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Summary

A quadcopter is a type of unmanned aerial vehicles (UAV). The industry of this type
of UAVs is growing exponentially in terms of new technology development and the in-
crease of potential applications that may cover construction inspections, search and res-

cue, surveillance, aerial photography, monitoring, mapping, etc.

A quadcopter is a nonlinear and under-actuated system that introduces complex aero-
dynamics properties and create challenges which demands the development of new, reli-
able and effective control techniques to enhance the stability of flight control, plan and
track a desired trajectory while minimizing the effect induced by the operational envi-
ronment and its own sensors. Hence, many control techniques have been developed and
researched. Some of such developments work well with the provision of having an ac-
curate mathematical model of the system while other work is associated with a mathe-
matical model that can accommodate certain level of wind disturbances and uncertainties
related to measurement noise. Moreover, various linear, nonlinear and intelligent control
techniques were developed and recognized in the literature. Each one of such control

techniques has some aspect that excels in under certain conditions.

The focus of this thesis is to develop different control techniques that can improve
flight control stability, trajectory tracking of a quadcopter and evaluate their performance
to select the best suitable control technique that can realize the stated technical flight
control requirements. Accordingly, three main techniques have been developed: Standard
PID, Fuzzy based control technique that tune PID parameters in real time (FPID) and a

Hybrid control strategy that consists of three control techniques:
(a) FPID with state coordinates transformation
(b) State feedback

(c) Sliding mode



The configuration of the hybrid control strategy consists of two control loops. The inner
control loop aims to control the quadcopter’s attitude and altitude while the outer control
loop aims to control the quadcopter’s position. Two configurations were used to configure

the developed control techniques of the control loops. These configurations are:

(a) A sliding mode control is used for the outer loop while for the inner loop two control
techniques are used to realize it: a Fuzzy gain scheduled PID with state coordinates

transformation and a state feedback control.

(b) Fuzzy gain scheduled PID control is used for the outer loop while for the inner
loop two control techniques are used to realize it using the same formation as in (a)

above.

Furthermore, in order to ensure a feasible desired trajectory before tracking it, a trajectory
planning algorithm has been developed and tested successfully. Subsequently, a simula-
tion testing environment with friendly graphical User Interface (GUI) has been developed
to simulate the quadcopter mathematical model and then to use it as a test bed to vali-
date the developed control techniques with and without the effect of wind disturbance and

measurement noise.

The quadcopter with each control technique has been tested using the simulation envi-
ronment under different operational conditions. The results in terms of tracking a desired
trajectory shows the robustness of the first configuration of control techniques within the
hybrid control strategy under the presence of wind disturbance and measurement noise
compared to all the other techniques developed. Then, the second configuration of the
control techniques came second in terms of results quality. The third and fourth results in

the sequence shown by the fuzzy scheduled PID and the standard PID respectively.

Finally, Validating the simulation results on a real system, a quadcopter has been
successfully designed, implemented and tested. The developed control techniques were
tested using the implemented quadcopter and the results were demonstrated and compared

with the simulation results.



1

2

3

Contents

Introduction

1.1 Literature Review . . . . . .. .. ... ... o
1.1.1  PIDcontrol . . . ... ... ... ...
1.1.2  Linear Quadratic Regulator (LQR) . . . . . . . ... .. ... ..
1.1.3  Sliding Mode Control (SMC) . . . . .. ... ... ... ....
1.1.4 Feedback Linearization Control . . . . . ... ... .. .....
1.1.5 Integral Backstepping Control . . . . . .. ... ... ......
1.1.6 Intelligentcontrollers . . . . . . . ... ... ... ........
1.1.7 Hybridcontrol . . . . .. .. ... ...

1.2 Challenges. . . . . . . . . . e

1.3 Objectives . . . . . . . . o i e e e

Mathematical Model
2.1 Axesandbasicsetup . . . . . .. ...
2.2 Rotation and Transformation . . . . . . .. ... ... ... .. .....
2.3 Kinematic and Dynamicmodel . . . . . ... ... ... ... ......
2.3.1 Forces and linear acceleration . . . . . .. .. ... .. .....
2.3.2 Torques and angular acceleration . . . . . .. ... ... .....
24 Control Forces . . . . . . .. . .
2.5 LinearModel . . . . .. . .. ...
2.5.1 Linearization of Rotation Matrices . . . . . . . .. ... .. ...
2.5.2 Linearizationof forces . . . . . . . .. ... ... ... ...
2.6 State Space and ControlModel . . . . . ... ... ... ... ......
2.6.1 Equations of Motion and Control Inputs . . . . . . ... ... ..

2.6.2 State Space Representation . . . . . . . ... ... ... .....

Linear Control (PID)
3.1 PIDControl . . . . . . . . . e

10
11

13
13
15
17
18
21
23
24
25
26
27
28
28

33



ii CONTENTS
3.2 Effect of Nonlinearities and Noise . . . . . . . ... ... ... ..... 35
3.2.1 Derivative filteringforPID . . . . . ... ... ... ... .... 35
322 Antiintegralwindup . . . .. ... L Lo 35
3.2.3 Modified PID controller structure . . . . ... ... ... .... 36
3.3 PID Stability Controller . . . . . . ... ... ... .. .......... 36
3.3.1 Attitude and heading control . . . . . . .. ... ... 36
3.3.2 Positioncontrol . . . . ... L L Lo 39
3.3.3 Position and Attitude control tuning . . . . . . ... ... L. 41
4 Fuzzy Gain Scheduled PID Controller 42
4.1 Developing of the Fuzzy Controller . . . . ... ... ... ....... 43
4.1.1 Membership functions . . . . .. ... ... 44
412 Fuzzyrules . . . . . . . . e 45
4.1.3 Defuzzification . . . . . .. ..o L 46
4.2 Implementing the Fuzzy Controllerl on the Quadcopter . . . . . . . . .. 48
5 Hybrid Control Strategy 49
5.1 Hybrid Control Strategy: Configuration1 . . . . ... ... ... .... 49
5.1.1 Inner control loop: FPID with state coordinates transformation
and a state feedback control . . . . .. ... 50
5.1.2  Outer control loop: Stability of the internal dynamics using SMC 55
5.2 Hybrid Control Strategy: Configuration2 . . . . .. .. ... ... ... 59
5.2.1  Outer control loop: Stability of the internal dynamics using FPID 60
6 Trajectory Planning 61
7 Simulation and Results 70
7.1 GUIL ..o 70
7.2 Parameters . . . . . . . ... e e e 71
7.3 Simulation Results:
Case 1 without including disturbance ornoise . . . . . . . ... ... .. 72



