250 research outputs found

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    On the Power of Preconditioning in Sparse Linear Regression

    Full text link
    Sparse linear regression is a fundamental problem in high-dimensional statistics, but strikingly little is known about how to efficiently solve it without restrictive conditions on the design matrix. We consider the (correlated) random design setting, where the covariates are independently drawn from a multivariate Gaussian N(0,Σ)N(0,\Sigma) with Σ:n×n\Sigma : n \times n, and seek estimators w^\hat{w} minimizing (w^w)TΣ(w^w)(\hat{w}-w^*)^T\Sigma(\hat{w}-w^*), where ww^* is the kk-sparse ground truth. Information theoretically, one can achieve strong error bounds with O(klogn)O(k \log n) samples for arbitrary Σ\Sigma and ww^*; however, no efficient algorithms are known to match these guarantees even with o(n)o(n) samples, without further assumptions on Σ\Sigma or ww^*. As far as hardness, computational lower bounds are only known with worst-case design matrices. Random-design instances are known which are hard for the Lasso, but these instances can generally be solved by Lasso after a simple change-of-basis (i.e. preconditioning). In this work, we give upper and lower bounds clarifying the power of preconditioning in sparse linear regression. First, we show that the preconditioned Lasso can solve a large class of sparse linear regression problems nearly optimally: it succeeds whenever the dependency structure of the covariates, in the sense of the Markov property, has low treewidth -- even if Σ\Sigma is highly ill-conditioned. Second, we construct (for the first time) random-design instances which are provably hard for an optimally preconditioned Lasso. In fact, we complete our treewidth classification by proving that for any treewidth-tt graph, there exists a Gaussian Markov Random Field on this graph such that the preconditioned Lasso, with any choice of preconditioner, requires Ω(t1/20)\Omega(t^{1/20}) samples to recover O(logn)O(\log n)-sparse signals when covariates are drawn from this model.Comment: 73 pages, 5 figure

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Learning with Structured Sparsity

    Full text link
    This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea that has become popular in recent years. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. It is shown that if the coding complexity of the target signal is small, then one can achieve improved performance by using coding complexity regularization methods, which generalize the standard sparse regularization. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. It is shown that the greedy algorithm approximately solves the coding complexity optimization problem under appropriate conditions. Experiments are included to demonstrate the advantage of structured sparsity over standard sparsity on some real applications

    High dimensional inference: structured sparse models and non-linear measurement channels

    Full text link
    Thesis (Ph.D.)--Boston UniversityHigh dimensional inference is motivated by many real life problems such as medical diagnosis, security, and marketing. In statistical inference problems, n data samples are collected where each sample contains p attributes. High dimensional inference deals with problems in which the number of parameters, p, is larger than the sample size, n. To hope for any consistent result within high dimensional framework, data is assumed to lie on a low dimensional manifold. This implies that only k « p parameters are required to characterize p feature variables. One way to impose such a low dimensional structure is a regularization based approach. In this approach, statistical inference problem is mapped to an optimization problem in which a regularizer term penalizes the deviation of the model from a specific structure. The choice of appropriate penalizing functions is often challenging. We explore three major problems that arise in the context of this approach. First, we probe the reconstruction problem under sparse Poisson models. We are motivated by applications in explosive identification, and online marketing where the observations are the counts of a recurring event. We study the amplitude effect which distinguishes our problem from a conventional linear regression least squares problem. Motivated by applications in decentralized sensor networks and distributed multi-task learning, we study the effect of decentralization on high dimensional inference. Finally, we provide a general framework to study the impact of multiple structured models on performance of regularization based reconstruction methods. For each of the afore- mentioned scenarios, we propose an equivalent optimization problem and specify the conditions under which the optimization problem can be solved. Moreover, we mathematically analyze the performance of such recovery method in terms of reconstruction error, prediction error, probability of successful recovery, and sample complexity

    Grouping Strategies and Thresholding for High Dimensional Linear Models

    Full text link
    The estimation problem in a high regression model with structured sparsity is investigated. An algorithm using a two steps block thresholding procedure called GR-LOL is provided. Convergence rates are produced: they depend on simple coherence-type indices of the Gram matrix -easily checkable on the data- as well as sparsity assumptions of the model parameters measured by a combination of l1l_1 within-blocks with lq,q<1l_q,q<1 between-blocks norms. The simplicity of the coherence indicator suggests ways to optimize the rates of convergence when the group structure is not naturally given by the problem and is unknown. In such a case, an auto-driven procedure is provided to determine the regressors groups (number and contents). An intensive practical study compares our grouping methods with the standard LOL algorithm. We prove that the grouping rarely deteriorates the results but can improve them very significantly. GR-LOL is also compared with group-Lasso procedures and exhibits a very encouraging behavior. The results are quite impressive, especially when GR-LOL algorithm is combined with a grouping pre-processing

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    corecore