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T
he digital waveguide mesh (DWM) is a numerical

simulation technique based on the definition of a

regular spatial sampling grid for a particular prob-

lem domain, which in this specific case is a vibrating

object capable of supporting acoustic wave propaga-

tion resulting in sound output. It is based on a simple and intu-

itive premise—the latter often considered important by the

computer musicians who are the primary users of a sound syn-

thesis algorithm—yet the emergent behavior is complex, natu-

ral, and capable of high-quality sound generation. Hence, the

DWM has been applied in many areas of computer music

research since it was first introduced by Van Duyne and Smith

in 1993 [1]. This article is the first to attempt to consolidate and

summarize this work. The interested reader is also directed to

[2], where DWM modeling is considered in the more general

context of discrete-time physics-based modeling for sound syn-

thesis, and [3], where the DWM is examined within a rigorous

theoretical and comparative framework for more established yet

related wave scattering numerical simulation techniques.

THE ONE-DIMENSIONAL DIGITAL WAVEGUIDE

The one-dimensional (1-D) digital waveguide is based on a time

and space discretization of the d’Alembert solution to the 1-D

wave equation. This approach to sound synthesis was first used

in the Kelly-Lochbaum model of the human vocal tract for

speech synthesis [4] and has parallels with other, more generally

applied wave variable scattering modeling paradigms such as the

transmission line matrix (TLM) method [5] and wave digital fil-

ters (WDFs) [6]. However it was Julius O. Smith III who first

proposed the term digital waveguide and used these techniques
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initially for artificial reverberation [7] and later for sound syn-

thesis [8], [9]. Digital waveguides have remained the most popu-

lar and successful physical modeling-based sound synthesis

technique to date, due to the realistic, high-quality sounds that

can be generated, often in real-time and so therefore also facili-

tating effective user interaction. This research has also been

made more widely accessible through a range of commercially

available physical modeling hardware synthesizers developed by

Yamaha in the early 1990s based on digital waveguide tech-

niques [10]. The reader is referred to [9] and [11] for a thorough

treatment and discussion of this area and a full derivation of

some of the equations that are introduced in what follows.

Consider the 1-D wave equation for transverse motion with

speed c on an ideal, infinitely long, vibrating string:

∂2 y(t, x)

∂ t2
= c2 ∂2 y(t, x)

∂ x2
. (1)

The d’Alembert or traveling wave solution to (1) is defined as:

y(t, x) = y+(t − x/c) + y−(t + x/c), (2)

where y+ and y− are arbitrary twice-differentiable functions

denoting wave movement to the left and right, respectively.

Assuming that y+ and y− are bandlimited to half the sampling

rate of the system allows the discrete time version of (2) to be

defined for spatial sampling points mX and sampling interval

nT such that X = cT :

y(nT, mX) = y+(n − m) + y−(n + m). (3)

This solution can be implemented in an efficient and straight-

forward manner using two parallel digital delay lines to repre-

sent the left-going and right-going traveling wave components.

Figure 1 shows a digital waveguide implementation of an ideal

string, rigidly terminated at either end of the M-sample delay

lines, corresponding to the nut and bridge of a typical instru-

ment. The system is excited with an appropriate input “loaded’’

into the upper and lower delay lines at position xin = min cT

and a physical output is obtained at xout = moutcT by sum-

ming the upper and lower values according to (3), being exact at

the sampling points of the system.

THE SCATTERING JUNCTION

The terminations introduced in the 1-D string shown in Figure 1

are a special case of signal scattering. An input signal will propa-

gate without loss until it is incident upon a change in system

impedance, resulting in transmission and/or reflection of the

incident signal. This example leads to the formal definition for a

lossless scattering junction, now given without loss of generality

in terms of acoustic pressure rather than string displacement.

At such a junction, system continuity must be preserved in

terms of pressures and volume velocities analogous to

Kirchhoff’s Laws for parallel connection of electrical circuit ele-

ments. Assuming N connected waveguide elements with the

pressure in each defined as pi and volume velocities as ui, then

for lossless scattering the following must hold:

p1 = p2 = . . . = pi = . . . = pN = pJ, (4)

u1 = u2 = . . . = ui = . . . = uN = 0 (5)