1 CONTENTS

7.3.1 Altitude and attitude stabilization . . . . .. ... ... ... .. 72
7.3.2 Positiontracking . . . .. ... ... L 81
7.3.3 3Dtrajectory tracking . . . . .. ... ... L. 84
7.4 Simulation Results:
Case 2 with the presence of disturbance andnoise . . . . . ... ... .. 88
7.4.1 Altitude and attitude stabilization with noise and disturbance . . . 88
7.4.2 Position tracking with noise and disturbance . . . . . . . . .. .. 93
7.4.3 3D Trajectory tracking with noise and disturbance . . ... . .. 96
8 Hardware Development and Implementation 100
8.1 Quadcopter Design and Requirements . . . . . . ... ... ....... 100
8.2 Hardware Modules . . . . .. ... .. ... o 103
8.2.1 Quadcopter frame structure. . . . . . . .. .. ... 103
8.2.2 Brushless MotorModule . . . . . ... ... ... ........ 104
823 Sensormodule . . .. ... ... ... oL 107
8.2.4 Wireless transceiver . . . . . . . . ... Lo 109
8.2.5 Quadcoptercontroller . . . ... ... ... ... .. ...... 109
8.2.6 Batterymodule . . . ... .. ... ... 112
8.3 Quadcopter’s Parameters Identification . . . . . . . ... ... ... ... 114
83.1 Airframe . ... ... ... ... 114
832 Propellers . . . . . . . .. ... 115
8.33 Motors . . ... 117
8.4 Real Time Control Implementation . . . . . . ... ... ... ...... 118
8.4.1 Runontargethardware . . . . . . .. ... ... ... ...... 118
8.5 Quadcopter Flight Test . . . . . . ... ... ... .. ... ....... 122
8.5.1 Flighttestprocedure . . . . . ... ... ... .......... 122
8.5.2 Flight test results: Calm weather . . . . . . .. ... .. ..... 123
8.5.3 Flight test results: Windy weather . . . . . ... ... ...... 128

9 Conclusion and Future Work 130



v CONTENTS

Appendices 133
A Feedback Linearization . . . . . . . . . . . . . . . 134

Bibliography 138



1.1

2.1
2.2

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10

4.1
4.2
4.3
44
4.5
4.6
4.7

5.1

5.2
53

List of Figures

Quadcopter [1] . . . . . . . . 1
Axis and Coordinates system. . . . . . . . . . . ... ... 13
Gimbal lock phenomenon[25] . . ... ... ... ... ... .. .... 15
PID main control scheme . . . . . .. ... ... ... ... ... ... 33
Traditional PID controller . . . . . . . .. .. ... ... ... ... ... 34
Modified PID controller . . . . . . . . .. .. ... .o 36
Main controller structure . . . . . .. ... Lo 37
Roll PID control . . . . . . .. .. ... . 37
PitchPID control . . . . . ... .. ... ... ... 38
Yaw PIDcontrol . . . . . .. ... ..o 38
Altitude PID control . . . . . . . ... 39
Longitude PID control . . . . . . . .. ... .. ... ... ....... 40
Lattitude PID control . . . . . . . .. .. . ... Lo 40
Fuzzy PID control . . . . . . . . . .. .. 42
General fuzzy control structure . . . . . . . .. ... 43
Inputs membership functions (eanded) . . . . . . ... ... ... ... 45
Outputs membership functions (Gains) . . . .. ... ... ... .... 45
Control surfaces for Kpand K; . . . . . . . . . . . . . . ... .. ... 47
Control surfaces for Kp . . . . . . . . . . 48
Fuzzy gain scheduled PID control . . . . . .. ... ... .. ...... 48
Configuration 1 of the hybrid control startegy scheme using FPID with

state transformation, state feedback and SMC . . . . . . . .. ... ... 50
Inner control loop for the hybrid control strategy . . . . . . ... ... .. 55
Configuration 2 of the hybrid startegy scheme using FPID, with state

transformation, state feedback and FPID . . . . . . . ... ... ... .. 59



vi

LIST OF FIGURES

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13

7.14
7.15
7.16
7.17
7.18
7.19

Trajectory generation for Equation 6.12 . . . . .. ... ... ... ... 64
Trajectory generation for Equation 6.14 . . . . . . .. .. ... ... .. 65
Trajectory generation withawaypoint . . . . . ... ... .. ...... 65
Xtrajectory planning . . . . . ... L. 67
Y trajectory planning . . . . . . . ... L. 68
Ztrajectory planning . . . . . ... L. Lo 68
3D trajectory generation . . . . . . ... ... e e 69
Trajectory planning added to the system . . . . . . .. .. ... ..... 69
Graphical User Interface . . . . . ... .. ... ... ... ... .... 71
Altitude stability response using PID control . . . . . . .. ... ... .. 73
Attitude stability response using PIDcontrol . . . . . . . . ... ... .. 74
Altitude stability response using FPID control . . . . . . .. ... .. .. 75
Attitude stability response using FPID control . . . . . . . .. ... ... 75
x and y position with chattering effect. . . . . . . .. .. ... ... ... 76
Roll and pitch with chattering effect. . . . . . . .. ... ... ... ... 77
x and y position with reduced chattering effect. . . . . .. ... .. ... 77
Roll and pitch with reduced chattering effect. . . . . . .. ... ... .. 78
Altitude stability response using first hybrid control configuration . . .. 78
Attitude stability response using first hybrid control configuration . . .. 78
Altitude stability response using first hybrid control configuration with

chattering . . . . . . . . .. 79
Attitude stability response using first hybrid control configuration with

chattering . . . . . . . . . L e 79
Altitude stability response using second hybrid control configuration . . . 80
Attitude stability response using second hybrid control configuration . . . 80
Altitude stability comparison without disturbances . . . . . .. ... .. 81
Attitude stability comparison . . . . . .. .. Lo 81
Longitude and latitude tracking using PID control . . . . . . .. ... .. 82

