ∈ Ṽ . (8.2)

We also include finite walks with r = 0 inW, i.e., for all marked a ∈ V ∗
we have (a) ∈ W.

Given a walk γ ∈ W starting in v and an edge w e
−→ v from an unmarked element

w ∈ Ṽ , denote byw e
−→ γ the walk inW obtained from γ by prepending the edge e .

In order to define the inverse transfer map, we want to associate to each walk γ ∈ W

an affine linear form Σ(γ ) on RV such that the following properties are satisfied:

(I) Σ(a)(x) = xa for all a ∈ V ∗
,

(II) Σ(v e
−→ γ )(x) = αeΣ(γ )(x)+ (xv + ce) for all γ ∈ W and e ∈ E such thatv e

−→ γ ∈ W.
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Figure 8.3.: The decomposition of a finite walk into an acyclic walk and elementary cycles

used in the proof of Proposition 8.3.2.

To achieve this, we need the following statement on convergence of infinite series.

Proposition 8.3.2. Let γ ∈ W be an infinite walk as in (8.2). The infinite series

∞∑
k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
absolutely converges for all x ∈ RV .

Proof. Since Γ has only finitely many vertices and edges, we have

��xvk + cek �� ≤ M for

M = maxv∈V ,e∈E (|xv | + |ce |). Therefore, it is enough to show absolute convergence of∑∞
k=1

∏k−1
j=1 αej . Using the root test, it is sufficient to show that

lim sup

k→∞

(
k∏
j=1

αej

) 1

k

< 1.

Since Γ is finite, there are only finitely many acyclic walks and elementary cycles and

we may define

a = max

{
α
1/|γ |
γ : γ is an elementary cycle

}
, and

b = max

{
α
1/|γ |
γ : γ is an acyclic walk

}
.

Now fix some k ∈ N and consider the finite walk

γ (k) : v1
e1
−→ v2

e2
−→ · · ·

ek
−→ vk+1

We may decompose γ (k) into an acyclic walk from v1 to vk+1 and finitely many ele-

mentary cycles as depicted in Figure 8.3. If the acyclic component has t ≤ k edges there

are k − t edges in the elementary cycles in total and we obtain

αγ (k ) =
k∏
j=1

αej ≤ ak−tbt =

(
b

a

)t
ak .
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Let ℓ ∈ N be the maximal length of an acyclic walk in Γ and set c = max {b/a, 1} to
obtain (

k∏
j=1

αej

) 1

k

≤

(
cℓak

) 1

k
= c

ℓ
k a

k→∞
−−−−→ a.

Since all cycles in Γ are lossy by assumption, we have a < 1, finishing the proof.

Using Proposition 8.3.2, we can define the desired linear forms.

Definition 8.3.3. For γ ∈ W define an affine linear form Σ(γ ) : RV → R as follows. If γ
is a finite walk as in (8.1), let

Σ(γ )(x) =
r∑

k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
+

(
r∏
j=1

αej

)
xvr+1 .

If γ is an infinite walk as in (8.2), let

Σ(γ )(x) =
∞∑
k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
.

By construction, the defined linear forms satisfy the properties (I) and (II). Indeed, the

properties (I) and (II) uniquely determine the linear forms Σ(γ ) given the convergence in

Proposition 8.3.2.

Proposition 8.3.4. For any x ∈ RV we have supγ∈W Σ(γ )(x) < ∞.

Proof. Let the constants M ,a,b, c ∈ R and ℓ ∈ N be given as in the proof of Proposi-

tion 8.3.2. For finite walks γ ∈ W as in (8.1), we have

Σ(γ )(x) =
r∑

k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
+

(
r∏
j=1

αej

)
xvr+1 ≤ M

r+1∑
k=1

cℓak−1 ≤
Mcℓ

1 − a
.

Likewise, for infinite walks as in (8.2), we have

Σ(γ )(x) =
∞∑
k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
≤ M

∞∑
k=1

cℓak−1 =
Mcℓ

1 − a
.

8.3.1. The Inverse Transfer Map

We are now ready to obtain an inverse to the transfer map φ. For v ∈ Ṽ denote byWv

the set of all walks γ ∈ W starting in v .

Theorem 8.3.5. The transfer map φ : RV → RV is a piecewise-linear bijection with inverse
ψ : RV → RV given by

ψ (y)v = sup

γ∈Wv

Σ(γ )(y).

Furthermore, the inverse of φ̃ = πṼ ◦ φ ◦ ιλ is given by ψ̃ = πṼ ◦ψ ◦ ιλ.
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Since part of the proof of Theorem 8.3.5 will be relevant when we give a description of

φ(D(Γ)) below, we provide the following lemma first.

Lemma 8.3.6. For any x ∈ RV and v ∈ V we have

sup

γ∈Wv

Σ(γ )(φ(x)) ≤ xv .

Proof. Let y = φ(x) for x ∈ RV . For a finite walk γ ∈ W as in (8.1) starting in v1 = v , we
have

Σ(γ )(y) =
r∑

k=1

(
k−1∏
j=1

αej

) (
yvk + cek

)
+

(
r∏
j=1

αej

)
yvr+1

=

r∑
k=1

(
k−1∏
j=1

αej

) (
xvk − max

vk
e
→w

(αexw + ce) + cek

)
+

(
r∏
j=1

αej

)
xvr+1

≤

r∑
k=1

(
k−1∏
j=1

αej

) (
xvk − αekxvk+1

)
+

(
r∏
j=1

αej

)
xvr+1

= xv1 = xv .

For an infinite walk as in (8.2) starting in v1 = v , we have

Σ(γ )(y) =
∞∑
k=1

(
k−1∏
j=1

αej

) (
yvk + cek

)
≤

∞∑
k=1

(
k−1∏
j=1

αej

) (
xvk − αekxvk+1

)
= xv1 = xv .

Proof of Theorem 8.3.5. For marked a ∈ V ∗
the only walk inWa is the trivial walk a with

Σ(a)(y) = ya by property (I), so thatψ (y)a = ya . For unmarked v ∈ W̃ , all walks γ ∈ Wv

are of them form v e
−→ γ ′ for an edge v e

−→ w and γ ′ ∈ Ww . Hence, by the recursive

property (II) we have

Σ(γ )(y) = αeΣ(γ
′)(y) + (yv + ce).

We conclude thatψ satisfies the recursion

ψ (y)v = yv +max

v
e
→w

(
αeψy(w) + ce

)
for all v ∈ Ṽ .

Comparing this to the definition of φ, we see that φ ◦ψ is the identity on RV .
Regarding the compositionψ ◦ φ, first note thatψ (φ(x))a = xa for all marked a ∈ V ∗

andψ (φ(x))v ≤ xv for all v ∈ Ṽ by Lemma 8.3.6. Hence, to show thatψ (φ(x))v = xv for
v ∈ Ṽ , it is enough to construct a walk γ ∈ Wv such that Σ(γ )(φ(x)) ≥ xv . Let v1 = v
and successively pick an edge vk

ek−→ vk+1 such that

αekxvk+1 + cek = max

vk
e
→w

(αexw + ce) ,
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8.3. Lossy Cycles and Infinite Walks

vs

vs+1

vs+2vr−1

vr
es

es+1

es+2er−2

er−1

er

vs−1vs−2v2v1 eses−1es−2e2e1

Figure 8.4.: A monocycle. Note that the visible nodes are pairwise distinct.

until either vk+1 is marked or vk+1 already appeared in {v1, . . . ,vk}.
In the first case we constructed a finite walk γ ∈ Wv as in (8.1) satisfying

Σ(γ )(φ(x)) =
r∑

k=1

(
k−1∏
j=1

αej

) (
φ(x)vk + cek

)
+

(
r∏
j=1

αej

)
φ(x)vr+1

=

r∑
k=1

(
k−1∏
j=1

αej

) (
xvk − αekxvk+1

)
+

(
r∏
j=1

αej

)
xvr+1 = xv1 = xv .

In the second case, we ended at an unmarked element vr+1 = vs for s ≤ r . This yields
an infinite walk γ ∈ Wv of the form

v1
e1
−→ · · ·

es−1
−−−→ vs

es
−→ · · ·

vr−1
−−−→ er

er
−→ vs

es
−→ · · ·

vr−1
−−−→ er

er
−→ vs

es
−→ · · · (8.3)

That is, γ walks from v1 to vs and then infinitely often runs through the cycle

vs
es
−→ vs+1

es+1
−−−→ · · ·

vr−1
−−−→ er

er
−→ vs .

Treating indices k > r accordingly, we obtain

Σ(γ )(φ(x)) =
∞∑
k=1

(
k−1∏
j=1

αej

) (
φ(x)vk + cek

)
=

∞∑
k=1

(
k−1∏
j=1

αej

) (
xvk − αekxvk+1

)
= xv1 = xv .

In both cases Σ(γ )(φ(x)) = xv and we obtain ψ (φ(x))v = xv as desired. We conclude

that φ andψ are mutually inverse piecewise-linear self-maps of RV .

Inspecting the proof of Theorem 8.3.5, we see that only a finite subset ofW is necessary

to define ψ . Namely, the acyclic finite walks with only the last node marked and the

infinite walks that keep repeating an elementary cycle after a finite number of steps

as in (8.3). We will refer to walks of the latter kind as monocycles. A more suggestive

illustration of a monocycle can be found in Figure 8.4.
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8. Distributive and Anti-Blocking Polyhedra

Definition 8.3.7. Let Ŵ ⊆ W be the subset of walks γ ∈ W such that γ is either a

finite acyclic walk or a monocycle as in (8.3) with pairwise distinct v1, . . . ,vr . For v ∈ V ,

Denote by Ŵv = Ŵ ∩Wv the set of walks in Ŵ starting in v .

Corollary 8.3.8. The inverse transfer map ψ : RV → RV is given by

ψ (y)v = max

γ∈Ŵv

Σ(γ )(y).

Since some of the γ ∈ Ŵv appearing in this description of the inverse transfer map

might be monocycles, we want to give a finite expression for the linear form Σ(γ ) that is
originally defined using an infinite series.

Proposition 8.3.9. Let γ ∈ Ŵ be a monocycle in Γ, i.e.,

γ : v1
e1
−→ · · ·

es−1
−−−→ vs

es
−→ · · ·

vr−1
−−−→ er

er
−→ vs

es
−→ · · ·

vr−1
−−−→ er

er
−→ vs

es
−→ · · ·

with vi ∈ Ṽ for all i ∈ N. Decompose γ into its acyclic beginning ρ and the repeating
cycle δ , that is,

ρ : v1
e1
−→ · · ·

es−1
−−−→ vs ,

δ : vs
es
−→ · · ·

vr−1
−−−→ er

er
−→ vs .