Note that pJ is defined as the actual pressure value at the point of

connection for these N waveguide elements, referred to as the

pressure value at scattering junction J. Scattering junctions,

together with the 1-D waveguide elements described above, pro-

vide the basic building blocks for a digital waveguide physical

model of a vibrating system. For instance, six 1-D strings could

be coupled together via a scattering junction to simulate the

bridge of a guitar, facilitating sympathetic resonances where

excitation on one string causes low-amplitude oscillation on one

or more of the others due to energy transmitted through the

bridge. Similarly, this scattering junction could also allow cou-

pling to a filter to simulate the effects of body resonances. Hence,

scattering junctions also act as system sampling points where

physical variables may be tapped off for coupling with other

aspects of the model or with the outside world. Similarly, they

can also be used to allow energy to be input to a system. In mod-

eling a wind instrument such as a clarinet, the bore can be

implemented as a 1-D lossless waveguide coupled with the more

[FIG1] The ideal lossless 1-D digital waveguide string model, which is M-samples long and rigidly terminated at either end.
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complex, nonlinear breath pressure/reed input function

via an appropriate scattering junction implementation [9].

Figure 2(a) shows the functional block diagram for a

general lossless scattering junction J with N neighbors,

with each connected unit waveguide element having an

associated admittance Yi. The impedance of a waveguide

is given by Zi = pi/ui and hence the admittance

Yi = 1/Zi. The signal p+
J,i represents the incoming signal

to junction J along the waveguide from the opposite junc-

tion i. Similarly, the signal p−
J,i represents the outgoing

signal from junction J along the waveguide to the oppo-

site junction i. Connecting delay lines together at scatter-

ing junctions in a more general sense allows spatial and

temporal sampling grids to be defined and gives rise to

families of models that are more generally known as digi-

tal waveguide networks (DWNs). The Kelly-Lochbaum

vocal tract model and the simply terminated 1-D string as

shown in Figure 1 are both examples of specific DWNs. A

DWN with a more complex arrangement of multiport

interconnections can be used to simulate reverberation, as

in the first application of digital waveguides [7] and more

recently explored in [12]. However a DWN consisting of

(typically) unit delay waveguide elements and N-port loss-

less scattering junctions conforming to a regularly

arranged and spaced grid structure gives rise to a particu-

lar family of two- or three-dimensional (2-D or 3-D) struc-

tures. These are called digital waveguide meshes and are

more directly analogous in construction to the physical

objects they are attempting to simulate.

THE DIGITAL WAVEGUIDE MESH

The DWM was first proposed by Van Duyne and Smith [1] as an

extension to 1-D digital waveguide sound synthesis appropriate

for modeling plates and membranes, potentially leading to full

3-D object modeling. Acoustic wave propagation through a

DWM is determined according to the scattering equations and

associated mesh topology. For a lossless junction J according to

conditions (4) and (5) or directly from Figure 2(a), the sound

pressure pJ at junction J for N connected waveguides can be

expressed as:

pJ =
2
∑N

i =1 Yi · pJ,
+
i

∑N
i =1 Yi

. (6)

Noting from (3) that the total sound pressure pJ in a waveguide

element connected to junction J can also be defined as the sum

of the traveling waves in this element, or alternatively as the

sum of the input and output gives:

pJ = p+
J,i + p−

J,i. (7)

And finally, as the waveguide elements in a DWM are equivalent

to bi-directional unit-delay lines, the input to scattering junc-

tion J at time index n, p+
J,i (n) is equal to the output from

neighboring junction i into the connecting waveguide at the

previous time step, p−
i, J(n − 1). Expressing this relationship in

the z-domain gives:

P+
J,i =z−1 ·P−

i, J. (8)

Hence, from (6) junction pressure values are calculated accord-

ing to input values from immediate neighbors, output values are

calculated using (7) and then propagated to neighbors via the

bi-directional waveguide elements, becoming inputs at the next

iteration according to (8). From (6), (7), and (8) via an appropri-

ate linear transformation it is possible to derive an equivalent

formulation in terms of junction pressure values only:

pJ =
2
∑N

i =1 Yi · pi · z−1

∑N
i =1 Yi

− pJ · z−2. (9)

Expression (9) can also be derived directly from a finite differ-

ence time domain (FDTD) formulation of the 2-D case of the

wave equation in (1). The functional block diagram for the scat-

tering junction implementation described by (9), equivalent to

Figure 2(a), is shown in Figure 2(b). Digital waveguide models

represent signal propagation via two directional wave compo-

nents and schemes implemented in this way, according to (6),

(7) and (8), are termed W-models or W-DWMs [2], [13], [14]. A

linear transformation of a W-DWM leads to this alternative

implementation as a Kirchhoff variable DWM (K-DWM) [2],

[FIG2] Functional block diagrams for the general lossless scattering
junction J with N neighbors: (a) the W-model case and (b) the K-model
case. Note that in each example a single connecting waveguide element
has been connected to terminal Yi.
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[13], [14], as given in (9), and depending on physical quantities

only rather than sampled traveling-wave components. In this

form, and under certain conditions, a K-DWM can be computa-

tionally equivalent to a FDTD simulation.