Longitude and latitude tracking using FPID control . . . . . . .. .. .. 82



vii LIST OF FIGURES
7.20 Longitude and latitude tracking using first control configuration . . . . . 83
7.21 Longitude and latitude tracking using second hybrid control configuration 83
7.22 Longitude and latitude tracking response (comparison) . . . . . . . . .. 84
7.23 Spiral trajectory tracking response with each of the developed control

techniques . . . . . . . . ... 85
7.24 Spiral trajectory tracking response comparison between all the control

techniques . . . . . . ... 86
7.25 Random trajectory tracking with each of the developed control techniques. 87
7.26 Random trajectory tracking comparison between all the control techniques 87
7.27 Altitude stability response using PID control . . . . . . . . ... ... .. 88
7.28 Attitude stability response using PID control . . . . . . . ... ... ... 89
7.29 Altitude stability response using FPID control . . . . . . ... ... ... 89
7.30 Attitude stability response using FPID control . . . . . . . ... ... .. 90
7.31 Altitude stability response using first hybrid control configuration 90
7.32 Attitude stability response using first hybrid control configuration 91
7.33 Altitude stability response using second hybrid control configuration . . . 91
7.34 Attitude stability response using second hybrid control configuration . . . 92
7.35 Altitude stability comparison between all the control techniques . . . . . 92
7.36 Attitude stability comparison between all the control techniques . . . . . 93
7.37 Longitude and latitude tracking using PID control . . . . . . . . ... .. 94
7.38 Longitude and latitude tracking using FPID control . . . . . . . ... .. 94
7.39 Longitude and latitude tracking using first hybrid control configuration . . 95
7.40 Longitude and latitude tracking using second hybrid control configuration 95
7.41 Longitude and latitude tracking comparison between all the control tech-

NIQUES .« . o v v o e e e e e e e e e e e e e e e e e e 96
7.42 Spiral trajectory tracking with each control technique. . . . . . . . . . .. 97
7.43 Spiral trajectory tracking comparison between all the control techniques . 98
7.44 Random trajectory tracking with each control technique) . . . . ... .. 99
7.45 Random trajectory tracking comparison between all the control techniques 99



viii LIST OF FIGURES
8.1 The layout of the quadcopter system. . . . . . . . . ... ... ...... 102
8.2 The developed quadcopter. . . . . . . ... ... ... .. ... ..., 102
8.3 Frame specifications. . . . . . . . ... ... L. 104
8.4 Emax BL2220Motor. . . . . . . . ... 105
8.5 Turningy ESC. . . . . . . . . .. .. .. 107
8.6 QuanumGPSmodule . . . . . ... ... ... ... o 108
87 3DRtelemetry . . . . . . . . L 108
88 FlySkyFS-i6RC. . . . . . . ... . 109
89 APM2.6. . . . . 110
8.10 APM 2.6 board layout. . . . . . .. ... ... ... 110
8.11 Lithium Polymer Battery. . . . . . . ... ... ... .. ......... 113
8.12 Battery monitor module. . . . . . .. ... ... ..., 113
8.13 Power Distribution Board. . . . . . .. ... oo 0oL 114
8.14 Thrust Coefficient vs Propeller Speed Plot.[41] . . . . ... ... .. .. 116
8.15 Power Coefficient vs Propeller Speed Plot. [41] . . . .. ... ... ... 117
8.16 Main simulink model layout for hardware implementation. . . . . . . . . 120
8.17 Hardware inputs subsystem. . . . . . . . ... ... ... ... ..., 120
8.18 Control subsystem. . . . . . . . .. .. ... 121
8.19 Hardware outputs subsystem. . . . . . . . . ... .. ... ... ... .. 122
8.20 Quadcopter flighttest. . . . . . . .. .. ... L 123
821 Rollplot (PID) . . . . . . . . . 124
822 Rollplot (FPID) . . . . . . . . . 124
823 Rollplot (FL) . . . . . . . . 125
8.24 Pitchplot (PID) . . . . . . . . . . . 125
825 Pitchplot (FPID) . . . . . . . . . ... . . 126
826 Pitchplot (FL). . . . . . . . . . . 126
827 Yawplot (PID) . . . . . . . . . . 127
828 Yawplot (FPID) . . . . . . . . . . ... 127
829 Yawplot (FL) . . . . . . . . .. 127
8.30 Roll plot (comparison) . . . . . . . .. ... ... . 128



iX

LIST OF FIGURES

8.31 Pitch plot (comparison)

8.32 Yaw plot (comparison)



3.1

4.1
4.2
4.3

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7

List of Tables

PID gainseffect . . . . . . .. .. ... 41
Linguistic variables . . . . . . . . .. ... o 44
Fuzzy rules for Kpand K7 . . . . . . . . ... .. oL 47
Fuzzyrulesfor Kp . . . . . . . . . . . . 47
Desired way points . . . . . . . . ... 66
Parameters . . . . . . . ... L 72
Attitude and Altitude initial and desired values . . . . . . . . .. ... .. 72
Gains and Filter coefficient Parameters . . . . . . . ... ... ... ... 73
Outputs aINTange . . . . . . . . v ot e e e e e e 74
Inputs gainrange . . . . . . . ... L 74
Outputs gaiNTange . . . . . . . v v v i e e e e e e e e e 75
Inputs gainrange . . . . . . ... ... L L 76
Sliding Mode control simulation parameters . . . . . . . ... ... ... 76
Sliding Mode control refined simulation parameters . . . . . . . . . ... 77
Frame Specification . . . . . . .. ... ... .. oo 103
Motors Specification . . . . . .. ... ... . 106
Turningy ESC specification . . . . . . . ... ... ... ... ... . 106
APM 2.6 Specification . . . . .. .. ... 111
Identified quadcopter airframe parameters. . . . . . . . .. .. ... ... 115
(10 x 4.7) Propeller Thrust & Power Coefficients at Different Speed.[41] . 116
Motor Parameters . . . . . . . .. .. L L 117



Nomenclature

List of Symbols

Symbol Description

A System matrix

A, Cross section of the propeller

B Input matrix

b Drag coefficient

C Output matrix

D Feed forward matrix

e Error

fo Linear force

fiift Lift force

fuw Disturbance forces

g Gravitational acceleration

1 Induced inflow constant

I.x Moment of inertia about the x axis
Iy Moment of inertia about the y axis
1.z Moment of inertia about the z axis
] Total inertia of the quadcopter

Ir Rotor’s inertia

kg Derivative gain

kg Thrust/Lift coefficient

k; Integral gain

k, Proportional gain

lq Rotor’s lever length to the quadcopter’s CG
m Total mass of the quadcopter

R Rotation matrix

xi



Xii

LIST OF TABLES

Symbol Description
r Propeller’s radius
R, Armature current
R, Angular rate transformation matrix
S Sliding surface
T Torque
Ty Disturbance moments
Ul Control force
U2 Control force
U3 Control force
U4 Control force
v Linear velocity relative to the earth frame
v Lyapunov function
Vo Linear velocity relative to the body frame
xq Desired x position
Yd Desired y position
24 Desired z position
w Angular velocity relative to the earth frame
w Rotor speed
Wy Angular velocity relative to the body frame
0] Roll angle
®d Desired roll angle
(0 Yaw angle
WUy Desired yaw angle
Density of air
0 Pitch angle
04 Desired pitch angle