Then for all x ∈ RV we have

Σ(γ )(x) =
s−1∑
k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
+

αρ

1 − αδ

r∑
k=s

(
k−1∏
j=s

αej

) (
xvk + cek

)
.

Proof. The infinite series in Definition 8.3.3 yields that Σ(γ )(x) is equal to

s−1∑
k=1

(
k−1∏
j=1

αej

) (
xvk + cek

)
+ αρ

∞∑
l=0

[
α lδ

r∑
k=s

(
k−1∏
j=s

αej

) (
xvk + cek

) ]
. (8.4)

Since all cycles in Γ are lossy, we have αδ < 1 and the geometric series

∑∞
l=0 α

l
δ
converges

to (1 − αδ )
−1
.

8.3.2. Anti-Blocking Images

In the previous section we showed that distributive polyhedra given by marked networks

with only lossy cycles and at least all sinks marked admit a piecewise-linear injective

transfer map φ : RV → RV analogous to the transfer map for marked order polyhedra. In

this section we keep the same premise and focus on the image φ(D(Γ)). We show that

its projection to RṼ is an anti-blocking polyhedron with describing inequalities given by

the walks in Ŵ.
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8.3. Lossy Cycles and Infinite Walks

Definition 8.3.10. Let Γ = (V ,E,α , c , λ) be a marked network with only lossy cycles and

at least all sinks marked. The walk polyhedron A(Γ) is the set of all y ∈ RV satisfying the

following conditions:

i) for each a ∈ V ∗
an equation ya = λa ,

ii) for each v ∈ Ṽ an inequality 0 ≤ yv , and

iii) for each walk a e
−→ γ with a ∈ V ∗

and γ ∈ Ŵ an inequality

αeΣ(γ )(y) + ce ≤ λ(a).

Since the coordinates in V ∗
are fixed, we furthermore define Ã(Γ) = πṼ (A(Γ)) to be the

projection of A(Γ) to RṼ .

Theorem 8.3.11. The transfer map φ defined in Definition 8.2.1 restricts to a piecewise-
linear bijection D(Γ) → A(Γ).

Proof. To show that φ(D(Γ)) ⊆ A(Γ), let y = φ(x) for x ∈ D(Γ). By definition of φ we

have ya = a for a ∈ V ∗
and yv ≥ 0 for v ∈ Ṽ . Now let a e

−→ γ be a walk with a ∈ V ∗
and

γ ∈ Ŵ. By Lemma 8.3.6, we have Σ(γ )(y) ≤ xv and hence

αeΣ(γ )(y) + ce ≤ αexv + ce ≤ xa = λ(a).

Now let y be any point in A(Γ) and let x = ψ (y). By definition ofψ we have xa = λ(a)
for all a ∈ V ∗

. For any edge v e
−→ w we have to show that αexw + ce ≤ xv . Letting

γ ∈ Ŵw be a walk starting inw constructed as in the proof of Theorem 8.3.5 such that

Σ(γ )(y) = xw . If v is not marked we can use yv ≥ 0 and Lemma 8.3.6 to obtain

αexw + ce = αeΣ(γ )(y) + ce = Σ(v
e
−→ γ )(y) − xv ≤ Σ(v

e
−→ γ )(y) ≤ xv .

If v is marked, v e
−→ γ is a walk as in Definition 8.3.10, so that

αexw + ce = αeΣ(γ )(y) + ce ≤ λ(v) = xv .

We conclude that x ∈ D(Γ) and henceψ (A(Γ)) = D(Γ).

Proposition 8.3.12. The walk polyhedron Ã(Γ) is anti-blocking.

Proof. By Definition 8.3.10 we have 0 ≤ yv for all all y ∈ Ã(Γ) and v ∈ Ṽ . Furthermore,

the coefficients in an inequality αeΣ(γ )(y) + ce ≤ λ(a) are all non-negative: for finite
walks they are just finite products of edge weights αe ′ while for monocycles some of them

are multiplied by the positive factor αρ/(1 − αδ ) as described in Proposition 8.3.9.

Example 8.3.13 (continuation of Example 8.2.3). Recall the marked network Γ with

two unmarked nodes from Example 8.2.3 that is depicted in Figure 8.2 together with the

distributive polytope D̃(Γ) and its anti-blocking image now denoted by Ã(Γ).
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8. Distributive and Anti-Blocking Polyhedra

Since Γ does not have any edges with marked target and both elementary cycles

contain all unmarked elements, the elements of Ŵ are just the monocycles given by the

elementary cycles with trivial acyclic beginning. Let e , f ,д be the edges betweenv andw ,

where e and f are the edges v → w with weights (αe , ce) = (1
2
, 0) and (α f , c f ) = (1,−1),

respectively, and д is the edgew → v with weights (αд, cд) = (1
2
, 0). The elements of Ŵ

are exactly

γ1 : v
e
−→ w

д
−→ v

e
−→ w

д
−→ · · · ,

γ2 : v
f
−→ w

д
−→ v

f
−→ w

д
−→ · · · ,

γ3 : w
д
−→ v

e
−→ w

д
−→ v

e
−→ · · · , and

γ4 : w
д
−→ v

f
−→ w

д
−→ v

f
−→ · · · .

From Proposition 8.3.9 with trivial acyclic beginning (s = 1) we obtain

Σ(γ1)(y) =
4

3

xv +
2

3

xw ,

Σ(γ2)(y) = 2xv + 2xw − 2,

Σ(γ3)(y) =
2

3

xv +
4

3

xw , and

Σ(γ4)(y) = xv + 2xw − 1.

Hence, the inverse transfer map on RṼ is given by

ψ̃

(
yv
yw

)
=

(
max{ 4

3
xv +

2

3
xw , 2xv + 2xw − 2}

max{ 2
3
xv +

4

3
xw ,xv + 2xw − 1}

)
.

Note that the linearity regions are the two half-spaces given by the hyperplane
1

3
xv+

2

3
xw =

1 containing the dashed line in Figure 8.2c.

For the anti-blocking image Ã(Γ) the only walks appearing in Definition 8.3.10 are

2 → γ1 and 2 → γ2 giving inequalities

4

3

xv +
2

3

xw ≤ 2, and

2xv + 2xw ≤ 4.

These correspond to the two non-trivial facets in Figure 8.2c. ♢

In Example 8.2.2, where we have a gainy cycle and the transfer map is not injective,

the image was still an anti-blocking polytope. However, this is not true in general: in the

following example we have a gainy cycle, an injective transfer map nevertheless, but the

projected image πṼ (D(Γ)) is not anti-blocking.

Example 8.3.14. Let Γ be the marked network shown in Figure 8.5a. The distributive
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8.4. Duality

3

wv
2,−4

2,−4

(a) a network Γ

xv

xw

2

3

2 3

(b) the polyhedron D̃(Γ)

xv

xw

1

2

3

6

1 2 3 6

(c) the image φ̃
(
D̃(Γ)

)
Figure 8.5.: The marked network Γ of Example 8.3.14 with the associated distributive

polyhedron and its non-anti-blocking image under the transfer map.

polyhedron D̃(Γ) is the unbounded polyhedron in Figure 8.5b given by the inequalities

2xv − 4 ≤ xw , 2xw − 4 ≤ xv , xv ≤ 3 and xw ≤ 3. The transfer map is given on RṼ by

φ̃

(
xv
xw

)
=

(
xv − 2xw + 4
xw − 2xv + 4

)
.

Thus, the image φ̃
(
D̃(Γ)

)
is the polyhedron given by inequalities 0 ≤ yv , 0 ≤ yw ,

yv + 2yw ≥ 3 and 2yv + yw ≥ 3. It is depicted in Figure 8.5c and is not an anti-blocking

polyhedron. In fact it is what is called a blocking polyhedron in [Ful71]: it is given

given by inequalities xi ≥ 0 for all coordinates together with inequalities of the form

a1x1 + · · ·anxn ≥ 1 where all ai ≥ 0. ♢

8.4. Duality

When P ⊆ Rn is a distributive polyhedron, the polyhedron −P consisting of all x ∈ Rn

such that −x ∈ P is distributive as well. Considering P as a distributive lattice with the

dominance order, we may think of −P as its dual. To be precise, if we denote by Pop
the set

P equipped with the dual dominance order x ≤op y if and only if y ≤ x in the dominance

order, then the map Pop → −P given by x ↦→ −x is an isomorphism of distributive lattices:

we have x ≤ y if and only if −y ≤ −x and max{−x ,−y} = −min{x ,y}.
When P = D(Γ) for some marked network Γ, there is a dual network Γop such that

−P = D(Γop).

Definition 8.4.1. Let Γ = (V ,E,α , c , λ) be a marked network. The dual marked network
Γop = (V ,Eop,αop

, cop, λop) is defined by

i) the same set of nodes V as Γ,
ii) an edgew eop

−−→ v for each edge v e
−→ w in Γ,
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8. Distributive and Anti-Blocking Polyhedra

iii) edge weights αeop =
1

αe
,

iv) edge weights ceop =
ce
αe
, and

v) the marking λop : V ∗ → R given by λop(a) = −λ(a).

Note that this really is a duality notion in the sense that (Γop)op = Γ.

Proposition 8.4.2. For any marked network Γ we have −D(Γ) = D(Γop).

Proof. We have x ∈ −D(Γ) if and only if −x ∈ D(Γ), so x has to satisfy the conditions

−xa = λ(a) for all a ∈ V ∗
and αe(−xw ) + ce ≤ (−xv) for each edge v e

−→ w in Γ. These
conditions are equivalent to xa = −λ(a) = λop(a) for all a ∈ V ∗

as well as

1

αe
xv +

ce
αe
= αeopxv + ceop ≤ xw .

In our definition of the transfer map φ we considered the defining inequalities αexw +
ce ≤ xv and for v ∈ Ṽ set the v coordinate to the difference of xv and the maximum

left hand side in such an inequality. However, we could as well write the inequalities

as xw ≤ 1

αe
xv −

ce
αe

and then forw ∈ Ṽ take the difference of xw and the minimum over

all right hand sides. This requires all sources to be marked and motivates the following

definition.

Definition 8.4.3. Let Γ = (V ,E,α , c , λ) be a marked network with at least all sources

marked. Define the dual transfer map φ̂ : RV → RV by

φ̂(x)v =

{
−xv if v ∈ V ∗

,

−xv +min
w

e
→v

(
1

αe
xw −

ce
αe

)
.