Mixed modeling scenarios where K-DWM and W-DWM

approaches have been interfaced in 1-D via a KW-pipe have

been proposed in [14], [15], leading to the formulation of a 2-D

hybrid DWM [13], [16], [17]. The 2-D hybrid mesh combines

the computational efficiency of the K-DWM approach in terms

of computation time and memory use, with the flexibility of

scattering-based boundary termination options for complex

geometries through the use of KW-pipes. Typically, KW-hybrid

DWMs demonstrate a speed up in processing time of the order

of 34% with a 50% decrease in use of main system memory

[16]. A K-DWM scattering junction connected to a W-DWM

scattering junction via a KW-pipe is shown in Figure 3.

The W-DWM or K-DWM scattering equations can be used to

implement a range of topologies/structures. In 2-D the most

commonly implemented topologies are the four-port rectilinear

and six-port triangular mesh structures shown in Figure 4(a)

and (b). A thorough comparison of their relative characteristics,

together with those of the three-port hexagonal mesh, is pre-

sented in [18]. Two-dimensional DWM models based on the rec-

tilinear or triangular topology have been most commonly used

for synthesis of percussion instruments such as plates, mem-

branes, and gongs [19]–[21], as well as for 2-D reverberation

modeling [22]. Three-dimensional topologies as shown in

Figure 4(c)–(f) include the rectilinear [23]; tetrahedral [24],

[25]; dodecahedral [also known as cubic close packed (CCP)]

[26]; and octahedral structures, and a similar analysis of their

characteristics is presented in [27].

Three-dimensional DWM structures are applied to a range of

sound synthesis applications. The work of [28] combines a 2-D

triangular mesh model of a drum membrane coupled to a 3-D

rectilinear model of a drum-shell to give a more complete model

of a percussion instrument. DWM models have been applied to

simulate 3-D resonant objects [26], [29], [30], sometimes in

combination or parallel with other digital waveguide models; for

instance, to provide synthesis of complex instrument resonances

[31], [32], or to simulate a 3-D acoustic space with multiple 2-D

cross-sectional simulations [33]. However, most current

research activity in 3-D DWM modeling is in its application to

the accurate synthesis of acoustic spaces, and this will be dis-

cussed in the Applications section.

An additional subset of K-DWMs has also been subject to much

investigation and these are based on an interpolated rectilinear

mesh structure in either 2-D [34] or 3-D [35]. Interpolated DWMs

demonstrate wave propagation characteristics approaching that of

triangular/dodecahedral topologies but without the additional

overheads of a denser and more complex topological structure.

DWM LIMITATIONS

There are a number of important factors that impose limitations

on DWM models as an optimal solution for all sound synthesis

[FIG3] Functional block diagram for a W-DWM scattering junction J with N neighbors connected to a K-DWM scattering junction K via a
KW-pipe connecting waveguide element.
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applications. One of the most significant advantages of the 1-D

digital waveguide that originally made it a realistic proposition

for applications in sound synthesis is the computational efficien-

cy of the approach when compared with a brute-force numerical

solution to the system wave equation. This is further improved

through the ability to commute losses to specific lumped points

in the system, significantly reducing the number of calculations

required per time-step iteration. Unfortunately, the elegance of

this approach is lost when moving to higher dimensions. With a

DWM-based system, acoustic wave propagation is determined by

signal interaction at the scattering junctions and hence a calcu-

lation must take place at every junction for every time-step.

Reducing the number of scattering junctions reduces the sam-

ple rate of the DWM and hence the effective bandwidth of the

system. The advantage gained with the DWM approach, howev-

er, is in the structural immediacy of the simulation, allowing

objects to be defined based only on physical and geometrical def-

initions, and the ability to observe and interact with the system

at physically relevant or meaningful points.

A more specific DWM limitation is dispersion error, where

the velocity of a propagating wave is dependent upon both its

frequency and direction of travel, leading to wave propagation

errors and a mistuning of the expected resonant modes. The

degree of dispersion error is highly dependent upon mesh topol-

ogy and has been investigated in, for example, [3], [18], [24],

[27]. In 2-D both the interpolated and triangular DWMs demon-

strate dispersion characteristics that are substantially reduced to

a function of frequency only. In 3-D, minimization of dispersion

can be similarly achieved through the use of interpolated or

dodecahedral topologies. Appropriate pre- and postprocessing of

results from these mesh structures allows offline frequency

warping techniques to be used to correct mis-tuned resonances

[34], [35]. Alternatively, frequency warping can be incorporated

directly as part of a DWM scattering junction [36], [37].