Xiil

LIST OF TABLES

Acronyms

Acronym Description

APM Ardupilot mega

FPID Fuzzy logic PID

GPS Global positioning system
Hoo H infinity

IMU Inertial measurement unit
LQ Linear quadratic

LQR Linear quadratic regulator
LQG Linear quadratic gaussian
PD Proportional derivative

PID Proportional integral derivative
PWM Pulse width modulation
RC Remote controller

SMC Sliding mode control

UAV Unmanned aerial vehicle
VTOL Vertical takeoff and landing



Chapter 1

Introduction

Quadcopter is one type of the unmanned aerial vehicles (UAV) and it’s also named as
Vertical Take OFF and Landing (VTOL) aircraft. It is used in many applications such
as filming, construction inspections, search and rescue, surveillance, aerial photography,

mapping, traffic monitoring, crop monitoring, fire detection and many other uses.[2][3]

Figure 1.1: Quadcopter [1]

A quadcopter is a small aircraft with four rotors. This gives it many advantages such
as simplicity, maneuverability and agility. In addition, it can be customized easily for
different applications. It consists of four rotors which control the quadcopter by adjusting
the angular velocities of each rotor. In order to achieve control of the roll, pitch, yaw and
lift it uses 2 sets of identical propellers, 2 clockwise and 2 counterclockwise. Thrust of
each rotor is manipulated by changing the speed of each one. By doing this control of the
system is achieved. [2][3][4]. The quadcopter consists of six degrees of freedom. They
are the translation motion in x,y and z in addition to the rotational motion in Roll(¢),

Pitch(f) and Yaw(v). Those degrees of freedom are considered to be the outputs of the
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system. On the other hand, The total thrust of the rotors and the torques produced around
each axis are considered to be the inputs to the system. Consequently, the quadcopter
system is considered as an under actuated system since the number of the inputs are less
than the number of the outputs. Hence, direct control of each degree of freedom is not
possible. Moreover, since the quadcopter is relatively small in size it is prone to be in-
fluenced by wind effects or disturbances. Furthermore, the dynamics of the quadcopter
is highly nonlinear with some uncertainties which leads to an inaccurate mathematical
model of the system. Hence, controlling a quadcopter is a cumbersome task considering

the fact it needs to deal with non linearities of the system and disturbances.[2][3][4][5]

Many control techniques have been suggested for the control of the quadcopter. The
main task each technique is trying to achieve is to stabilize the attitude of the quadcopter
while following a given translational trajectory. Some control techniques are based on a
linearized mathematical model for the quadcopter and applying a linear controller such as
PID control. While other control techniques deals with the nonlinear model by applying
a non linear controller such as backstepping and Sliding Mode control technique. A more
modern approaches are the adaptive controllers such as fuzzy logic and neural networks.
Some also introduced the idea of a hybrid control technique which combines between
two of the techniques stated above. Each control technique suggested has its own pros

and cons [2][3][4][6][7].

1.1 Literature Review

1.1.1 PID control

The PID controller is the most applied controller in the industry. This is due to its sim-
plicity. It is also easy to adjust the gain parameters of the controller whose parameters
are chosen by experience, trial and error and some new techniques such as fuzzy logic

[3] and neural networks. However, Due to the nonlinearity and uncertainties found in the
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quadcopter model the PID limits the performance of the quadcopter.

A PID controller was applied to a quadcopter for the purpose of stabilizing the at-
titude [4]. The model was linearized around the hover position in order to design the
controller. Hence, the gyroscopic effects has not been taken into consideration in the
controller design. The simulation on Simulink showed satisfactory results in the sense of
altitude stability. The quadcopter attitude stabilizes itself after 3 seconds. The result was
validated by applying the controller into a real system. The results were consistent with
the one acquired from the simulation. The controller is efficient for the hover position. On
the other hand, this is only valid for hovering (altitude control) as for the attitude control

the controller was not robust for any sudden perturbations in the attitude.

Another PID controller was developed for the purpose of stabilizing the attitude and
altitude [6]. The quadcopter was simulated to test the applied developed control tech-
nique. The altitude and attitude stabilized after 5 seconds while the position of x and y
had a large steady state error. This is mostly due to an inaccurate model and the fact that

the system is an under-actuated system with no control over the x and y positions.

The main disadvantage of the PID control is that it simplifies the dynamics which
results in limiting the control and maneuverability of the quadcopter also the gains must
be chosen on the basis of experience and trial and error. On the other hand, it is easy and

simple to implement.

1.1.2 Linear Quadratic Regulator (LQR)

Linear quadratic regulator is an optimal control technique which is main function to re-
duce the cost function. In other words, it minimizes the deviation from the desired values.

This is carried out by adjusting the weighing factors.

An LQR controller was applied on a quadcopter and compared with a PID controller
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[8]. The LQR was applied on the full dynamic model while the PID controller was ap-
plied on the simplified dynamic model. The results for both systems were close through
simulation only. However, the LQR controlled system showed slightly better results and

that’s mainly because it deals with the full dynamic model.

A comparison was made between an LQR controller and an adaptive controller based
on the Lyapunov stability. They were both tested under uncertainties which is a loss in
thrust in this case through simulation only. Both showed good response and stability how-
ever they both have a small steady state error while the adaptive controller had a better
response in the presence of uncertainty or loss of thrust were it returns back to the desired
position smoother and faster compared to the LQR controller.

In addition, An LQR controller was applied on a quadcopter to follow a desired path
in [9]. The developed controller was tested using a real quadcopter under the influence
of wind and measurement noise and it showed good results in terms of path following.
However, the controller response was not accurate when there multiple obstacles were

introduced in the desired path.

The used LQR controllers shows an average results in the stability of the quadcopter.
It also has a drawback in choosing the weighing factors or matrices which needs iterative

simulations and experience by the designer.

1.1.3 Sliding Mode Control (SMC)

Sliding mode control is a nonlinear control algorithm that works by applying a discontin-

uous control signal to the system to command it to slide along a prescribed path.

An adaptive sliding mode controller was implemented on a quadcopter for attitude
stabilization and altitude tracking in[5]. The controller proved to be very robust with a

very small steady state error and small settling time through simulation only
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Another approach was carried out in [7]. The model was tested first without uncer-
tainties and noise through simulation. Later white Gaussian noise and uncertainties of
35% on mass and 15% on inertia matrix were added. However, the attitude control was

not tested.

