508 research outputs found

    Advanced Feedback Linearization Control for Tiltrotor UAVs: Gait Plan, Controller Design, and Stability Analysis

    Full text link
    Three challenges, however, can hinder the application of Feedback Linearization: over-intensive control signals, singular decoupling matrix, and saturation. Activating any of these three issues can challenge the stability proof. To solve these three challenges, first, this research proposed the drone gait plan. The gait plan was initially used to figure out the control problems in quadruped (four-legged) robots; applying this approach, accompanied by Feedback Linearization, the quality of the control signals was enhanced. Then, we proposed the concept of unacceptable attitude curves, which are not allowed for the tiltrotor to travel to. The Two Color Map Theorem was subsequently established to enlarge the supported attitude for the tiltrotor. These theories were employed in the tiltrotor tracking problem with different references. Notable improvements in the control signals were witnessed in the tiltrotor simulator. Finally, we explored the control theory, the stability proof of the novel mobile robot (tilt vehicle) stabilized by Feedback Linearization with saturation. Instead of adopting the tiltrotor model, which is over-complicated, we designed a conceptual mobile robot (tilt-car) to analyze the stability proof. The stability proof (stable in the sense of Lyapunov) was found for a mobile robot (tilt vehicle) controlled by Feedback Linearization with saturation for the first time. The success tracking result with the promising control signals in the tiltrotor simulator demonstrates the advances of our control method. Also, the Lyapunov candidate and the tracking result in the mobile robot (tilt-car) simulator confirm our deductions of the stability proof. These results reveal that these three challenges in Feedback Linearization are solved, to some extents.Comment: Doctoral Thesis at The University of Toky

    Dynamic modeling and control of a Quadrotor using linear and nonlinear approaches

    Get PDF
    With the huge advancements in miniature sensors, actuators and processors depending mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS), many researches are now focusing on developing miniature flying vehicles to be used in both research and commercial applications. This thesis work presents a detailed mathematical model for a Vertical Takeo ff and Landing (VTOL) type Unmanned Aerial Vehicle(UAV) known as the quadrotor. The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method, the formulated model is detailed including aerodynamic effects and rotor dynamics that are omitted in many literature. The motion of the quadrotor can be divided into two subsystems; a rotational subsystem (attitude and heading) and a translational subsystem (altitude and x and y motion). Although the quadrotor is a 6 DOF underactuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is underactuated. The derivation of the mathematical model is followed by the development of four control approaches to control the altitude, attitude, heading and position of the quadrotor in space. The fi rst approach is based on the linear Proportional-Derivative-Integral (PID) controller. The second control approach is based on the nonlinear Sliding Mode Controller (SMC). The third developed controller is a nonlinear Backstepping controller while the fourth is a Gain Scheduling based PID controller. The parameters and gains of the forementioned controllers were tuned using Genetic Algorithm (GA) technique to improve the systems dynamic response. Simulation based experiments were conducted to evaluate and compare the performance of the four developed control techniques in terms of dynamic performance, stability and the effect of possible disturbances