However, although accurate synthesis of resonant modes is

required for the dominant low-frequency properties of a vibrat-

ing system, dispersion error is considered less important with

increasing frequency as modal density increases, and human

perception of such variations becomes less critical.Oversampling

a DWM can also offer improvements such that the required

bandwidth lies within accepted limits, typically 0.25 × fupdate

[1], where fupdate for a DWM of dimension D and spatial sam-

pling distance d is generally given by:

fupdate =
c
√

D

d
, (10)

where c is the speed of sound. Ultimately fupdate dictates the

quality of audio signal output from a DWM with large sample

rates requiring denser meshes, more computer memory, and

hence taking longer to run, limiting even the most efficient

large-scale K-DWMs to offline generation only.

DWM BOUNDARY TERMINATION

There exist a number of possibilities for terminating a DWM at a

system boundary. In [21] a 10 × 10 node 2-D rectilinear DWM is

terminated with single one-pole all-pass filters, which may be

interpreted as a 1-D termination connected to an ideal spring,

allowing modal frequencies in the DWM to be re-tuned or cor-

rected appropriately. For curved boundaries, where the perime-

ter of the structure being modeled is not normal/parallel to the

axes of the mesh, noninteger length waveguide elements called

rimguides can be used [20] and have been demonstrated as

appropriate for accurate low-frequency modeling of circular

membranes using a 2-D triangular mesh.

A commonly applied solution is to passively terminate a

DWM using a simple 1-D connection that implements a change

in admittance such that there is no signal return from the con-

nected boundary over a finite time duration. Hence, the associ-

ated input value for such a connection in Figure 2, or using (6)

or (9), is set to zero. This termination acts to reflect an incident

signal according to the change in admittance of the connected

waveguide elements. In the simplest case, for a one-port bound-

ary-node pB connected to a single N-port scattering junction p1

with a change in waveguide admittance from Y to YB, a reflec-

tion coefficient −1 ≤ r ≤ 1 is determined such that:

r =
Y − YB

Y + YB
(11)

and pB can therefore be calculated as a function of the sound

pressure of the incident traveling wave variable from p1:

pB = (1 + r) · pB,1+ . (12)

In the equivalent K-DWM case, a passive termination is equiva-

lently implemented as a feedback loop between waveguide ele-

ment terminals in Figure 2 with unit delay as derived in [13],

[38] and given by

pB = (1 + r)p1 · z−1 − r · pB · z−2. (13)

Note that r = 1 or r = −1 gives total reflection and r = 0

approximates anechoic conditions. Full derivations of boundary

conditions for the general N-port boundary termination for K-,

W-, and KW-hybrid cases is offered in [16] and a similar bound-

ary implementation for a triangular DWM using multiport

reflection factors is presented in [29].

APPLICATIONS OF THE DWM

The digital waveguide mesh in 2-D and 3-D has been applied to a

diverse range of applications where simulation of acoustic wave

propagation within an enclosed system is required. What follows

is a summary of recent results and research in this area, namely

for vocal tract synthesis, object modeling, synthesis of room

impulse responses, and how this method can be extended to

abstract higher dimensions.

2-D VOCAL TRACT MODELING FOR SPEECH SYNTHESIS

The well-established 1-D Kelly-Lochbaum vocal tract model [4]

is based on a linear series of concatenated cylindrical acoustic

tubes, each of different cross-sectional area, and each tube
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section implemented as a 1-D digital waveguide element. A

number of developments on this basic model include nasal tract,

lip radiation, and wall losses to synthesize the singing voice [39]

and the use of fractional waveguides to make lengthwise

changes to tract shape [40],

[41]. Standard waveguide ele-

ments have also been substitut-

ed for conical equivalents using

scattering methods derived

from the spherical wave equa-

tion. This increases model

accuracy, giving higher-order

area function approximation,

but adds to the computational

load and introduces possible

stability problems [40], [42]. More recent work has explored the

possibility of replacing the basic 1-D digital waveguide imple-

mentation with a 2-D DWM model that simulates the variation

in cross-sectional area along the vocal tract directly through an

appropriately shaped mesh geometry [43]. Formant patterns

produced using the 2-D DWM implementation are equivalent to

those produced by a very high-resolution 1-D digital waveguide

acoustic tube-based simulation. The 2-D model also offers simu-

lation of cross-tract modes due to the additional dimension of

freedom for acoustic oscillation and propagation and approxi-

mately linear control over formant bandwidths via the addition-

al reflection parameter at the side walls of the vocal tract.