As before, let ˆ̃φ = πṼ ◦ φ̂ ◦ ιλ : R
Ṽ → RṼ .

Now if Γ has all sources marked, then Γop has all sinks marked and we may compare

the dual transfer map for Γ with the usual transfer map for the dual network Γop.

Proposition 8.4.4. Let Γ be a marked network with at least all sources marked. The
transfer maps satisfy the relation

φ̂Γ = φΓop ◦ −,

where φ̂Γ is the dual transfer map for Γ as in Definition 8.4.3, φΓop is the usual transfer map
for Γop as in Definition 8.2.1 and − : RV → RV is given by x ↦→ −x .

Proof. For coordinates v ∈ V ∗
the statement is trivial and for v ∈ Ṽ we have

φΓop(−x)v = −xv − max

ve
op

→w
(−αeopxw + ceop) = −xv −max

w
e
→v

(
−
1

α
xw +

ce
αe

)
= −xv + min

w
e
→v

(
1

α
xw −

ce
αe

)
= φ̂Γ(x)v .
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8.4. Duality

Applying the identity of Proposition 8.4.4 to the distributive polyhedron D(Γ), we
obtain the following corollary.

Corollary 8.4.5. For a marked network Γ with at least all sources marked and only gainy
cycles, we have

φ̂Γ(D(Γ)) = φΓop(−D(Γ)) = φΓop(D(Γop)) = A(Γop).

If we want to compare A(Γop) and A(Γ), we have to assume that Γ has all sinks and

sources marked and all cycles are lossy and gainy, which is of course only possible if Γ is

acyclic. We arrive at the following theorem.

Theorem 8.4.6. Let Γ be an acyclic marked network with at least all sinks and sources
marked. Denote by πṼ the projection RV → RṼ and let ∗

− : RV → RV be the map that
takes negatives on coordinates in V ∗ and is the identity on coordinates in Ṽ . The following
diagram of bijections commutes:

D(Γ) D(Γop)

∗
−A(Γ) A(Γop)

Ã(Γ) Ã(Γop).

−

φ̂Γ φΓop

πṼ πṼ

Proof. The only thing that remains to be shown is thatA(Γ)maps toA(Γop)when taking

negatives on marked coordinates. Since λop = −λ the equations ya = λ(a) are equivalent
to −ya = λ

op
for all marked a ∈ V ∗

. The inequalities 0 ≤ yv for v ∈ Ṽ are the same for

both polyhedra.

Now consider an inequality αeΣ(γ )(y)+ ce ≤ λa for a walk a
e
−→ γ in Γ with a ∈ V ∗

and

γ ∈ Ŵ. Since Γ is acyclic, a e
−→ γ is of the form

a = v0
e0
−→ v1

e1
−→ · · ·

er−1
−−−→ vr

er
−→ vr+1 = b

with a,b ∈ V ∗
and vi ∈ Ṽ for i = 1, . . . , r . Hence, the inequality is given by

r∑
k=1

(
k−1∏
j=0

αej

) (
yvk + cek

)
+ ce0 ≤ λa −

(
r∏
j=0

αej

)
λ(b).

Dividing both sides by

∏r
j=0 αej and translating to the weights and marking of Γop, we

obtain

r∑
k=1

©­«
r∏
j=k

αeopj
ª®¬ (yvk + ceopk−1) + ceopr ≤ λop(b) −

(
r∏
j=0

αeopj

)
λop(a),

which is exactly the inequality for A(Γop) given by the walk

b = vr+1
e
op

r
−−→ vr

e
op

r−1
−−−→ · · ·

e
op

1

−−→ v1
e
op

0

−−→ v0 = a.
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8. Distributive and Anti-Blocking Polyhedra

Remark 8.4.7. In the setting of Theorem 8.4.6 the following diagram in general does not
commute:

D(Γ) D(Γ)

∗
−A(Γ) A(Γ).

φ̂ !
φ

∗
−

In other words, the piecewise-linear self-map
∗
− ◦ φ̂ ◦ψ on A(Γ) is non-trivial in general.

Example 8.4.8. We consider the order and chain polytopes associated to the linear poset

P : 0̂ ≺ p ≺ q ≺ 1̂. Identifying RP̃ with R2 by writing points as

( xp
xq

)
, its projected order

and chain polytopes are the triangles

Õ(P) = conv

{(
0

0

)
,

(
0

1

)
,

(
1

1

)}
, and C̃(P) = conv

{(
0

0

)
,

(
0

1

)
,

(
1

0

)}
.

The two transfer maps φ̃, ˆ̃φ : Õ(P) → C̃(P) are given by

φ̃

(
xp
xq

)
=

(
xp

xq − xp

)
, and ˆ̃φ (

xp
xq

)
=

(
xq − xp
1 − xq

)
.

Hence, we obtain a non-trivial self-map σ = ˆ̃φ ◦ ψ̃ on C̃(P) with

σ

(
yp
yq

)
= ˆ̃φ (

yp
yp + yq

)
=

(
yq

1 − yp − yq

)
.

We see that σ is a cyclic permutation of the vertices of C̃(P). ♢
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9. Conclusion

Motivated by the examples of Part I, we have discussed various classes of polyhedra in

the previous chapters. A diagram of the appearing classes, their inclusion relations as

well as the discussed transfer maps is shown in Figure 9.1. Let us proceed by looking

back to the examples of Part I and see how they fit into this picture.

9.1. Back to Part I

The order and chain polytopes from Chapter 1 have a known generalization to marked

order and chain polytopes introduced by Ardila, Bliem and Salazar in [ABS11]. In

Figure 9.1 we show their sleight generalization to the unbounded case, since requiring

only minimal elements to be marked is enough to get a well-defined transfer map. Here we

find the unweighted Gelfand–Tsetlin polytope GT(λ) and the Feigin–Fourier–Littelmann–

Vinberg polytope FFLV(λ) from Chapter 3 as the marked order andmarked chain polytope

associated to the Gelfand–Tsetlin poset shown in Figure 5.1, respectively. Since the

polytope of eigensteps Λ(Fλ) without norm conditions is an unweighted Gelfand–Tsetlin

polytope as discussed in Section 4.3.1, it is a marked order polytope as well.

The weighted Gelfand–Tsetlin polytope GT(λ)µ as well as the polytope of eigensteps
Λ(Fµ,λ) have additional linear constraints and hence fall into the class of conditional

marked order polyhedra. However, as we have seen in Section 6.5, in fact every polyhe-

dron is affinely isomorphic to a conditional marked order polyhedron and thus studying

them in general is not very promising. Still, we were able to generalize a method intro-

duced by De Loera and McAllister for Gelfand–Tsetlin polytopes in [DM04] to conditional

marked order polyhedra, allowing the computation of the dimension of a face given a

point in its relative interior.

The Stanley–Pitman polytope Πn(ξ ) from [SP02], defined as the set of all y ∈ Rn
≥0

with

y1 + · · · + yi ≤ ξ1 + · · · + ξi for i = 1, . . . ,n

in Section 2.1, is the marked chain polytope C̃(P , λ) associated to the marked poset

(P , λ) in Figure 9.2, where the markings are given by uk =
∑k

i=1 ξi . In fact, Stanley and

Pitman already give a unimodular transformation of Πn(ξ ) to Õ(P , λ) and recognize it

as a section of an order cone. The transformation they use is exactly the transfer map

ψ̃ : C̃(P , λ) → Õ(P , λ).
Things get more interesting when considering the Cayley polytopeCn from Section 2.2.

Recall that it is defined as the set of all x ∈ Rn such that 1 ≤ x1 ≤ 2 and 1 ≤ xi+1 ≤ 2xi
for i = 1, . . . ,n − 1. The inequalities have coefficients different from 1 and hence Cn is

not a marked order polytope anymore. However, it is a distributive polytope and equals
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Õ(P)
Order Polytopes

Õ(P , λ)
with Marked Minima

Õ(P , λ)
Marked Order Polyhedra

Õ(P , λ, s ,b)
Conditional Marked Order Polyhedra

Õt (P , λ)
Marked Poset Polyhedra

ÕC ,O (P , λ)
Marked Chain-Order Polyhedra

C̃(P , λ)
Marked Chain Polyhedra

C̃(P)
Chain Polytopes

D̃(Γ)
with Marked Sinks and Lossy Cycles

D̃(Γ)
Distributive Polyhedra

Ã(Γ)
Walk Polyhedra

Anti-Blocking Polyhedra

⊆

⊆

⊆
⊆

⊆

⊆
⊆

⊆

⊆

⊆

⊆

Figure 9.1.: A diagram of the different classes of polyhedra and their inclusions as dis-

cussed in this thesis. Arrows indicate the existence of piecewise-linear bijec-

tive transfer maps.
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0

p1

p2

pn−1

pn

u1

u2

un−1

un

Figure 9.2.: The marked poset defining the Stanley–Pitman polytope.
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Figure 9.3.: The marked network defining the Cayley polytope.

D̃(Γ) for the marked network in Figure 9.3. The geometric proof of Cayley’s theorem

(Theorem 2.2.1) in [KP14] uses a linear transformation to an anti-blocking polytope Bn
that is exactly the walk polytope Ã(Γ). Furthermore, the map φ̂ : Cn → Bn is just the
dual transfer map D̃(Γ) → Ã(Γ) as discussed in Section 8.4.

Let us now move to the lecture hall cones and polytopes discussed in Section 2.3. In

the light of Chapter 6, we can define marked lecture hall order polyhedra as a common

generalization of lecture hall cones and polytopes as in [BE97a], s-lecture hall cones and
polytopes as in [BE97b], as well as lecture hall order cones and polytopes as in [BL16].

Let (P , λ) be any marked poset and s : P → N>0 an arbitrary map. Define the marked

lecture hall order polyhedron O(P , λ, s) as the set of all x ∈ Rn such that xa = saλ(a) for
all marked a ∈ P∗

as well as
xp

sp
≤

xq

sq
for p ≤ q.

