56,759 research outputs found

    Optimal designs for conjoint experiments.

    Get PDF
    Design; Model-sensitive; Optimal; Optimal design; Data;

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    Covering of Subspaces by Subspaces

    Full text link
    Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph \cG_q(n,r) by subspaces from the Grassmann graph \cG_q(n,k), k≥rk \geq r, are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, qq-analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and a recursive construction. New constructions are given for q=2q=2 with r=2r=2 or r=3r=3. We discuss the density for some of these coverings. Tables for the best known coverings, for q=2q=2 and 5≤n≤105 \leq n \leq 10, are presented. We present some questions concerning possible constructions of new coverings of smaller size.Comment: arXiv admin note: text overlap with arXiv:0805.352

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author
    • …
    corecore