Hence, the 2-D DWM vocal tract offers improvements similar to

other developments based on enhanced-order acoustic tube area

function approximation, together with additional model flexibil-

ity such as the ability to simulate a split in the air channel used

in the creation of sounds such as /l/.

The disadvantages of this proposed voice synthesis mecha-

nism rest in its inability to simulate smooth, continuous

dynamic changes to the tract area functions to facilitate artic-

ulated voice synthesis, and the high mesh sample rate fupdate

required to ensure accurate tracking and mapping of vocal

tract shape resulting in an implementation that can only work

offline. Both of these problems have been analyzed and a solu-

tion proposed in a new implementation of the 2-D DWM [44].

In this new method, rather than mapping acoustic tube area

function directly to the 2-D DWM geometry, a constant-width

2-D rectangular DWM, 17.5 cm long with fupdate = 44.1 kHz

is used. The waveguide element impedance across the width

of this rectangular geometry is then varied according to the

area function information. A minimum impedance channel

Zmin is defined as the lowest value across the range of vowels

to be simulated, corresponding directly to the largest cross-

sectional area Amax , and from this a maximum tract width

opening can be defined. An

impedance map is constructed

for a particular vowel tract

shape such that each area func-

tion value A(x) along the

length of the tract walls corre-

sponds to a maximum imped-

ance value Zx. An impedance

curve varying from Zx to Zmin

and back to Zx at the opposite

wall is then defined across the

tract according to a raised cosine function, with the mini-

mum impedance channel equidistant between the tract walls.

Figure 5(a) shows the cross-sectional area function informa-

tion A(x) taken from MRI scans [45] as it varies along the length

of the vocal tract from glottis to lips. Figure 5(b) is the corre-

sponding impedance map imposed across and along the under-

lying rectangular 2-D DWM based on a four-port rectilinear

topology. Areas of higher impedance are represented by a lighter

shading, and the minimum impedance channel can be observed

as the darker area along the center of the map. Figure 6(a)

shows the resulting formant pattern for this vocal tract shape,

when excited by a noise source at the glottis and measured at

the lip end. The dotted lines have been generated from a high-

resolution 1-D waveguide model, using the same area functions

for comparison purposes, and measured average formant values

are also shown.

Software developed to test the real-time dynamic behavior of

this 2-D DWM vocal tract model is available for download and

use at [47], and initial results based on this system were first pre-

sented in [44]. This application also facilitates real-time dynamic

articulation. An example is presented in Figure 6(b) demonstrat-

ing a smooth linear interpolation between area function data for

the /a/ (“bard’’) and /e/ “bed’’) vowels under noise source excita-

tion to highlight the resulting change in formant patterns.

Figure 6 shows that this new 2-D dynamically varying DWM

demonstrates results in terms of simulated formant frequencies

that are in good agreement with both a high-resolution 1-D

model and real-world values. Figure 6(a) seems to indicate that

the 2-D model is closer to real-world formant values than the

high-resolution 1-D case, although this accuracy actually varies

[FIG5] Forming the impedance mapped /u/ vowel DWM: (a) cross-sectional area function; (b) rectilinear mesh with raised cosine
impedance map.
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with target vowel/tract-shape and the real-world values used. In

general, the two modeling methods are in good agreement with

one another. Also, Figure 6(b) demonstrates a smooth transition

between vocal tract shapes without any discontinuity for the 1-D

and 2-D cases, being of particular importance in the latter exam-

ple. Hence, from these generally comparable results the 2-D

dynamically varying DWM can be seen to offer an alternative to

current 1-D dynamic vocal tract models, while also offering

additional advantages over these 1-D implementations as dis-

cussed above and presented in [43] for static simulations of the

vocal tract. The reader is invited to test the software presented

in [47] and compare the audio output from both 1-D and 2-D

models under LF glottal source excitation. Informal perceptual

testing has demonstrated that users consider the 2-D example to

be more “natural-sounding’’ than the similar 1-D case.

This work is the first demonstration of a dynamically varying

DWM model, in this case operating in real-time. Most prior

DWM work has been based on a static representation of the

acoustic system under study, partly due to the computational

resources required for real-time implementation and user inter-

action, and partly due to possible discontinuities in the output

from the resulting model. Hence, this work potentially opens

new areas of research and application areas for DWM modeling,

possibly moving to direct user-input and feedback that has cur-

rently only been possible in 1-D digital waveguide synthesis.

Further work in this area will concentrate on developing appro-

priate tract wall boundary filters and facilitate lengthwise shape

changes for modeling lip protrusion required for accurate syn-

thesis of the /u/ vowel. This work also demonstrates the poten-

tial of moving toward a full 3-D DWM model using 3-D MRI

scans of the vocal tract shape incorporating complex-shape

cross-sectional area data.