As usual, denote by Õ(P , λ) the projection to RP̃ . When s(p) = 1 for all p, we have

O(P , λ, s) = O(P , λ). When P is the linear poset 0̂ ≺ p1 ≺ · · · ≺ pn and λ(0̂) = 0,

we recover s-lecture hall cones and adding a maximal element with marking 1 we get

the s-lecture hall polytope. For a poset with global minimum and maximum that are

marked 0 and 1, respectively, we obtain the lecture hall order polytope and omitting
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9. Conclusion

the maximum we get the lecture hall order cone. Marked lecture hall order polyhedra

are distributive and their defining network Γ is the marked Hasse diagram of (P , λ),
where a covering relation p ≺ q gives an edge q e

−→ p with αe =
sq
sp

and ce = 0, and

markings are multiplied by sa . However, we may also describe O(P , λ, s) as a linear

transformation of O(P , λ): let Ts : R
P → RP be the linear map given by Ts(x)p = spxp ,

thenTs(O(P , λ)) = O(P , λ, s) = D(Γ). When all minima are marked, we may also define a

marked lecture hall chain polyhedron C(P , λ, s) = A(Γ). What we get is exactly the image

of the marked chain polyhedron C(P , λ) under the linear map Ts . Even more so, the

transfer maps fit in the following commutative diagram.

O(P , λ) O(P , λ, s) D(Γ)

C(P , λ) C(P , λ, s) A(Γ).

Ts

φ(P ,λ) φΓ

Ts

In conclusion, all polyhedra appearing in Part I and the maps between them—except for

weighted Gelfand–Tsetlin polytopes and polytopes of eigensteps with norm constraints—

fit into the theory of distributive polyhedra with their transfer maps and anti-blocking

images developed in Chapter 8.

9.2. Review, Open Questions and Further Directions

In this section we want to review the results of Chapters 6 to 8 and point out open

questions as well as possible further directions of research.

Marked Order Polyhedra

In Chapter 6 we discussed marked order polyhedra, a potentially unbounded generaliza-

tion of the marked order polytopes introduced by Ardila, Bliem and Salazar in [ABS11].

We were able to generalize the face structure description in terms of face partitions

given by Stanley in [Sta86]. A similar study has previously been done by Jochemko and

Sanyal in [JS14], but their requirements on face partitions missed certain edge cases as

the example in Remark 6.2.20 shows. Furthermore, we gave a corrected definition of

regularity—a condition on marked posets to obtain facets of the marked order polyhedron

in correspondence with the covering relations of the underlying poset. This notion

has been introduced in [Fou16] but also missed certain edge cases. Our approach to

marked order polyhedra comes with a categorical description that was not discussed in

the literature before. We described a contravariant functor O : MPos → Polyh from the

category of marked posets to the category of polyhedra and affine maps that associates

to each marked poset its marked order polyhedron. This categorical approach allowed

to identify face inclusions as being induced maps of certain quotient maps on marked

posets and and view identities like O(P1⊔P2, λ1⊔λ2) = O(P1, λ1)×O(P2, λ2) as functorial
properties of O, in this case O sending coproducts to products.
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9.2. Review, Open Questions and Further Directions

To include the weighted Gelfand–Tsetlin polytopes GT(λ)µ and polytopes of eigensteps
with norm conditions Λ(Fµ,λ), we introduced conditional marked order polyhedra. We

were able to adopt the method of tiling matrices introduced by De Loera and McAllister

in [DM04] to this larger class of polyhedra. However, we also argued that this class of

polyhedra might be too big to obtain meaningful results, since every polyhedron is a condi-
tional marked order polyhedron up to affine isomorphism, as shown in Proposition 6.5.7.

In Chapter 10 we determine a non-redundant description of polytopes of eigensteps

of equal norm tight frames—an instance of conditional marked order polyhedra. The

methods used there do not have an obvious generalization even to arbitrary polytopes of

eigensteps Λ(Fµ,λ) let alone to conditional marked order polyhedra in general. Hence,

we state the following as the main open question of Chapter 6.

Question 9.2.1. Is there a subclass of conditional marked order polyhedra that allows a

combinatorial face description and regularity condition similar to the theory of marked

order polyhedra without additional constraints?

A Continuous Family of Marked Poset Polyhedra

In Chapter 7 wemodified the transfer mapO(P , λ) → C(P , λ) introduced for marked poset

polytopes in [ABS11] as a generalization of the transfer map in [Sta86]. We required only

minimal elements to be marked, which is enough to get a well-defined transfer map, and

added a parameter tp ∈ [0, 1] in the p-coordinate of the transfer map for each unmarked

element p ∈ P̃ . Surprisingly, the images Ot (P , λ) = φt (O(P , λ)) are still polyhedra for
all t ∈ [0, 1]P̃ and their combinatorial type is constant along the relative interiors of

the parametrizing hypercube. We gave a system of linear equations and inequalities

depending on t that describes all of these polyhedra simultaneously. For t ∈ {0, 1}P̃

such that the set of all p with tp = 1 is an order ideal in P̃ , we recovered the marked

chain-order polytopes introduced by Fang and Fourier in [FF16]. Using the transfer map,

we found that the marked chain-order polytopes for arbitrary t ∈ {0, 1}P̃ still form an

Ehrhart equivalent family of integrally closed lattice polytopes. Furthermore, the star

element description of unimodular equivalences given by Fang and Fourier for admissible

partitions has a direct generalization to arbitrary marked chain-order polyhedra.

The main new tools in Chapter 7 are the tropical subdivision discussed in Section 7.6

and the continuous degenerations of polyhedra from Section 7.7. Using both of them, we

obtained a description of the vertices of generic marked poset polyhedra: in the tropical

subdivision of Ot (P , λ), the vertices of the subdivision are exactly the vertices of the

polytope when t ∈ (0, 1)P̃ . Hence, they can be constructed by finding the vertices in

the tropical subdivision of the marked order polyhedron O(P , λ)—which can be done

combinatorially—and transfer them to the generic marked poset polyhedron. When

the parameter t moves to the boundary, the polyhedron degenerates and vertices can

disappear. One of the open questions in this context is the following.

Question 9.2.2. Let v be any vertex of the generic marked poset polyhedron Ot (P , λ)
for t ∈ (0, 1)P̃ . Is there a combinatorial way to determine whether the image of v in

117



9. Conclusion

OC ,O (P , λ) is still a vertex for a given partition P̃ = C ⊔O? Furthermore, is there always

some partition P̃ = C ⊔O such that the image in OC ,O (P , λ) is still a vertex?

Having seen that we may modify a marked poset to a regular one without changing

the associated marked order polyhedron, we were able to show in Section 7.9 that the

same is true for marked poset polyhedra with an arbitrary parameter t ∈ [0, 1]P̃ . But

what are the implications of regularity on the continuous family? We conjectured that

our descriptions of marked chain-order polyhedra OC ,O (P , λ) and generic marked poset

polyhedra Ot (P , λ) are non-redundant for regular marked posets in Conjecture 7.10.2

and showed that this is true for ranked marked posets in Proposition 7.10.6. Apart from

this conjecture, the main open problem in this context is the Hibi–Li conjecture stated in

Conjecture 7.10.10. In our refined formulation it states that that the f -vector of OC ,O (P , λ)
is dominated by the f -vector of OC ′

,O ′(P , λ) provided that C is contained in C′
. We were

able to show this for regular ranked marked posets in codimension 1 by counting facets.

Distributive and Anti-Blocking Polyhedra

In Chapter 8 we considered a larger class of polyhedra that still allows a piecewise-

linear transfer map analogous to the one for marked order polyhedra. Motivated by

the characterization of distributive polyhedra using network matrices done by Felsner

and Knauer in [FK11], we defined a transfer map for every distributive polyhedron.

Interestingly, this map is not always injective, but we were able to show that it is when

all cycles in the underlying network are lossy, that is, have product of weights along the

edges strictly less than one. This observation motivates the first question we want to

state here.

Question 9.2.3. Which polyhedra Q ⊆ Rn admit a well-defined, injective, piecewise-

linear transfer map φ : Q → Rn given by

φ(x)i = max{ λ ∈ R≥0 : x − λei ∈ Q }?

As Example 8.3.14 showed, even for some distributive polyhedra with non-lossy cycles

the transfer map can still be injective.

In the case of only lossy cycles, we obtained a description of the image under the

transfer map similar to the description of marked chain polyhedra. Instead of chains

between marked elements, the inequalities are given by either finite walks between

marked nodes, or infinite walks that start in a marked node and end in a repeating cycle.

Both marked chain polyhedra and these walk polyhedra are anti-blocking: they are

contained in Rn
≥0

and satisfy the property that whenever x ∈ Q and 0 ≤ y ≤ x with

respect to dominance order, we have y ∈ Q as well. From this perspective it is interesting

to look back at the marked chain-order polyhedra OC ,O (P , λ) of Section 7.3. When the

chain part is empty we obtain the marked order polyhedron Õ(P , λ) which is distributive.

When the order part is empty we obtain the marked chain polyhedron C̃(P , λ) which is

anti-blocking. For arbitrary partitions P̃ = C ⊔O the marked chain-order polyhedron

ÕC ,O (P , λ) is neither distributive nor anti-blocking in general. However, we may define a
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mixed notion that specializes to being distributive and anti-blocking and captures the

properties of marked chain-order polyhedra.

Definition 9.2.4. Let D and A be finite sets. A polyhedron Q in RD × RA is called mixed
distributive anti-blocking if it satisfies the following properties:

i) given (x , z) ∈ Q and (y, z) ∈ Q , we have (min(x ,y), z) ∈ Q and (max(x ,y), z) ∈ Q ,
ii) for all (x , z) ∈ Q and i ∈ A we have zi ≥ 0,

iii) when (x , z) ∈ Q and 0 ≤ y ≤ x , then (x ,y) ∈ Q .

The minima, maxima and comparisons are with respect to the dominance orders on RD

and RA.

In the extreme cases where A = � or D = �, we obtain the notions of distributive and

anti-blocking polyhedra, respectively. It is straight forward to check that marked-chain

order polyhedra are mixed distributive anti-blocking with respect to the decomposition

RP̃ = RO × RC . Hence, it is natural to ask whether we can combine the approaches taken

in Chapters 7 and 8 to obtain a “continuous family of network polyhedra”.

Question 9.2.5. Does introducing a parameter t ∈ [0, 1]Ṽ in the transfer map of distribu-

tive polyhedra with marked sinks and lossy cycles yield a continuous family like the

one for marked posets such that the combinatorial type of the images is constant along

relative interiors of the parametrizing hypercube and the polyhedra at the vertices are

mixed distributive anti-blocking?

Extending the idea that distributive polyhedra generalize marked order polyhedra,

there are a number of questions we want to add here.

Question 9.2.6. Is there a description of the face structure of (some) distributive polyhe-

dra like the one for marked order polyhedra?

Question 9.2.7. What is a “regular” marked network? That is, when are the edges of

the network in correspondence with the facets of the associated distributive polyhedron?

