5,793 research outputs found

    Acoustic modeling using the digital waveguide mesh

    Get PDF
    The digital waveguide mesh has been an active area of music acoustics research for over ten years. Although founded in 1-D digital waveguide modeling, the principles on which it is based are not new to researchers grounded in numerical simulation, FDTD methods, electromagnetic simulation, etc. This article has attempted to provide a considerable review of how the DWM has been applied to acoustic modeling and sound synthesis problems, including new 2-D object synthesis and an overview of recent research activities in articulatory vocal tract modeling, RIR synthesis, and reverberation simulation. The extensive, although not by any means exhaustive, list of references indicates that though the DWM may have parallels in other disciplines, it still offers something new in the field of acoustic simulation and sound synth

    The KW-boundary hybrid digital waveguide mesh for room acoustics applications

    Get PDF
    The digital waveguide mesh is a discrete-time simulation used to model acoustic wave propagation through a bounded medium. It can be applied to the simulation of the acoustics of rooms through the generation of impulse responses suitable for auralization purposes. However, large-scale three-dimensional mesh structures are required for high quality results. These structures must therefore be efficient and also capable of flexible boundary implementation in terms of both geometrical layout and the possibility for improved mesh termination algorithms. The general one-dimensional N-port boundary termination is investigated, where N depends on the geometry of the modeled domain and the mesh topology used. The equivalence between physical variable Kirchoff-model, and scattering-based wave-model boundary formulations is proved. This leads to the KW-hybrid one-dimensional N-port boundary-node termination, which is shown to be equivalent to the Kirchoff- and wave-model cases. The KW-hybrid boundary-node is implemented as part of a new hybrid two-dimensional triangular digital waveguide mesh. This is shown to offer the possibility for large-scale, computationally efficient mesh structures for more complex shapes. It proves more accurate than a similar rectilinear mesh in terms of geometrical fit, and offers significant savings in processing time and memory use over a standard wave-based model. The new hybrid mesh also has the potential for improved real-world room boundary simulations through the inclusion of additional mixed modeling algorithms

    Product Sound Design: An Inter-Disciplinary Approach?

    Get PDF
    The practice of product sound design is relatively new within the field of product development. Consequently, the responsibilities and the role of a (sound) designer are not very clear. However, practice shows that various disciplines such as design engineering, acoustics, psychoacoustics, psychology, and musicology contribute to the improvement of product sounds. We propose that sound design should be conducted by experts who have knowledge in the afore-mentioned fields. In other words, we suggest that product sound design should be an independent field that encompasses an inter-disciplinary approach. Keywords: sound design; sound designer; product sounds; design processes; multi-disciplinary, inter-disciplinary</p

    Numerical Experiments with Coupled Membranes and the Snare Mechanism

    Get PDF
    National audienceThe snare drum is one of the more complex musical instruments from a modeling and synthesis perspective---it includes elements modeled as 0D (the drum stick), 1D (the snares), 2D (a pair of membranes) and 3D (the cavity and perhaps the surrounding space), as well as three specific forms of nonlinearity: that of the striking mechanism, the possibility of large amplitude vibration in the membranes themselves, as well as the distributed collision between the set of snares and the snare head. In this article, some preliminary modeling results will be presented, employing time-domain finite difference schemes for the membranes and snare set, and various different levels of modeling for the adjacent acoustic space, including a full 3D model involving absorbing boundary conditions, and simplified lumped representations of the interior derived from modal analysis. Simulation results and sound examples will be presented, and computational complexity wil be discussed

    On the Equivalence of the Digital Waveguide and Finite Difference Time Domain Schemes

    Full text link
    It is known that the digital waveguide (DW) method for solving the wave equation numerically on a grid can be manipulated into the form of the standard finite-difference time-domain (FDTD) method (also known as the ``leapfrog'' recursion). This paper derives a simple rule for going in the other direction, that is, converting the state variables of the FDTD recursion to corresponding wave variables in a DW simulation. Since boundary conditions and initial values are more intuitively transparent in the DW formulation, the simple means of converting back and forth can be useful in initializing and constructing boundaries for FDTD simulations.Comment: v1: 6 pages; v2: 7 pages, generally more polished, more examples, expanded discussion; v3: 15 pages, added state space formulation, analysis of inputs and boundary conditions, translation of passive boundary conditions; v4: various typos fixe

    Fractionally-addressed delay lines

    Full text link
    While traditional implementations of variable-length digital delay lines are based on a circular buffer accessed by two pointers, we propose an implementation where a single fractional pointer is used both for read and write operations. On modern general-purpose architectures, the proposed method is nearly as efficient as the popularinterpolated circular buffer, and it behaves well for delay-length modulations commonly found in digital audio effects. The physical interpretation of the new implementation shows that it is suitable for simulating tension or density modulations in wave-propagating media.Comment: 11 pages, 19 figures, to be published in IEEE Transactions on Speech and Audio Processing Corrected ACM-clas

    The modeling of diffuse boundaries in the 2-D digital waveguide mesh

    Get PDF
    The digital waveguide mesh can be used to simulate the propagation of sound waves in an acoustic system. The accurate simulation of the acoustic characteristics of boundaries within such a system is an important part of the model. One significant property of an acoustic boundary is its diffusivity. Previous approaches to simulating diffuse boundaries in a digital waveguide mesh are effective but exhibit limitations and have not been analyzed in detail. An improved technique is presented here that simulates diffusion at boundaries and offers a high degree of control and consistency. This technique works by rotating wavefronts as they pass through a special diffusing layer adjacent to the boundary. The waves are rotated randomly according to a chosen probability function and the model is lossless. This diffusion model is analyzed in detail, and its diffusivity is quantified in the form of frequency dependent diffusion coefficients. The approach used to measuring boundary diffusion is described here in detail for the 2-D digital waveguide mesh and can readily be extended for the 3-D case

    Efficient Synthesis of Room Acoustics via Scattering Delay Networks

    Get PDF
    An acoustic reverberator consisting of a network of delay lines connected via scattering junctions is proposed. All parameters of the reverberator are derived from physical properties of the enclosure it simulates. It allows for simulation of unequal and frequency-dependent wall absorption, as well as directional sources and microphones. The reverberator renders the first-order reflections exactly, while making progressively coarser approximations of higher-order reflections. The rate of energy decay is close to that obtained with the image method (IM) and consistent with the predictions of Sabine and Eyring equations. The time evolution of the normalized echo density, which was previously shown to be correlated with the perceived texture of reverberation, is also close to that of IM. However, its computational complexity is one to two orders of magnitude lower, comparable to the computational complexity of a feedback delay network (FDN), and its memory requirements are negligible
    corecore