2-D OBJECT MODELING

The DWM is often used to synthesize the acoustic properties of a

2-D or 3-D resonant body as these objects are a fundamental

component of most musical instruments, serving to both ampli-

fy and modify the characteristics of a source excitation. Given

that the resonating aspects of most instrument bodies are rela-

tively small implies that a high-resolution DWM implementa-

tion is feasible—in real-time in the case of the vocal tract model

above—with modern computing facilities. Consider the classic

example of a 2-D ideal stretched circular membrane. The reso-

nant frequencies fmn can be defined according to the nature of

their nodal regions where m represents the number of nodal

lines positioned along the diameter of the membrane and n rep-

resents the number of circular nodal lines, including the bound-

ary. The fundamental frequency of an ideal membrane f01 can

be calculated according to its physical properties (for example,

as presented in [19]). Subsequent modes are fixed relative to f01.

Figure 7(a) shows the nodal regions of an ideal stretched cir-

cular membrane with diameter 0.5 m, implemented using a

highly oversampled 2-D triangular DWM, with fupdate = 192

kHz, resulting in a spatial sampling distance of 0.00253 m and a

total of 35,742 junctions. The membrane is excited near the

boundary with a lowpass-filtered impulse and an output is

obtained at a junction near the opposite boundary. To model an

ideal membrane with clamped edges, the reflection coefficients r

at the boundary of the mesh are set to −1. The modes (0,2),

(1,1), (2,1), and (3,1), are shown, with associated frequencies

given relative to f01. Figure 7(b) plots the spectrum of the out-

put against the theoretical predicted frequencies for the funda-

mental and first nine modes.

Note that from Figure 7(b) there is an exact correlation

between the predicted modal frequencies and those obtained via

simulation, and this is due to the high mesh sample rate used,

minimizing dispersion error effects for the bandwidth studied,

and ensuring a smooth mesh fit to the circular boundary of the

membrane without using rimguides.

An exciting possibility with physical modeling synthesis is

that, with clear defined rules governing system behavior, it

becomes relatively straightforward to extend these rules to

[FIG6] Formant patterns from the impedance-mapped DWM under noise excitation: (a) /u/ vowel compared with a high resolution 1-D
model and average measured values; (b) /a/ to /e/ diphthong compared with same 1-D model.
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situations that could not exist, or are difficult to control, in the

real world. Figure 8 presents one such example as an extension

of the 2-D circular membrane and shows the two lowest modes

of resonance from a DWM membrane simulation of a tri-foil

radiation symbol with diameter and fupdate as before, this time

resulting in a model consisting of 25,549 junctions. Sound

examples for these simple 2-D objects are available at [48]. In

isolation the sounds produced from such basic 2-D membranes,

although percussive in nature, are somewhat uninspiring and

require a more complete model for accurate and interesting

object synthesis and, hence, these examples should be consid-

ered as a starting point only. Further research in improved

modeling of resonant objects has considered DWNs for more

complex theoretical multidimensional systems [3], specific

aspects such as coupling a 2-D membrane to a 3-D resonator

[28], improved nonlinear excitation [49], and using simple

DWM resonators to model the high-frequency characteristics of

complex instrument bodies [31]. Also of note is the Sounding

Object Project that has explored physical modeling, including

2-D and 3-D DWMs of resonating objects, with a view to match-

ing the perception of synthesized sounds to the modeled

objects that created them [26], [29], [50].

SYNTHESIS OF ROOM IMPULSE RESPONSES

The first application of DWMs in the field of room acoustics sim-

ulation was by Savioja et al. in 1994 [23]. Fundamentally, syn-

thesizing the characteristics of a bounded space using a DWM is

exactly the same as synthesizing the sound of a vibrating

[FIG8] 2-D triangular DWM model of a physically impossible system—a trifoil radiation symbol membrane with a diameter of 0.5 m:
(a) animation captures from the resulting simulation demonstrating modal resonances; (b) output spectrum.
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physical object. However, in the latter example, sound output is

generated directly from the modeled object by reading sample

values at a scattering junction, whereas with room acoustics

modeling it is a room impulse response (RIR) that is synthesized

rather than the actual sound source. The RIR is generally of lit-

tle interest in terms of its direct audio quality; however, when

convolved with an arbitrary anechoic audio input the result is to

perceive the audio source as if placed within the modeled space.

Also, the relative size of the DWMs used as 3-D acoustic spaces

are many times larger than, for example, the 2-D vocal tract pre-

sented above, and hence take considerably longer to execute,

implying offline RIR synthesis only.