Question 9.2.8. Do distributive polyhedra admit a natural subdivision into (products

of) simplices on which the transfer map is linear?

Question 9.2.9. Is there a Minkowski sum decomposition of distributive polyhedra

similar to the one for marked order polyhedra?

We believe that pursuing the questions raised in this concluding chapter will lead to a

better understanding of the appearance of piecewise-linear maps in polyhedral geometry

in general and hope for further applications of the theory developed in this thesis.
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10. Polytopes of Eigensteps of Finite

Equal Norm Tight Frames

In this chapter, we come back to the polytope of eigensteps Λout(Fµ,λ) as discussed in

Chapter 4. We consider the special case of equal norm tight frames, that is, both the norm

tuple µ = (µ1, . . . , µn) and the spectrum λ = (λ1, . . . , λd) are constant. The results of this
chapter are joint work with Tim Haga and have previously appeared in [HP16].

10.1. Introduction

By the Schur–Horn theorem for finite frames (Theorem 4.2.1) the frame variety Fµ,λ for

constant µ = (µ∗, . . . , µ∗) ∈ R
n
and λ = (λ∗, . . . , λ∗) ∈ R

d
is non-empty if and only if

nµ∗ = dλ∗. Hence, given any λ∗ > 0 we must have norm squares µ∗ =
d
nλ∗. Changing

λ∗ just dilates the polytope Λ
out(Fµ,λ) and hence we can restrict ourselves to the case

where λ∗ = n and µ∗ = d . For the rest of this chapter, we denote by Λn,d = Λout(Fµ,λ) the

polytope of eigensteps of finite equal norm tight frames, where µ = (d , . . . ,d) ∈ Rn and
λ = (n, . . . ,n) ∈ Rd .

In this special case of equal norm tight frames, the describing equations and inequal-

ities of the polytope of eigensteps can be drastically simplified. To be precise, we give

a description of the polytope where the remaining inequalities are in one-to-one cor-

respondence with the facets of the polytope and the remaining equations are linearly

independent.

Using this description, we obtain formulae for the dimension of the polytope and its

number of facets:

Theorem*. Let Λn,d be the polytope of eigensteps of equal norm tight frames of n vectors
in a d-dimensional Hilbert space.

1. The dimension of Λn,d is 0 for d = 0 and d = n, otherwise

dim(Λn,d) = (d − 1)(n − d − 1).

2. For 2 ≤ d ≤ n − 2 the number of facets of Λn,d is

d(n − d − 1) + (n − d)(d − 1) − 2.

This theorem appears as Theorem 10.2.2 and Theorem 10.3.6, respectively. In Sec-

tion 10.4 we return to frame theory and describe how the affine isomorphisms of polytopes
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λd ,0 λd ,1 λd ,2 λd ,n−1 λd ,n

λd−1,0 λd−1,1 λd−1,2 λd−1,n−1 λd−1,n

λd−2,0 λd−2,1 λd−2,2 λd−2,n−1 λd−2,n

0 =

0 =

0 =

= n

= n

= n

λ1,0 λ1,1 λ1,2 λ1,n−1 λ1,n· · ·

...
...

...
...

...

Σ 0 d 2d · · · (n − 1)d nd

0 = = n

· · ·

· · ·

· · ·

Figure 10.1.: The conditions for a valid sequence of eigensteps for equal norm tight frames

of length n and norms

√
d in Cn. A wedge λk ,lλi ,j denotes an inequality

λi ,j ≤ λk ,l .

we obtained combinatorially are described by reversing the order of frame vectors and

taking Naimark complements. We end with Section 10.5, where we discuss our results

and some open questions.

Applying Corollary 4.3.8 to the case of equal norm tight frames, we arrive at the

following description of Λn,d .

Corollary 10.1.1. For integers 0 ≤ d ≤ n, the polytope Λn,d is the set of all matrices

Λ =
(
λi ,k

)
1≤i≤d ,
0≤k≤n

∈ Rd×(n+1)

satisfying the following conditions:

λi ,0 = 0 for 1 ≤ i ≤ d , (10.1)

λi ,n = n for 1 ≤ i ≤ d , (10.2)

d∑
i=1

λi ,k = dk for 0 ≤ k ≤ n, (10.3)

λi ,k ≤ λi ,k+1 for 1 ≤ i ≤ d , 0 ≤ k < n, (10.4)

λi ,k ≤ λi−1,k−1 for 1 < i ≤ d , 0 < k ≤ n. (10.5)

We will refer to (10.1) and (10.2) as the first and last column conditions, respectively. The
equations in (10.3) are column sum conditions, while (10.4) and (10.5) will be referred to as
the horizontal and diagonal inequalities, respectively, for reasons obvious from Figure 10.1.

10.2. Dimension

In this section we determine the dimension of Λn,d . The dimension of the solution set

of a system of linear equations and inequalities can be computed from the number of
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10. Polytopes of Eigensteps of Finite Equal Norm Tight Frames

variables and the number of linearly independent equations, including those arising

from inequalities that are always satisfied with equality. Thus, the first step is to remove

redundant equations and recognize inequalities that are always satisfied with equality.

Proposition 10.2.1. A matrix (λi ,k) ∈ R
d×(n+1) is a point of Λn,d if and only if the follow-

ing conditions are satisfied:

λi ,k = 0 for i > k , (10.6)

λi ,k = n for i < k + d − n + 1, (10.7)

d∑
i=1

λi ,k = dk for 0 < k < n, (10.8)

λi ,k ≤ λi ,k+1 for 1 ≤ i ≤ d , i ≤ k < n − d + i − 1, (10.9)

λi ,k ≤ λi−1,k−1 for 1 < i ≤ d , i ≤ k < n − d + i , (10.10)

λd ,d ≥ 0, (10.11)

λ1,n−d ≤ n. (10.12)

Proof. The idea behind the proof is to use the first and last column conditions together

with the horizontal and diagonal inequalities to obtain triangles in the eigenstep tableaux

that consist of fixed 0- or n-entries. Using those fixed triangles we can drop many of

the now redundant inequalities from the system in Corollary 10.1.1. The remaining

inequalities form a parallelogram with two legs as depicted in Figure 10.2.

We first prove the necessity of the modified conditions. The triangles described by

(10.6) and (10.7)—from now on referred to as the two triangle conditions, see Figure 10.2
for reference—are an immediate consequence of the first and last column conditions

together with the horizontal and diagonal inequalities. The remaining equations and

inequalities already appear as part of the definition of Λn,d .

To prove sufficiency, we first see that the first and last column conditions are implied

by the triangle conditions. The first and last column are always fixed, so the column

sum conditions can be weakened to (10.8). Condition (10.11) together with the weakened

horizontal and diagonal inequalities (10.9) and (10.10) is enough to guarantee that all λi ,k
are non-negative. Thus, we will refer to (10.11) as the lower bound condition. Similarly

(10.12) guarantees λi ,k ≤ n for all entries and will be referred to as the upper bound
condition. Hence, from the original horizontal and diagonal inequalities (10.4) and (10.5)

we only need those involving solely entries outside of the 0- and n-triangles.

The remaining inequalities required by Proposition 10.2.1 are depicted in Figure 10.2.

Note that Proposition 10.2.1 holds only for equal norm tight frames, in particular (10.7) is

false for frames which are not tight.

124



10.2. Dimension

0 0 λd ,d λd ,n−1 n

0 λ1,1 λ1,n−d n n

Figure 10.2.: The modified conditions for a valid sequence of eigensteps for equal norm

tight frames with only the inequalities required by Proposition 10.2.1.

With the modified conditions from Proposition 10.2.1 we are now able to compute the

dimension of Λn,d .

Theorem 10.2.2. The dimension of the polytope Λn,d is 0 for d = 0 and d = n, otherwise

dim(Λn,d) = (d − 1)(n − d − 1).

Proof. For d = 0 the only point in Λn,d is the empty 0×(n+1)matrix, hence dim(Λn,0) = 0.

For d = n, the 0- and n-triangles fill up the whole matrix. Thus, Λn,n also consists of a

single point and dim(Λn,n) = 0.

Otherwise, the triangle and sum conditions given by (10.6), (10.7) and (10.8) are linearly

independent. Thus, by counting the equations, we obtain

dim(Λn,d) ≤ d(n + 1) − 2 ·
d(d + 1)

2

− (n − 1) = (d − 1)(n − d − 1).

To verify dim(Λn,d) ≥ (d − 1)(n −d − 1), we show that Λn,d contains a special point Λ̂ that

satisfies all the inequalities (10.9) to (10.12) strictly, with the difference between the left

and right hand sides of each inequality being equal to 1. The entries of Λ̂ not fixed by the

triangle conditions are given by

λ̂i ,k B d + k − 2i + 1 for i ≤ k ≤ n − d + i − 1. (10.13)

See Example 10.2.3 for reference. The smallest value in (10.13) is λ̂d ,d = 1, the largest

is λ̂1,n−d = n − 1, so the lower and upper bound conditions are strictly satisfied. The

horizontal and diagonal inequalities hold strictly as well, since

λ̂i ,k = d + k − 2i + 1 < d + (k + 1) − 2i + 1 = λ̂i ,k+1,

λ̂i ,k = d + k + 2i + 1 < d + (k − 1) − 2(i − 1) + 1 = λ̂i−1,k−1.

It remains to verify the column sum conditions (10.8). Letting i0 B max{0,k +d −n} and
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i1 B min{d ,k} we have

d∑
i=1

λ̂i ,k =
i0∑
i=1

n +
i1∑

i=i0+1

λ̂i ,k +
d∑

i=i1+1

0

= i0n +
i1∑

i=i0+1

(d + k − 2i + 1)

= i0n + (i1 − i0)(d + k − i1 − i0).

In all four cases, this expression evaluates to dk .

Example 10.2.3. For n = 6, d = 4 we obtain the special point of Λ6,4 as

Λ̂ =
©­­­«
0 0 0 0 1 2 6

0 0 0 2 3 6 6

0 0 3 4 6 6 6

0 4 5 6 6 6 6

ª®®®¬ .
This tableau satisfies all inequalities in Proposition 10.2.1 strictly while also satisfying

the column sum and triangle conditions. ♢

Note that the dimension of the polytope of eigensteps Λn,d is related to the dimensions

of certain frame varieties.