A sliding mode controller was implemented by Rong Xu and Umit Ozguner in [10]
in order to follow a desired position under the effect of uncertainties. The system was
divided into two subsystems the first for controlling the altitude (z) and yaw angle (),
while the second subsystem for controlling the positions x and y and the roll (¢) and pitch
(0) angles. Chattering effect was reduced with continuous approximation by introducing
a saturation function instead of using the sign function in the sliding mode control law.
The quadcopter was tested to follow a desired position under the effect of uncertainties
through simulation only. The results showed good stability and robustness against uncer-

tainties such as wind and measurement noise

The main advantage for the SMC controller is that it is very robust against model inac-
curacy, uncertainty, noise and tracking. However it does not show good results specifically

in the attitude control (roll and pitch).

1.1.4 Feedback Linearization Control

Feedback linearization is carried out by transforming a nonlinear system to an equivalent
linear system. In order to do that the model must be very accurate. If the model is not

accurate the control would be very poor.

A feedback linearization adaptive controller was introduced in [8] to stabilize the sys-
tem and act as trajectory follower controller. The controller proved to be very efficient
in trajectory and path following while having poor results especially in the presence of

noises. The system was tested through simulation only.
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Another comparison took place between a feedback linearization controller and a slid-
ing mode controller in [11]. The feedback linearization proved to be very sensitive against
noises and uncertainties while the sliding mode controller proved to be very robust against
noises and uncertainties. This is mainly because the feedback linearized system has very
simplified dynamics which doesn’t account for many of the model aspects. The compari-

son was done through simulation only.

Feedback linearization controller is very efficient in trajectory planning. However, it’s
not good in stabilizing the quadcopter. Thus, combining the feedback linearization with
another controller such as SMC where the feedback linearization role would be trajectory

planning while the SMC role would be stability would probably show promising results.

1.1.5 Integral Backstepping Control

Backstepping controller is a nonlinear controller. It divides the system into several sub-
systems and in a recursive steps it deals with each subsystem independently to achieve

stability of each subsystem.

An integral Backstepping controller was applied on a quadcopter to stabilize the sys-
tem and trajectory planning in [12]. The stabilizing/tracking controller was tested with
external disturbance (wind) to fly in a helical trajectory through simulation. It showed a
very robust result even with the external disturbances and had a very small steady state

CITOLr.

A backstepping technique was used to improve a quadcopter stability [13]. The quad-
copter was modeled using quaternion transformation instead of using Euler transforma-
tion method. The quaternion modelling technique was carried out to avoid singularity and
to make the quadcopter able to exceed 90 degrees rotations. Finally, Lyapunov stability
theory was used to ensure that the backstepping controller achieved system stability. The

attitude showed good results in terms of stability through simulation only.
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The integral Backstepping controller showed promising results in trajectory planning
as well as stability of the system. It also computationally inexpensive since it divide the

system into simple subsystems. However it’s complicated to apply.

1.1.6 Intelligent controllers

A Fuzzy Logic controller

Fuzzy logic is considered as an intelligent controller. It suits very well the nature of any
nonlinear systems with model imprecisions and uncertainties. Hence, it should be able to

adapt well with the nature of the quadcopter dynamic model.

A fuzzy logic controller was applied on a quadcopter in [14]. Six fuzzy controllers
were implemented. One for each degree of freedom. Sensor noise and wind were in-
troduced and the system was tested using two inference engines; Mamdani and TSK.
Both converged to the desired set points. However, the Mamdani converged faster with a
smaller steady state error even under noise and disturbance. The testing was carried out

using simulation and a real quadcopter.

Another implementation of a fuzzy logic controller was implemented in [15]. It was
only tested to control the stability of the quadcopter through simulation and using a real
quadcopter. However, it didn’t show satisfactory results especially in the presence of
disturbance. This is mainly due to hardware problems that was faced were the position

controller could not be uploaded to the real quadcopter.

An intelligent controller used to control the altitude and attitude only [16]. Testing the
controller was carried out through simulation only. The controller showed good results
in terms of the attitude stability for the angles roll, potch and yaw. Moreover, a good

tracking response for the altitude z was shown in the simulation results.
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Fuzzy logic is a very promising control technique that can be used to control the
quadcopter. It can adapt with the nonlinearity of the quadcopter model very well and can
also adapt with external disturbances and wind. However, very few researches were done

in this area.

B Neural Network control

Neural network control is adopted from the brain of the human, they mimic the function
of the neurons found in the brain. It is similar to the fuzzy controller in being an intelli-
gent and adaptive controller. It also doesn’t require a specific model instead it learns by

trial (learning phase). So by testing and trial the controller gets more robust.

A neural network trajectory planning controller was implemented in [17]. The quad-
copter was given a destination and the neural network controller managed to plan a trajec-
tory and reach the required destination. However at the initial trials (learning phase) the
result was not satisfactory but with each trial the result was more satisfactory until reach-
ing a stable condition. The result was satisfactory. However, the controller was tested

only to track a given trajectory and not focusing on stabilizing the quadcopter.

Another adaptive neural network controller was introduced in [18]. Two single hidden
layers were used instead of 1 and the learning algorithm of those layers were based on
lyapunov stability. A sinusoidal disturbance was introduced and the controller were able

to deal with those disturbances through simulation.

A neural network controller was developed aiming to learn the unmodeled dynamics
of the quadcopter[19] . Control of all the degrees of freedom was achieved using the neu-
ral network controller. Finally, Lyapunov stability theory was used to proof the stability
of the system. The system was tested using simulation only and showed good tracking

results.

Neural networks is an intelligent adaptive controller which can learn the behavior of
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the system with each iteration. It does not requires a dynamic model for the quadcopter

and can adapt with disturbances.

1.1.7 Hybrid control

Hybrid control is a mix between two controllers. For instance, A PID controller could be
combined with a fuzzy logic controller. The PID role would be to stabilize the quadcopter

while the fuzzy logic control would be to follow a trajectory.

Another example was introduced in [20], where a Backstepping controller was com-
bined with a neural network controller. The Backstepping controller role was to stabilize
the quadcopter while following a trajectory while the neural network role was to compen-
sate the uncertainty of the dynamical model of the quadcopter. Hence, using the neural

network there was no need to derive a model for the system.

A hybrid technique using sliding mode control with fuzzy technique to tune it. In
addition, a backstepping controller was applied[21]. A sliding surface was obtained us-
ing a backstepping controller, then a sliding mode controller was applied to enforce the
system on the sliding surface obtained. The fuzzy controller was then used to eliminate
the chattering effect. The technique was tested through simulation only and the technique
proved to reduce the chattering effect. Moreover, the quadcopter was able to track a given

desired position while stabilizing the attitude.