It has been shown that DWMs offer accurate RIR synthesis at

low frequencies [51] and demonstrate natural wave phenomena

such as interference and diffraction [52], with high-frequency

accuracy being limited by fupdate and the dispersion error of the

selected topology. This contrasts with other RIR synthesis meth-

ods based on geometric acoustic techniques [53] that are typi-

cally valid for high frequencies only. Other research has

explored how 3-D spaces, or their reverberant characteristics,

might be simulated using 2-D models, significantly reducing

computational resources [22], [33]. However, the accurate simu-

lation of DWM boundaries is still a key research area with a view

to how the physical properties of real materials might be mod-

eled. This has included how 1-D boundary termination might be

optimized for anechoic conditions [54] [55], leading to a new

spatially averaged approach for the 0 ≤ r ≤ 1 case [56].

Optimized absorption/reflection across a wide range of angles of

incidence for −1 ≤ r ≤ 1 has been facilitated using the admit-

tance boundary method [57], where a DWM is terminated with

additional layers of boundary-nodes behind the actual boundary

location, in turn terminated using an optimal anechoic solution.

For accurate simulation of real acoustic boundaries, frequen-

cy-dependent reflection/absorption must be implemented. In

[58], a boundary-node is replaced with a boundary filter defined

to optimally match given frequency-dependent material reflec-

tion coefficients and implemented using a first-order infinite

impulse response filter for a 2-D rectilinear K-DWM. This

results in a good approximation to the target response but is

subject to the directional-dependent characteristics of the mesh

topology, being less accurate for certain angles of incidence.

The other important characteristic of a real-world acoustic

boundary is whether a reflection is specular, where the angle of

reflection is equal to the angle of incidence, or diffuse such that

the incident energy is redistributed over a range of angles.

Previous diffuse boundary implementations for a DWM are effec-

tive but limited, either in terms of accuracy [20], or by sacrific-

ing user control for an optimal solution [59]. A new technique

based on [20] simulates accurate diffusion with a high degree of

control and consistency by rotating incoming junction signals

via a circulant matrix at a diffusing layer of standard N-port W-

DWM air-nodes adjacent to the boundary [60]. The model is

lossless and allows other boundary conditions, such as frequen-

cy-dependent absorption, to be easily incorporated.

Much of this recent application-focused research has been

incorporated as part of the RoomWeaver DWM-based room

acoustics research tool first presented in [17] and shown in

Figure 9. The purpose of the system is to allow the user to intu-

itively set up enclosed space geometry, boundary surface, and

source/receiver parameters required to generate an RIR by

means of a simple scripting language and graphical user inter-

face. High-quality reverberation and auralization for a wide

range of spaces/applications are possible using high-resolution

2-D triangular and 3-D mesh topologies both based on a KW-

hybrid implementation. A range of RIRs synthesized according

to varied initial conditions and associated audio examples are

available for download [48]. For complete synthesis of a sound

event it would be desirable to incorporate a 3-D dynamically

variable instrument model within a larger 3-D DWM of a per-

formance space, requiring appropriate interfacing across DWM

types according to the space and instrument models used.

Although nontrivial, this has been considered in the case of a

drum model using a 2-D triangular DWM membrane with a 3-D

rectilinear shell [28] and in the more general case [3]. However,

such complete synthesis could only be offered via the offline RIR

generation/real-time convolution processing paradigm due to

the computational expense of full 3-D space modeling. Such

examples are presented in [48] for a 2-D DWM vocal tract

processed with DWM-synthesized RIRs.

THE HYPER-DIMENSIONAL DIGITAL WAVEGUIDE MESH

From (6) it is clear that dimensionality is not inherent in the

scattering equations. For example, the four-port lossless scat-

tering junction is the main algorithmic building block of both

the 2-D rectilinear and 3-D tetrahedral mesh. The spatial

arrangement of the surrounding scattering junctions—the

[FIG9] DWM room acoustics modeling in RoomWeaver incorporating the latest implementations of frequency-dependent and diffusive
boundaries. A completely defined acoustic space followed by wave propagation snapshots through a 2-D horizontal plane of the same
space viewed in wireframe mode is shown from left to right.
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mesh topology—is the determining factor and it is therefore

possible to extend the scattering junction concept beyond

three spatial dimensions to hyper-dimensional DWMs [23],

[61] that have been shown as appropriate for simulating artifi-

cial reverberation [62].