Remark 10.2.4. Let F R
n,d

⊆ Rd×n be the real algebraic variety of real unit norm tight

frames, F C
n,d

⊆ Cd×n = R2(d×n) the real algebraic variety of complex unit norm tight

frames. The orthogonal group O(d) and the unitary group U (d) act on F R
n,d

and F C
n,d
,

respectively. The dimensions of F R
n,d

and F C
n,d

as determined in [CMS17, Prop. 5.5] are

strictly greater than dim(Λn,d) for n,d > 0. By Theorem 4.3 in [DS06], this is also true

for the real dimension of F C
n,d
/U (d), while the dimension of F R

n,d
/O(d) is in fact equal to

dim(Λn,d).

10.3. Facets

In this section we investigate which of the remaining inequalities describing Λn,d are

necessary. In other words, we find the facet-describing inequalities of Λn,d . In particular,

we obtain a formula for the number of facets.

To reduce the number of inequalities we need to consider separately, we use two

kinds of dualities. One is an affine isomorphism between Λn,d and Λn,n−d that translates

horizontal to diagonal inequalities and vice versa. The other is an affine involution on

Λn,d , reversing the order of rows and columns of the eigenstep tableaux. We will see in

Section 10.4 how these dualities correspond to certain operations on equal norm tight

frames.

From the proof of Theorem 10.2.2 we know that the affine hull aff(Λn,d) is the affine

subspace of Rd×(n+1) defined by the triangle and sum conditions ((10.6), (10.7) and (10.8)).
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0 0 λd ,d λ1,1 N

0 λd ,n−1 λ1,n−d n n

Figure 10.3.: The image of a sequence of eigensteps Λ as in Figure 10.2 under the affine

isomorphism Ψn,d : Λn,d → Λn,n−d from Proposition 10.3.1.

Proposition 10.3.1. There is an affine isomorphism

Ψn,d : aff(Λn,d) −→ aff(Λn,n−d)

given by (
Ψn,d(Λ)

)
i ,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λd+i−k ,n−k , for i ≤ k ≤ d + i − 1,

0, for k < i ,

n, for k > d + i − 1,

that restricts to an affine isomorphism Λn,d → Λn,n−d .

As a map of eigenstep tableaux, Ψn,d can be understood as interchanging rows and

diagonals in the parallelogram of non-fixed entries while adjusting the sizes of 0- and

n-triangles. For example, when n = 5, d = 3 the map Ψ5,3 : aff(Λ5,3) → aff(Λ5,2) is given

by

Ψ5,3

©­«
0 0 0 λ3,3 λ3,4 5

0 0 λ2,2 λ2,3 5 5

0 λ1,1 λ1,2 5 5 5

ª®¬ =
(
0 0 λ3,3 λ2,2 λ1,1 5

0 λ3,4 λ2,3 λ1,2 5 5

)
.

In Figure 10.3 we illustrate the general structure of the image of an eigenstep tableau

under Ψn,d .

Proof. We first need to verify that Λ′ B Ψn,d(Λ) is a point in aff(Λn,n−d) for Λ ∈ aff(Λn,d).

The triangle conditions are satisfied by the definition of Ψn,d . To verify the sum conditions

for Λn,n−d , let 1 ≤ k ≤ n − 1 and l B n − k , then

n−d∑
i=1

λ′i ,k =

max{0,k−d}∑
i=1

n +

min{n−d ,k}∑
i=max{0,k−d}+1

λd+i−k ,n−k

= max{0,k − d}n +

min{d ,l}∑
j=max{0,l+d−n}+1

λj,l

= max{0,k − d}n + dl −max{0, l + d − n}n

= max{0,k − d}n −max{0,d − k}n + d(n − k)

= (k − d)n + d(n − k) = (n − d)k .
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0 0 n − λ1,n−d n − λ1,1 n

0 n − λd ,n−1 n − λd ,d n n

Figure 10.4.: The image of a sequence of eigenstepsΛ as in Figure 10.2 under the involution

Φn,d from Proposition 10.3.2.

To see thatΨn,d restricts to an affinemapΛn,d → Λn,n−d we need to consider all inequalities.

Let Λ ∈ Λn,d and Λ′ = Ψn,d(Λ). The lower and upper bound conditions are satisfied, since

λ′
n−d ,n−d

= λd ,d ≥ 0 and λ′
1,d
= λ1,n−d ≤ n. The remaining horizontal and diagonal

inequalities (10.9) and (10.10) interchange under Ψn,d . Let j B d + i − k and l B n − k ,
then we have

λ′i ,k ≤ λ′i ,k+1 for 1 ≤ i ≤ n − d , i ≤ k < d + i − 1

⇔ λj,l ≤ λj−1,l−1 for 1 < j ≤ d , j ≤ l < n − d + j

and

λ′i ,k ≤ λ′i−1,k−1 for 1 < i ≤ n − d , i ≤ k < d + i

⇔ λj,l ≤ λj,l+1 for 1 ≤ j ≤ d , j ≤ l < n − d + j − 1.

Hence, Ψn,d restricts to an affine map Λn,d → Λn,n−d . It is an isomorphism on both the

affine hulls and the polytopes themselves, since Ψn,d and Ψn,n−d are mutually inverse. This

needs to be checked only for the non-fixed entries:(
Ψn,n−d(Ψn,d(Λ))

)
i ,k =

(
Ψn,d(Λ)

)
n−d+i−k ,n−k

= λd+n−d+i−k−n+k ,n−n+k = λi ,k ,(
Ψn,d(Ψn,n−d(Λ))

)
i ,k =

(
Ψn,n−d(Λ)

)
d+i−k ,n−k

= λn−d+d+i−k−n+k ,n−n+k = λi ,k .

Proposition 10.3.2. There is an affine involution Φn,d : R
d×(n+1) −→ Rd×(n+1) given by

Φ(Λ)i ,k = n − λd−i+1,n−k ,

that restricts to an affine involution Λn,d → Λn,d .

The involution Φn,d can be described as rotating the whole eigenstep tableau by 180°

and subtracting every entry from n, as depicted in Figure 10.4.

Proof. It is clear that Φn,d is an affine map Rd×(n+1) → Rd×(n+1). We use the original

system of equations and inequalities given in Corollary 10.1.1 to verify Φ(Λ) ∈ Λn,d when
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Λ ∈ Λn,d . For k = 0,n we obtain

Φ(Λ)i ,0 = n − λd−i+1,n = n − n = 0,

Φ(Λ)i ,n = n − λd−i+1,0 = n − 0 = n.

Hence, (10.1) and (10.2) are satisfied by Λ′ B Φ(Λ). The column sum conditions (10.3)

are satisfied, since

d∑
i=1

Φ(Λ)i ,k =
d∑
i=1

(
n − λd−i+1,n−k

)
=

d∑
j=1

(
n − λj,n−k

)
= dn − d(n − k)

= dk .

For the horizontal and diagonal inequalities, we observe that λi ,k ≤ λi ′,k ′ is equivalent to
n − λi ′,k ′ ≤ n − λi ,k .

Finally, Φn,d is an involution on both Rd×(n+1) and Λn,d , since(
(Φn,d ◦ Φn,d)(Λ)

)
i ,k = n −

(
Φn,d(Λ)

)
d−i+1,n−k

= n − (n − λi ,k)

= λi ,k .

The results noted in the following remark are easily verified by direct computation.

Remark 10.3.3. The special point Λ̂ of Λn,d is fixed under Φn,d and mapped to the special

point of Λn,n−d by Ψn,d . Furthermore, Φ and Ψ commute. To be precise:

Φn,n−d ◦ Ψn,d = Ψn,d ◦ Φn,d .

Using the dualities given byΦ andΨ, we now construct points that witness the necessity

of most of the inequalities in Proposition 10.2.1.

Lemma 10.3.4. Let n ≥ 5, 2 ≤ d ≤ n − 2. Consider one of the inequalities in (10.9) to
(10.12) which is not λ2,2 ≤ λ1,1, λ1,1 ≤ λ1,2, λd ,n−2 ≤ λd ,n−1 or λd ,n−1 ≤ λd−1,n−2. Then there
is a point in Rd×(n+1) satisfying all conditions of Proposition 10.2.1 except the considered
inequality.

Proof. The idea behind the proof is to start with the special point Λ̂ ∈ Λn,d and locally

change entries such that just one of the inequalities fails, while preserving all other

conditions. Since Ψn,d translates horizontal (10.9) to diagonal inequalities (10.10) and vice
versa, it is enough to consider only horizontal inequalities. Also, since Φn,d maps the top

row (i = d) to the bottom row (i = 1), the inequalities in the bottom row do not need to be

considered either. Since Φn,d maps the first diagonal (i = k) to the last (i = k + d − n + 1)
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0

n

Figure 10.5.: The horizontal inequalities treated by the modification (10.14) shown in

bold.

and vice versa, we do not need to consider the last horizontal inequality in each row. The

remaining horizontal inequalities are treated with the following modification of Λ̂:

m m+ 1

m+2 m+3

m− 1 m

m− 1 m+2

m+ 1 m+ 4

m+3 m+ 4

m+ 1 m

m+ 1 m+ 4

m− 1 m

m− 1 m+2

m+ 1 m+ 4

m+3 m+ 4

(10.14)

Note that this modification of Λ̂ does not alter the column sums and causes only the

slashed inequality in (10.14) to fail. If 2 ≤ d < n − 2 the square of modified entries in

(10.14) fits into the parallelogram of non-fixed entries. In Figure 10.5 we demonstrate

how this modification can be used to obtain points that let each of the bold inequalities

fail individually. The dashed inequalities are covered by the above argument using Φn,d ,

while the dotted inequalities are the four exceptions mentioned in Lemma 10.3.4.

If d = n − 2, the parallelogram of non-fixed entries becomes too thin to fit the squares

of (10.14), so this case has to be treated separately. Instead of considering the horizontal

inequalities for d = n − 2, we can use the duality given by Ψn,d and consider the diagonal

inequalities for d = 2. We use the following modification of Λ̂:

m m+ 1

m+2 m+3

m− 1 m+2

m+ 1 m+ 4

m+ 1 m+2

m+ 1 m+2

m− 1 m+2

m+ 1 m+ 4

The only inequality that remains to be treated is the lower bound condition λd ,d ≥ 0.

The upper bound condition then follows from the duality given by Φn,d . Here we use a

modification of Λ̂ to construct a point that causes only the lower bound condition to fail.

We first do this for d = 2:

1 2

3 4

0 3

2 5

−1 1

5 5

0 3

2 5

This also covers the case d = n − 2 by dualizing using Ψn,2. For 2 < d < n − 2 we use a
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different modification of Λ̂:

0 1 2

2 3 4

4 5 6

6

0 −1 2

2 4 4

4 6 6

6

Example 10.3.5. For n = 5 and d = 2, we construct the points given by Lemma 10.3.4

explicitly. The special point of Λ5,2 is

Λ̂ =

(
0 0 1 2 3 5

0 2 3 4 5 5

)
.