A sliding mode controller was implemented along with a partial feedback linearization
technique in [22]. The sliding mode controller aimed to stabilize the internal dynamics
or the position x and y. Moreover, the dynamics of the quadcopter were simplified by
assuming the yaw angle (¢) equal zero. Testing was carried out under the effect of distur-
bances through simulation only. The controller proved to be robust and able to track the

desired trajectories in the x and y positions.
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Hybrid control theory is promising for controlling quadcopters, since it combines the
best of multiple controllers to achieve trajectory tracking while stabilizing of the attitude

for a quadcopter.

1.2 Challenges

The quadcopter system is an under actuated system having four control inputs while con-
sisting of six degrees of freedom. This results in hindering a full control of the system.
Many linear and nonlinear controllers were proposed to control the quadcopter as efficient
as possible and tackle the under actuation problem such as in [14]. However the dynamic
model of the quadcopter is a nonlinear model with many uncertainties. Thus, the need for

a controller to deal with this nonlinearity and uncertainties.

As for the nonlinear controllers. Each has its point of strength and weakness. For
instance, The full state feedback linearization provide very good stability and trajectory
planning however its not robust against disturbance which is the main drawback also it
needs a very accurate model. On the other hand there is the Backstepping controller
which showed very good results especially under disturbance but its main drawback is its

complexity.

Intelligent controllers such as fuzzy logic and neural network on the contrary don’t
need an accurate model. They are very adaptive to disturbances and easy to implement
on the system. They are very efficient in trajectory control which is their main advantage.

However, since they disregard the model this hinders full stabilization of the system.

According to the aforementioned discussion a hybrid controller would be the opti-
mum controller in the case of a quadcopter. This is mainly because one controller could
be specifically designed to stabilize the quadcopter attitude and altitude while the other
controller would be designed specifically for trajectory planning. For instance, an inte-

gral Backstepping controller could be used for stability where it excels in this area while
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a fuzzy logic controller act as the trajectory planning tool. Another example would be
using a PID controller with automatic gaining for stability while using another method

for trajectory tracking such as sliding mode control.

The research challenges in the field are highlighted as follows:

1. The nonlinearity of the quadcopter model which makes it challenging to model the

system and apply a controller.

2. Designing a controller and deciding which technique should be used to control the

quadcopter (Linear control, nonlinear control, intelligent control, Hybrid control).
3. The quadcopter is an under-actuated system.
4. A coupled nonlinear mathematical model.

5. The quadcopter is influenced by uncertainties such as wind disturbance and noise

measurement.

1.3 Objectives

The aim of this thesis is to develop different control techniques that can improve flight
control stability, trajectory tracking of a quadcopter and evaluate their performance to se-
lect the best suitable control technique. Moreover, to ensure a feasible desired trajectory
before tracking it; trajectory planning algorithm is proposed. In addition, a simulation en-
vironment facilitated by a graphical user interface (GUI) is presented. Finally, a physical
quadcopter is designed and implemented to test the control techniques for validation of
the simulation results.

Therefore, the main objectives of the thesis are:
1. Derive a mathematical model for the quadcopter system.

2. Develop multiple controllers for attitude, altitude and position control and compare

their results.
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. Develop an algorithm for trajectory planning.
. Develop a simulation environment facilitated by a GUIL
. Test and validate the developed controllers using the simulation environment.

. Design a quadcopter and then implement the developed controllers on it to test and

validate the simulation results.



Chapter 2

Mathematical Model

In this chapter the mathematical model of the quadcopter is derived using Euler transfor-
mation method. The mathematical model describes how the quadcopter moves due to the
forces and torques created by the four rotors. This model is used to provide a controller
to stabilize the quadcopter and trajectory tracking based on the positions, velocities and
accelerations given by the mathematical model through IMU or any other kind of sensors.

The outline of the quadcopter with its body frame and earth frame is shown in Figure

2.1.

2.1 Axes and basic setup

Figure 2.1: Axis and Coordinates system.

The earth frame is assigned as the inertial frame, with gravity pointing in the negative

z direction. The body frame is defined by the orientation of the quadcopter, with the rotors

13
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axes pointing in the positive z direction and the arms pointing in the x and y directions.
All the propellers axis are parallel to each other. Rotors 1 and 3 rotate anticlockwise
while rotors 2 and 4 rotate clockwise. This is done in order to cancel the yawing effect
(Rotation around the z-axis). Two Degrees of freedom are indirectly controlled which are
the longitude (x) and lattitude (y) by adjusting the roll (¢) and pitch (6)[23][24]. Moreover

the other four degrees of freedom will be directly controlled and they are:

e Hover (translation along z-axis): The four rotors must have equal thrust which is
equal to the total weight of the quadcopter in order to stabilize it and hover. This is

due to the lift force generated by the four rotors.

e Roll ¢ (around x-axis): rotors 2 and 4 must have different speed. This is due to the

torque generated by rotors 2 and 4.

e Pitch 0 (around y-axis): rotors 1 and 3 must have different speed. This is due to the

torque generated by rotors 1 and 3.

e Yaw ® (around z-axis): rotors 1-3 and rotors 2-4 must have different speed. This
happens due to the fact that rotors 1-3 rotate clockwise while rotors 2-4 rotate an-
ticlockwise which make the overall torque unbalanced resulting in the quadcopter

turning on itself (around z-axis)

Thus Newton-Euler formulation is used to describe the forces that act on the quad-
copter[2][6][24]. In order to represent a mathematical model for the quadcopter some
Equations must be derived to eventually formulate the Equations of motion which will
help in simulating the quadcopter and add a controller to the system. These required

Equations are:

e The rotation matrix from the body frame to the earth frame and vice versa using

Euler or quaternions. It will be used for linear velocity transformation.

e The angular rates transformation matrix to transform the body angular velocities to

the earth angular velocities.
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e Induced inflow force.
e Gravitational pull vector.
e Forces and torques generated by the four rotors:

1. Thrust force. [U1]

2. Rolling moment (Torques). [U2, U3 and U4].

2.2 Rotation and Transformation

In this section, a transformation from the body frame to the earth frame and vice versa
using Euler angles is described. Euler angle method is widely used and clearly understood
and interpreted. However, the transformation matrix which is a 3x3 matrix includes a
trigonometric function which results in a nonlinearity and also has a singularity. This
causes the phenomenon known as gimbal lock where the system loses one of its degrees

of freedom. This is avoided by limiting the attitude angles not to reach 90 degrees.