At low frequencies, the acoustic characteristics of a room

can be modeled with sufficient accuracy by approximating

the main dimensions of a basic cuboid model and simulating

the corresponding resonant modes. In real rooms there are

typically additional architectural features that lead to fre-

quency-dependent irregularity in these predicted trajectory

lengths. Hence, at higher frequencies, a typical RIR will

demonstrate a large number of densely and irregularly dis-

tributed modal peaks that are not determined by the basic

geometry of the space alone. However, for high-quality artifi-

cial reverberation not all of these modes need to be simulated

directly, with approximately 1,500 modes distributed evenly

or along a logarithmic scale between 80 Hz and 10 kHz being

sufficient for diffuse and natural sounding artificial reverber-

ation [63]. In a DWM, the number of primary resonant modes

is equal to the number of dimensions, with higher dimen-

sions leading to a more irregular arrangement of modal

peaks. It is possible to extend these equations describing the

resultant wave propagation to the hyper-dimensional case,

where for each mesh dimension xi the primary mode has a

frequency corresponding to (c/2Li) with Li defined as the

trajectory length. In an N-dimensional space, standing waves

occur at the following frequencies:

fn1 n2 n3...nN
=

c

2

√

√

√

√

[

N
∑

i =1

(

ni

Li

)2
]

, (14)

where ni is the integer index of the current mode for each

dimension and c is the speed of sound. Furthermore, at a specif-

ic modal frequency, the sound pressure value at a point (x1, x2,

x3, . . . , xN) inside such space is determined by:

pn1 n2 n3...nN
(x1, x2, x3, . . . , xn) = A

N
∑

i =1

cos

(

ni xi

Li

)

, (15)

where A is an arbitrary amplitude coefficient.

Examples of modal distributions calculated using (15) are

shown in Figure 10(a). Note that the additional advantage of

a hyper-dimensional DWM reverb is the resultant high-densi-

ty distribution of high-frequency modes while simultaneous-

ly avoiding potentially problematic (in terms of perceived

sound quality) low-frequency resonances. This is due to the

trajectories being kept shorter compared to a similar model

with the same number of junctions but lower dimensionality

and is demonstrated in Figure 10(b) comparing 2-D and four-

dimensional DWMs. Hence, hyper-dimensional DWM reverb

satisfies the requirement for a densely distributed high fre-

quency modal response while giving the freedom for the

more precise and sparsely arranged low-frequency modes to

be modeled with any other appropriate technique without

frequency overlap. Further work for a more natural reverber-

ant effect requires the implementation of frequency-depend-

ent losses to simulate air and boundary absorption as used in

RIR synthesis with standard 2-D and 3-D DWM models.

CONCLUSIONS

The digital waveguide mesh has been an active area of

music acoustics research for over ten years. Although

founded in 1-D digital waveguide modeling, the principles

on which it is based are not new to researchers grounded in

numerical simulation, FDTD methods, electromagnetic

simulation, etc. This article has attempted to provide a con-

siderable review of how the DWM has been applied to

acoustic modeling and sound synthesis problems, including

[FIG10] Frequency response information for 2,310 node DWMs of varying dimension: (a) theoretical modal distribution varying with
increasing dimensionality; (b) frequency response of a 2-D and 4-D DWM.
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new 2-D object synthesis and an overview of recent research

activities in articulatory vocal tract modeling, RIR synthe-

sis, and reverberation simulation. The extensive, although

not by any means exhaustive, list of references indicates

that though the DWM may have parallels in other disci-

plines, it still offers something new in the field of acoustic

simulation and sound synthesis. Perhaps one reason for the

continued interest in this area is the natural and intuitive

complex emergent behavior that results from such simple,

locally defined scattering equations. However, despite this

perceived simplicity, it is also clear that there are still many

nontrivial problems to be solved. There are few current

examples of useful and playable virtual instruments using

DWM based sound synthesis (although a virtual drum in the

London Science Museum that can be played in real-time

and is a realization of the work presented in [28] is a

notable exception), and this is mainly due to the computa-

tional resources required for such a real-time model.

Nonreal-time operation is not a problem when simulating

static, linear time-invariant systems such as a representa-

tion of an acoustic space, and hence most recent DWM work

has focused in this area. The real-time convolution of an

audio input signal with the impulse response generated

from such a model is trivial to implement on a modern

computing platform and is now a commonly used sound

processing operation. Offline, only DWM-based virtual

instruments for sound synthesis prohibit user interaction

and severely limit playability. However, some of the recent

developments presented in this article, particularly those

relating to dynamic, real-time vocal tract simulation, are

beginning to make significant inroads in this area and will

hopefully lead to new DWM implementations that can be

applied more generally—and more successfully—to the

diverse range of possible sound synthesis applications.
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