The half-spaces described by the non-exceptional inequalities are H1 : λ2,2 ≥ 0, H2 : λ2,2 ≤
λ2,3, H3 : λ2,3 ≤ λ1,2, H4 : λ1,2 ≤ λ1,3 and H5 : λ1,3 ≤ 5. Applying Lemma 10.3.4 yields the

following five points Pi , each satisfying all conditions except lying in the half-space Hi :

P1 =

(
0 0 −1 1 3 5

0 2 5 5 5 5

)
,

P2 =

(
0 0 2 1 3 5

0 2 2 5 5 5

)
,

P3 =

(
0 0 2 3 3 5

0 2 2 3 5 5

)
,

P4 = Φ5,2(P2) =

(
0 0 0 3 3 5

0 2 4 3 5 5

)
,

P5 = Φ5,2(P1) =

(
0 0 0 0 3 5

0 2 4 6 5 5

)
.

The two variables λ2,2 and λ2,3 completely parametrize the polytope, since λ1,1 = 2,

λ1,2 = 4 − λ2,2, λ1,3 = 6 − λ2,3 and λ2,4 = 3 by the column sum conditions. Hence, we can

illustrate the situation in the plane, as done in Figure 10.6. ♢

Using Lemma 10.3.4, we prove the following theorem, giving the number of facets of

Λn,d .

Theorem 10.3.6. For 2 ≤ d ≤ n − 2 the number of facets of Λn,d is

d(n − d − 1) + (n − d)(d − 1) − 2.

Proof. We first show for the case of n ≥ 5 that d(n−d − 1)+ (n−d)(d − 1) − 2 inequalities

are sufficient to describe Λn,d in its affine hull.

Let n ≥ 5, 2 ≤ d ≤ n − 2. Counting the horizontal and diagonal inequalities (10.9),

(10.10) yields d(n − d − 1) + (d − 1)(n − d) inequalities.
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λ2,2
−2 −1 1 2 3 4

λ2,3

−1

2

3

4

0

H5

H1

H4

H2

H3

Λ̂

P1 P2

P3P4

P5

Figure 10.6.: For Λ5,2 we have five necessary inequalities. The points Pi which satisfy all

conditions but the defining inequality for the half-space Hi are constructed

in Example 10.3.5.

We now show that the four inequalities between non-fixed entries that are already

mentioned in Lemma 10.3.4 are in fact not necessary. Recall that these are

λ2,2 ≤ λ1,1, (10.15)

λ1,1 ≤ λ1,2, (10.16)

λd ,n−2 ≤ λd ,n−1, (10.17)

λd ,n−1 ≤ λd−1,n−2. (10.18)

From the column sum and triangle conditions it follows that λ1,1 = d and λ1,2 + λ2,2 = 2d .
Thus, (10.15) and (10.16) are both equivalent to λ2,2 ≤ d , which is already implied by

λ2,2 ≤ λ2,3 ≤ λ1,2 = 2d − λ2,2, when d ≤ n − 2. Therefore, (10.15) and (10.16) are

superfluous.

Again, by the column sum and triangle conditions, we have λd ,n−1 = n −d and λd ,n−2 +
λd−1,n−2 = 2(n−d). Thus, (10.17) and (10.18) are both equivalent to λd−1,n−2 ≥ n−d , which
is already implied by λd−1,n−2 ≥ λd−1,n−3 ≥ λd ,n−2 = 2(n − d) − λd−1,n−2, when d ≤ n − 2.

However the two arguments are independent only when n ≥ 5, since for n = 4, d = 2 we

have λ2,2 = λd ,n−2 and λ1,2 = λd−1,n−2.
Counting all inequalities, including the lower and upper bound conditions, excluding

the four superfluous inequalities, we have

d(n − d − 1) + (d − 1)(n − d) + 2 − 4 = d(n − d − 1) + (d − 1)(n − d) − 2

inequalities that are sufficient to describe Λn,d . From Lemma 10.3.4 we know that all these

inequalities are actually necessary, hence we obtain the desired number of facets.
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For the case n = 4, d = 2, we have dim(Λ4,2) = (2− 1)(4− 2− 1) = 1. The only polytope

of dimension 1 is a line segment, the two endpoints being its facets. Thus, Λ4,2 has two

facets, as given by d(n − d − 1) + (d − 1)(n − d) − 2 for n = 4, d = 2.

From Lemma 10.3.4 and Theorem 10.3.6 we conclude that removing the four exceptional

inequalities from the description of Λn,d in Proposition 10.2.1 yields a non-redundant

system of equations and inequalities.

10.4. Connections Between Frame and Eigenstep Operations

Until now we focused on the combinatorics of sequences of eigensteps. In this section,

we give descriptions of the affine isomorphisms Φn,d and Ψn,d in terms of the underlying

frames.

In the following, let F̃ B (fn−k+1)
n
k=1 denote the frame with reversed order of frame

vectors.

We obtain the following result:

Proposition 10.4.1. Let F = (fk)
n
k=1

be an equal norm tight frame in Cd with ∥ fn∥
2 = d ,

then
Φn,d(Λ

outF ) = Λout(F̃ ).

Proof. Decomposing the frame operator of F we have

n · Id = FF ∗ =
n∑
j=1

fj f
∗
j =

k∑
j=1

fj f
∗
j +

n∑
j=k+1

fj f
∗
j = FkF

∗
k + F̃n−k F̃

∗
n−k .

Thus, if v ∈ Cd is an eigenvector of F
k
F ∗
k
with eigenvalue γ , we obtain

F̃n−k F̃
∗
n−kv = (n · Id − FkF

∗
k )v = (n − γ )v .

So v is an eigenvector of F̃
n−k

F̃ ∗
n−k

with eigenvalue n −γ and Λout(F̃ ) = Φn,d(Λ
out(F )).

A well-known concept in finite frame theory is the notion of Naimark complements.
In the case of Parseval frames, finding a Naimark complement of F amounts to finding a

matrix G such that

(
F
G

)
is unitary. By scaling, this definition can be extended to tight

frames and in fact to all finite frames, as discussed in [CFM+13b]. In our context, we use

the following definition:

Definition 10.4.2. Given an equal norm tight frame F = (fk)
n
k=1

in Cd with ∥ fk ∥
2 = d , a

frame G = (дk)
n
k=1

in Cn−d satisfying F ∗F +G∗G = n · In is called a Naimark complement
of F .

Many properties of a frame F carry over to its Naimark complementG . In particular, a

Naimark complement of an equal norm tight frame is again an equal norm tight frame,

the norm being

√
n − d . The following proposition shows how the duality described

by Ψn,d corresponds to taking a Naimark complement and reversing the order of frame

vectors.

133



10. Polytopes of Eigensteps of Finite Equal Norm Tight Frames

Proposition 10.4.3. Let F = (fk)
n
k=1

be an equal norm tight frame in Cd with norms
∥ fk ∥

2 = d and G = (дk)
n
k=1

a Naimark complement of F , then

Ψn,d(Λ
out(F )) = Λout(G̃).

Proof. Since Ψn,d(Λout(F )) = Λout(G̃) is equivalent to Λout(F ) = Ψn,n−d(Λ
out(G̃)), we only

need to consider the case n ≥ 2d . We first consider the columns of F with indices k < d .
Since Fk is a d × k matrix, F

k
F ∗
k
has at most k non-zero eigenvalues. To be precise, the

spectrum of the frame operator of Fk is

σ (FkF
∗
k ) = (λ1,k , . . . , λk ,k , 0, . . . , 0    

d−k

).

In order to obtain the eigensteps of G, we switch to Gram matrices. The Gram matrix of

Fk is the k × k matrix F ∗
k
F
k
, with spectrum

σ (F ∗k Fk) = (λ1,k , . . . , λk ,k),

which is obtained by considering the singular value decomposition of Fn.
Since G is a Naimark complement of F , we have F ∗F +G∗G = n · In. In particular,

n · In = F ∗F +G∗G =
(
F ∗ G∗

) (
F
G

)
=

(
F ∗
k

G∗
k

...
...

) (
Fk · · ·

Gk · · ·

)
=

(
F ∗
k
F
k
+G∗

k
G
k

· · ·

...
. . .

)
.

The first k rows and columns of this identity yield F ∗
k
F
k
+G∗

k
G
k
= n · Ik . Therefore

σ (G∗
kGk) = (n − λk ,k , . . . ,n − λ1,k).

Going back to the frame operator of Gk , which is the (n − d) × (n − d) matrix G
k
G∗
k
, we

have

σ (GkG
∗
k) = (n − λk ,k , . . . ,n − λ1,k , 0, . . . , 0    

n−d−k

).

Finally, using G̃
n−k

G̃∗
n−k
+G

k
G∗
k
= GG∗ = n · In−d , we obtain

σ (G̃n−kG̃
∗
n−k) = (n, . . . ,n      

n−d−k

, λk ,k , . . . , λ1,k),

which shows that the (n − k)-th column of Ψ(Λout(F )) is equal to the (n − k)-th column

of Λout(G̃) for n < d .
For k > n−d , let l B n−k so that l < d . Hence, the (n−l)-th column ofΨ(Λout(F̃ )) is the

(n − l)-th column of Λout(G) by the previous argument. Since Λout(F̃ ) = Φn,d(Λ
out(F )) and

Λout(G) = Φn,n−d(Λ
out(G̃)), we know that Ψn,d(Φn,d(Λ

out(F ))) and Φn,n−d(Λ
out(G̃)) agree in
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the k-th column. Using Ψn,d ◦ Φn,d = Φn,n−d ◦ Ψn,d and the fact that Φn,n−d reverses the

column order, we conclude that Ψn,d(Λ
out(F )) and Λout(G̃) agree in the (n − k)-th column

as desired.

We now consider d ≤ k ≤ n − d . By the same arguments as before, we have

σ (FkF
∗
k ) = (λ1,k , . . . , λd ,k),

σ (F ∗k Fk) = (λ1,k , . . . , λd ,k , 0, . . . , 0    
k−d

),

σ (G∗
kGk) = (n, . . . ,n      

k−d

,n − λd ,k , . . . ,n − λ1,k).

Since Gk is an (n − d) × k matrix, with n − d ≥ k , the spectrum of the frame operator of

Gk is

σ (GkG
∗
k) = (n, . . . ,n      

k−d

,n − λd ,k , . . . ,n − λ1,k , 0, . . . , 0    
n−d−k

).