1. Rotations in Euler angles ) 2. When all three circles are lined up,
can be defined like gimbal the whole system can only move p
system with three circles in two dimensions from this configuration, |
this is a gimbal lock 1

\ ’ 3. Usage of quaternions
: can help to avoid such
ROLL ' situations

YAW U

Figure 2.2: Gimbal lock phenomenon[25]

Euler angles were introduced by Leonhard Euler to describe the orientation of a rigid

body. They are used to describe the orientation of a frame relative to another. Moreover,
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it is used to transform a point from one frame to another frame. The Euler angles are
denoted by ¢01).
The transformation matrices representing the rotation about each principle axis is

shown in Equations (2.1), (2.2) and (2.3).

_1 0 0
R.(¢) = |0 cos(¢) —sin(¢) 2.1)
0 sin(¢)  cos(¢)
| cos(f) 0 sin(0)
Ry (0) = 0 1 0 (2.2)
| —sin(f) 0 cos(0)
cos(¢) —sin(yy) 0
R.(¢) = |sin(¢)  cos(v)) 0 (2.3)
0 0 1

The transformation matrix from the body frame to the earth frame is the product of

the three rotations in the sequence zyx:

Thus the matrix describing the rotation from body frame to earth frame is shown in
(2.5),
cOcp  cpslsp — sipep  cpsbced + siso
R, 0,¢) = |sihch  sipshsd + cipeg  sihslep — cipse (2.5)
—s6 csp cOco
Where ¢ = cos, s = sin.
The angular rates transformation matrix from body angular rates to Euler angular rates

or velocity (w) can be described as [26]:
0 0 e 1 0 — sin(0) e

w= Ry () Ry(0) |0| +R=(0) |s| +|0] = |0 cos(¢) sin(¢)cos(f)| |s| (2.6)
t 0 0 0 —sin(¢) cos(¢)cos(d)| |t
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Taking the inverse gives,

1 sin(¢)tan(d) cos(¢)tan(d)
Rw = |0 cos(¢) — sin(@) 2.7
0 sin(¢)/cos(f) cos(¢)/ cos(d)

2.3 Kinematic and Dynamic model

In this section the goal is to describe the quadcopter Equation of motion with respect to
the earth frame using the transformation matrices (2.5) and(2.7). The quadcopter linear
and angular motion relative to the earth frame is denoted as [z y 2z ¢ 6 1 ] while the

linear and angular velocities relative to the body frame is denoted as [u v w e s t].
From Equations (2.5) and(2.7) linear and angular velocities could be written as [1][4][19]:

v = R.uwpg (2.8)

w = Rw.wp (2.9)

where v is the linear velocity vector relative to the earth frame [% y 2], vp is the linear ve-
locity vector relative to the body frame [u v w], w is angular velocity vector relative to the

earth frame [¢ 0 1] and wp is the angular velocity vector relative to the body framele s ¢].

Thus the kinematic model can be written as:

-9'5 clcp  cpslsp — siped  cpsbep + ssep| | u

v=|g| =Ru= | ¥l spslsp+ cipcd spsbep — cpsp| | v (2.10)
_z" —s6 clso clco w
_é 1 sin(¢) tan(0) cos(¢) tan(f) | |e

w= 10| =Rww= {0 cos(¢) — sin(¢) s (2.11)
_1/} 0 sin(phi)/ cos(theta) cos(¢)/cos(8)| |t
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In order to represent the dynamical model of the system the total forces acting on the
quadcopter should be accounted for. This is done using Newton’s law for linear forces
and Euler’s law for torques. Newton’s law is applied on the quadcopter as shown in Equa-

tion (2.12) to calculate the linear forces acting on the quadcopter [1][4][19].
Ja
fB = fy = m(vB + wp X VB> (212)
I-

Where f is the total force acting on the quadcopter and m is the mass of the quadcopter

As for the total torques (T) acting on the quadcopter are calculated using Euler’s law
shown in Equation (2.13) [1][4][19].
T

T=|T,| =jws+ws X (j.wg) (2.13)
T,

where j is the moment of inertia for the quadcopter:

I, 0 0
i=|o 1, o (2.14)
0 0 I,

2.3.1 Forces and linear acceleration

Linear acceleration happens due to the net forces acting on the quadcopter. So it is es-
sential to calculate all the linear forces affecting the quadcopter to derive eventually the

linear translation. The forces derived is based on Newton second law which states that:
f5=m(Vg +wp x Vp) (2.15)

Thus,
fo =m(i+ ew — tv)
fy = m(v — ew + tu) (2.16)

fo =m(w+ ev — tu)



19 CHAPTER 2. MATHEMATICAL MODEL

A Lift force

The main force which is provided by the four rotors is the lift force f;;; that is also
considered as the first control input (U1) which is responsible for the altitude (Translation

along the Z-axis) [2].

frige = cpAr? (5 + Q5+ Q3+ QF) = Ul

fiipe =k (QF + Q3 + Q3 + Q) = U1 (2.17)
where ¢, is the lift coefficient, p is the density of the air, A, is the cross sectional area
of the propeller’s rotation, r is propeller’s radius and (2 is the rotor speed. The above
parameters are lumped into one parameter that is denoted by kf. Thus. The lift force

within the body frame is

0
fiift—-B = 0 (2.18)
kf(Q2 4+ Q%2+ Q2+ Q2

B Gravitational pull
This force is pulling the quadcopter downwards relative to the earth frame.
0

fg:m 0
g

To represent the gravitational force relative to the body frame it’s stated as:

0
fo-B = R'm |o
g
foz —myg sin(f)
fo-B=|fu| = |mg cos(6)sin(¢) (2.19)

foz mg cos(6) cos(¢)
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where m is the total mass of the quadcopter, while g is the gravitational acceleration

=9.82 m/s?

C Induced inflow force

When the lift force is larger than the gravitational force the quadcopter do not rise with
constant acceleration. This is mainly because of a phenomenon called the induced inflow.
As each rotor starts rising through the air, the airflow through the propellers starts in
increasing which generates a negative small force perpendicular to the rotor called the

induced inflow force [6].

0
fi=ilo (2.20)
V:
Where V, is the vertical velocity along the z axis relative to the body frame and i is the

induced inflow constant which is calculated through imperial tests.

D Disturbance

Wind disturbance has high influence on the quadcopter stability. Thus, it is accounted for
in the form of forces f,, and moments 7T,,.