    Quadcopter: Design, modelling, control and trajectory tracking

    Get PDF
    A quadcopter is a type of unmanned aerial vehicles (UAV). The industry of this type of UAVs is growing exponentially in terms of new technology development and the increase of potential applications that may cover construction inspections, search and rescue, surveillance, aerial photography, monitoring, mapping, etc. A quadcopter is a nonlinear and under-actuated system that introduces complex aerodynamics properties and create challenges which demands the development of new, reliable and effective control techniques to enhance the stability of flight control, plan and track a desired trajectory while minimizing the effect induced by the operational environment and its own sensors. Hence, many control techniques have been developed and researched. Some of such developments work well with the provision of having an accurate mathematical model of the system while other work is associated with a mathematical model that can accommodate certain level of wind disturbances and uncertainties related to measurement noise. Moreover, various linear, nonlinear and intelligent control techniques were developed and recognized in the literature. Each one of such control techniques has some aspect that excels in under certain conditions. The focus of this thesis is to develop different control techniques that can improve flight control stability, trajectory tracking of a quadcopter and evaluate their performance to select the best suitable control technique that can realize the stated technical flight control requirements. Accordingly, three main techniques have been developed: Standard PID, Fuzzy based control technique that tune PID parameters in real time (FPID) and a Hybrid control strategy that consists of three control techniques: (a) FPID with state coordinates transformation (b) State feedback (c) Sliding mode The configuration of the hybrid control strategy consists of two control loops. The inner control loop aims to control the quadcopter\u27s attitude and altitude while the outer control loop aims to control the quadcopter\u27s position. Two configurations were used to configure the developed control techniques of the control loops. These configurations are: (a) A sliding mode control is used for the outer loop while for the inner loop two control techniques are used to realize it: a Fuzzy gain scheduled PID with state coordinates transformation and a state feedback control. (b) Fuzzy gain scheduled PID control is used for the outer loop while for the inner loop two control techniques are used to realize it using the same formation as in (a) above. Furthermore, in order to ensure a feasible desired trajectory before tracking it, a trajectory planning algorithm has been developed and tested successfully. Subsequently, a simulation testing environment with friendly graphical User Interface (GUI) has been developed to simulate the quadcopter mathematical model and then to use it as a test bed to validate the developed control techniques with and without the effect of wind disturbance and measurement noise. The quadcopter with each control technique has been tested using the simulation environment under different operational conditions. The results in terms of tracking a desired trajectory shows the robustness of the first configuration of control techniques within the hybrid control strategy under the presence of wind disturbance and measurement noise compared to all the other techniques developed. Then, the second configuration of the control techniques came second in terms of results quality. The third and fourth results in the sequence shown by the fuzzy scheduled PID and the standard PID respectively. Finally, Validating the simulation results on a real system, a quadcopter has been successfully designed, implemented and tested. The developed control techniques were tested using the implemented quadcopter and the results were demonstrated and compared with the simulation results

    Multi-mode Flight Sliding Mode Control System for a Quadrotor

    Get PDF
    There is a wide range of applications for unmanned aerial vehicles that requires the capability of having several and robust flight controllers available. This paper presents the main framework of a multimode flight control system for a quadrotor based on the super twisting control algorithm. The design stages for the four flight control modes encompassing manual, altitude, GPS fixed and autonomous mode are presented. The stability proof for each flight mode is carried out by means of Lyapunov functions while the stability analysis for the complete system, when a transition from one mode to another occurs, is demonstrated using the switching nonlinear systems theory. The performance of the proposed framework is demonstrated in a simulation study taking into account external disturbances

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Control design for UAV quadrotors via embedded model control

    Get PDF
    In this paper, a control system for unmanned aerial vehicles (UAVs) is designed, tested in simulation by means of a high-fidelity simulator, and then applied to a real quadrotor UAV. A novel approach is proposed for the control design, based on the combination of two methodologies: feedback linearization (FL) and embedded model control (EMC). FL allows us to properly transform the UAV dynamics into a form suitable for EMC; EMC is then used to control the transformed system. A key feature of EMC is that it encompasses a so-called extended state observer (ESO), which not only recovers the system state but also gives a real-time estimate of all the disturbances/uncertainties affecting the system. This estimate is used by the FL-EMC control law to reject the aforementioned disturbances/uncertainties, including those collected via the FL, allowing a robustness and performance enhancement. This approach allows us to combine FL and EMC strengths. Most notably, the entire process is made systematic and application oriented. To set-up a reliable UAV attitude observer, an effective attitude sensors fusion is proposed and also benchmarked with an enhanced complementary filter. Finally, to enhance the closed-loop performance, a complete tuning procedure, encompassing frequency requirements, is outlined, based on suitably defined stability and performance metrics
    • …
    corecore