Thus

σ (G̃n−kG̃
∗
n−k) = (n, . . . ,n      

n−d−k

, λ1,k , . . . , λd ,k , 0, . . . , 0    
k−d

),

which shows that the (n − k)-th column of Ψ(Λout(F )) is equal to the (n − k)-th column

of Λout(G̃) for d ≤ k ≤ n − d .

10.5. Conclusion and Open Problems

As we have seen, in the special case of equal norm tight frames we are able to obtain a

general non-redundant description of the polytope of eigensteps in terms of equations

and inequalities. However, this description does not generalize to non-tight frames,

where we lose the n-triangle in the eigenstep tableau. Hence, even the dimension of

Λout(Fµ,λ) will depend on the multiplicities of eigenvalues in the spectrum that cause

smaller triangles of fixed entries in the eigenstep tableaux.

From a discrete geometers point of view, it might be interesting to find a description

of polytopes of eigensteps in terms of vertices. However, even restricting to equal norm

tight frames, we were not able to calculate the number of vertices of Λn,d in general,

let alone find a description of the polytope as a convex hull of vertices. On the frame

theoretic end, it might be interesting to study properties of frames F corresponding to

certain points of the polytope. For example, interesting classes of equal norm tight frames

might be the frames F such that Λout(F ) is the special point Λ̂, a boundary point of Λn,d

or a vertex of Λn,d .
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admissible, see partition of poset

affine, see equivalence; isomorphism;

linear combination; linear form

analysis operator, see frame

anti-blocking, see polyhedron
anti-chain, see poset

basis, see representation
blocking, see polyhedron
branching rule, see representation
breakeven, see marked network, cycle

canonical, see isomorphism, affine

Cayley, see polytope; integer partition
Cayley composition, 14

cell, see polyhedral subdivision
chain, see poset
chain element, see marked poset, ele-

ment

chain-order star element, see marked

poset, element

chamber, see polyhedral subdivision
combinatorial, see equivalence
comparable, 8

compatible, see partition of poset, P-
compatible; partition of poset,

(P , λ)-compatible

conditional, see polyhedron, marked

order

cone, 4, see also polyhedral cone
conical, see hull; linear combination

connected, see partition of poset; poset

constant interval, 47

continuous deformation, 80

continuous degeneration, 80–84

continuous family, see polyhedron,
marked poset

convex, see combination; hull; partition

of poset; set, convex

Courant–Fischer, see theorem
covector, see tropical hyperplane, ar-

rangement

covering relation, see poset

degeneration map, 83, 84

determinantal, see representation
dilate, see polyhedron
dominance order, 97

dual, see marked network; transfer map

Dyck path, see pattern, F.–F.–L.–V.

Ehrhart, see polytope, lattice; equiva-
lence

eigensteps, see sequence of eigensteps
elementary, see marked network, cycle

equivalence

affine, 5

combinatorial, 5

Ehrhart, 5, 73

unimodular, 6, 74–75

exchange, see Young tableau

f -vector, see polyhedron
face, see polyhedron; polyhedral subdi-

vision

face lattice, see polyhedron
face partition, see partition of poset

facet, see polyhedron; polyhedral subdi-
vision

Feigin–Fourier–Littelmann–Vinberg,

see polytope; representation,
basis; pattern
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FFLV, see Feigin–Fourier–Littelmann–

Vinberg

filter, see poset
finite frame, see frame

finite walk, see marked network, walk

frame, 28

analysis operator, 29

bounds, 28

construction problem, 30–38

finite, 29

frame operator, 29

Gram matrix, 30

Naimark complement of, 133

Parseval, 29

synthesis operator, 29

tight, 28

truncated, 31

free block, see partition of poset

gainy, see marked network, cycle

Gelfand–Tsetlin, see polytope; represen-
tation, basis; pattern

generic, see polyhedron, marked poset

Gram matrix, see frame

GT, see Gelfand–Tsetin

half-space, 4

Hasse diagram, see poset; marked poset

highest weight, see representation,
weight

Hilbert space frame, see frame

holomorphic, see representation
hull

affine, 4

conical, 4

convex, 4

hyperplane, 4, see also tropical hyper-
plane

induced subposet, see poset
inner, see sequence of eigensteps
integer decomposition property, 6

integer decomposition proptery, see
also polyhedron, lattice, inte-
grally closed

integer partition, 19

Cayley, 14

conjugate, 20

lecture hall, 15

s-, 16
integrally closed, see polyhedron, lat-

tice

interlacing, see representation, branch-
ing rule; theorem, Cauchy in-

terlace

intermediate, see polyhedron, marked

poset

invariant subspace, see representation
irreducible, see represenation
isomorphism

affine, 5

canonical, 53–57, 65–66

unimodular, 6, 74–75

lattice, see polyhedron; polyhedron,
face lattice; polytope

lecture hall, see integer partition; poly-
tope, s-lecture hall; polytope,
order; polyhedral cone

linear, see poset; poset, linear extension
linear combination

affine, 4

conical, 4

convex, 4

linear form, 4, see also tropical linear
form

affine, 4

lossy, see marked network, cycle

majorization, 31

marked, see marked poset; marked net-

work; polyhedron, marked

poset

marked network, 98

cycle, 101

breakeven, 101

elementary, 101

gainy, 101

lossy, 101
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dual, 109

sink, 99

walk, 100

cycle, see marked network, cycle

in

monocycle, 105

marked poset, 43

covering relation, see poset
(non-)redundant, 54

element

chain, 71, see also polyhedron,
marked chain-order

chain-order star, 74

marked, 43

order, 71, see also polyhedron,
marked chain-order

star, 74

unmarked, 43

Hasse diagram, 43

ranked, 93

regular, 54

strict, 46

tame, 90

marking, see marked poset; marked

network

min-max, see theorem
Minkowski sum, 4, 60

mixed, see polyhedron, mixed distribu-

tive anti-blocking

monocycle, see marked network, walk

multiplicity, see representation, weight

Naimark, see frame, Naimark comple-

ment

non-redundant, see marked poset, cov-

ering relation

order element, see marked poset, ele-

ment

order ideal, see poset
outer, see sequence of eigensteps

P-compatible, see partition of poset

(P , λ)-compatible, see partition of poset

Parseval, see frame

partial order, see poset
partially ordered set, see poset
partition, see integer partition; partition

of poset

partition of poset

admissible, 72

connected, 51

convex, 51

face, 9, 50

free block, 49

P-compatible, 51

(P , λ)-compatible, 51

pattern

Feigin–Fourier–Littelmann–Vinberg,

26

Dyck path, 26

Gelfand–Tsetlin, 23

piecewise-linear map, 6, see also trans-
fer map

pointed, see polyhedron
polyhedral cone, 4

lecture hall, 15, 16

rational, 5

polyhedral subdivision, 6, 45, 57–59, 77,

79–80

cell, 6

chamber, 6

face, see polyhedral subdivision,
cell

facet, see polyhedral subdivision,
chamber

polyhedron, 4, see also polytope
anti-blocking, 97

blocking, 109

dilate, 5

dimension, 5

distributive, 97

f -vector, 5
face, 5

proper, 5

face lattice, 5, 50

lattice, 6

integrally closed, 6, 73

marked chain-order, 71–72

143



Index

marked lecture hall chain, 116

marked lecture hall order, 115

marked order, 46–63

conditional, 63–67

marked poset, 68–96

generic, 69

intermediate, 69

tropical subdivision, 80

mixed distributive anti-blocking,

119

pointed, 5, 60

recession cone, 4, 59

relative interior, 5

subdivision, see polyhedral subdivi-
sion

walk, 107

polytope, 4, see also polyhedron
Cayley, 14

chain, 10

Gelfand–Tsetlin, 23

weighted, 23

lattice, 5

Ehrhart polynomial, 5

marked chain, 43

marked order, 43

marked poset, 43, 69

of eigensteps, 31–38

order, 9

lecture hall, 16

poset, 8–12

s-lecture hall, 16
Stanley–Pitman, 13

poset, 8, see also marked poset

anti-chain, 9

chain, 8

saturated, 8

connected, 9

covering relation, 8, see also marked

poset

filter, 8

Gelfand–Tsetlin, 43

Hasse diagram, 8

induced subposet, 8

linear, 8

linear extension, 8

marked, see marked poset

order ideal, 8

total, see poset, linear

rank, see marked poset, ranked
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tional
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redundant, see marked poset, covering

relation

regular, see marked poset

relative interior, see polyhedron
representation, 17

basis

Feigin–Fourier–Littelmann–

Vinberg, 26

Gelfand–Tsetlin, 22

branching rule, 22

determinantal, 19

holomorphic, 18

invariant subspace, 17

irreducible, 17

restriction, 22

standard, 19

subrepresentation, see representa-
tion, invariant subspace

weight, 18

highest, 18

multiplicity, 18

weight subspace, 18

weight vector, 18

restriction, see representation

Schur module, 19–22

Schur–Horn, see theorem
semistandard, see Young tableau
sequence of eigensteps, 31–38

inner, 32

outer, 32

polytope, see polytope, of eigen-
steps

trace condition, 34

set, convex, 4
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simplex, unimodular, 6

sink, see marked network

SSYT, see Young tableau, semistandard

standard representation, see representa-
tion

Stanley–Pitman, see polytope
star element, see marked poset, element

strict, see marked poset

subdivision, see polyhedral subdivision
subrepresentation, see representation
support, see tropical hyperplane
synthesis operator, see frame

tame, see marked poset

theorem

Cauchy interlace, 34

Courant–Fischer, see theorem, min-

max

min-max, 34

Schur–Horn, 30, 31

tight, see frame

Top Kill, 38

total order, see poset, linear
trace condition, see sequence of eigen-

steps

transfer map

dual, 110

of distributive polyhedron, 99–101

of marked poset polyhedra, 69–71

of poset polytopes, 10–12

triangulation, unimodular, 10

tropical covector, see tropical hyperlane,
arrangement

tropical hyperplane, 78

arrangement, 77–79

covector, 78

support, 78

tropical linear form, 78

tropical polynomial, 78

tropical semiring, 77

tropical subdivision, see polyhedron,
marked poset

truncated, see frame

unimodular, see equivalence; isomor-

phism; simplex; triangulation

walk, see marked network; polyhedron

weight, see marked network, walk; rep-

resentation

weighted, see polytope, Gelfand–Tsetlin

Young diagram, 19

conjugate, 19

Young tableau, 20

exchange, 20

semistandard, 21
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