E Total forces

From the above deduced forces the total force relative to the body frame can be written

as:

Jrota—B = —flifi—B + fg—B + fi + fu (2.21)
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F Linear acceleration

The dynamic model relative to the body frame can be deduced by substituting in Equation
(2.21)
m(i + ew — tv) = fue —mg sin(6)

m(0 — ew + tu) = fi,y + mg cos(f)sin(¢) (2.22)
m(w + ev — tu) = fi + fu: +mg cos(f) cos(¢p) — Ul

Using Newtons second law it can be deduced that

V=_F (2.23)

m

Then Equation (2.23) is used to derive the linear acceleration with respect to the earth

frame,

R.frota—-B = fg — R.fiipi—p + fuw + fi (2.24)

Therefore, the linear acceleration with respect to the earth frame using Euler angles can
be written as,

U1l
¥ = (cos ¢sinf cosyp + singbsinzﬁ).ﬁ

1
i = (cos ¢sinfsin) — sinqbcosdz).%
1
Z =g — (cos ¢ cos «9)% (2.25)

2.3.2 Torques and angular acceleration

Angular acceleration occurs mainly due to the torques acting on the quadcopter.

The total torques applied to the quadcopter is stated by Euler’s law:[1][4][19]

T=j%xuwp+ (wp X J*wp) (2.26)

Thus
T, = elyy — stly, + stl,.

T, = il — etly + etl.. (2.27)
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T, =1I,, —esl,, + esly,

Finally, the net moments acting on the quadcopter can be written as:

T=Ty+T, -G (2.28)

Where T are the applied torques by the four rotors [T, Ty T3], T, are the torques
generated by the wind disturbances [T, T, Ty and G represents the gyroscopic effect
caused by the four rotors. Since the moment of inertia for each rotor is relatively very

small the gyroscopic effect will be neglected for simplicity.

A Input Torques

The main reason for torques is the difference between each rotor speed. There are three

torques generated which results in three angular displacement (Roll, Pitch and Yaw).

Ty = [w? (2.29)
_ 2 2\ __
Ty=1%kf(—Q3+Q3) = U2 (2.30)
Ty=1%kf(—Q5+Q7) =U3 (2.31)
Ty =b(—QF + Q3 — Q3 +QF) = U4 (2.32)
Ty
Ty

Where b is the drag constant and 1 is the arm length.
The dynamic model for the total moments relative to the body frame can be deduced

by substituting in Equation (2.28).

elyy — stly, + stl,, = U2+ Ty,
sl — etly, +etl,, = U3+ Thy, (2.33)

tl,, —esl,, + esly, = Ud + Ty,
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B Angular acceleration

Angular acceleration relative to the body frame can be deduced from the torques in the

following manner, [1][4][19]

T =jxwp+ (wp X Jj*wp) (2.34)
Wp =" *T) = [j7" * (wp X j *wp)] (2.35)
é Lx kf(=02 + Q2/1,,
wp= 3| = | Ixkf(-Q3+02)/I,, |-l "*(wsxj*rwp) (2.36)

t (=0 + Q3 — Q5+ Q})/ L.

To simplify Equation (2.36) the assumption [¢ 6 ¢»= [e s t] is made. This is valid only for
small angle changes. Thus the angular accelerations relative to earth frame using Euler

transformation could be written as:

. U2 Iy—L.;

o=t

. U3 ]zz — ]zm ..

=22 4t ey (2.37)
[yy Iyy
Ud Iy — 1, -

= 0
bEL T ¢

2.4 Control Forces

The input controls for the quadcopter are chosen as U = [U1 U2 U3 U4]" where the first
control input is for the altitude control while the remaining three control inputs are for
controlling the attitude (Roll, Pitch and Yaw) [2]. As shown in Equation (2.38) The basic
need is to stabilize the quadcopter at the required position and follow a desired reference
trajectory. This is done by calculating the required rotors angular speed using inverse

dynamics for the quadcopter.

Ul=T=u.(Zg— Z)m = kf(QF + Q2 + Q2 + QI) (2.38a)
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U2 =Ty =us(pg — ®) e = L ¥ kf(—w3 + w3) (2.38b)
U3 =Ty =ug(0g—0),, =1 kf(—wi+w3) (2.38¢)
Ud =Ty = up(thg — V)1, = b(—w} +w; — w3 + wj) (2.38d)

And the inverse dynamics could be written as in Equation (2.39) [23].

1 1 1
2= —_Ul—-——-U3—-—U4 2.3
Ty T R (2.392)
1 1 1
3= —Ul—-—-U3+ U4 2.39
“CEGF Tt T (2.390)
1 1 1
2= —Ul4+—-U3—-—U4 2.
w3 4ka + 2kf.lU3 g (2.39¢)
1 1 1
wi=——Ul+—-U3+—U4 (2.39d)

Ak f 2k f.l 4b

2.5 Linear Model

In order to use a linear controller for the quadcopter model. The model derived in the
previous section must be linearized. To achieve this a method for linearization must be
chosen and implemented on the model of the quadcopter derived in the previous section.
Ist order Taylor series linearization for multivariable is used to linearize the nonlinear
elements within the Equations of motion derived for the quadcopter model.

The Equation for the linearization of a function f(X,y) at the operating point p(a,b)
using Taylors series method is:

of (z,y)
ox

of (z,y)

Flay) = flab) + o

lap(z —a) + lap(y — b) (2.40)

The quadcopter is stabilized around the hover point which will be chosen as the oper-

ating point. These operating points are expreesed within the body frame.

V=10 (2.41)
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0
w= 10 (2.42)
0
As for the control inputs:
_mg_
o-|"° (2.43)
0
L 0 h

2.5.1 Linearization of Rotation Matrices

To carry out the linearization using the Taylors series equation the rotation matrices are
calculated using the operating points as follows:
From Equation (2.40) the trigonometric functions can be approximated at the operat-

ing point as shown in Equations (2.44),(2.45) and (2.46).

sini ~ sin (0) + cos (0).7 ~ @ (2.44)
cosi ~ cos (0) + —sin (0).7 ~ 1 (2.45)
tan? ~ tan (0) + W.z =X (2.46)

Using the approximation derived in (2.44),(2.45) and (2.46) the linearized linear and

angular transformation matrices can be deduced as,

clcp  cslsp — segp  chsbcp + sso
Rp = |sicl sipsbsgp + ciped  sihsbed — cpsg (2.47)
—s0 clso clco

1 o0y — 0+ o 1 -y 46
Rp= |4 ¢op+1 6—o w1 -6 (2.48)
—0 0] 1 -0 o 1
Substituting (2.48) in Equation (2.10) using taylor from Equation (2.40).

Q

VIE*VB—FR*‘/AB
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1 = 0 u

V=1y —¢| * |v

-0 o 1 w
V=V, (2.49)

The same method for the angular transformation matrix and angular acceleration
transformation is carried. Using the approximation derived in (2.44),(2.45) and (2.46) the
linearized angular transformation matrix can be deduced from the rotation matrix (2.7)

as,

1 sin(¢)tan(d) cos(¢) tan(f)

Rw = |0 cos(¢) — sin(¢)
0 sin(¢)/cos(f) cos(¢)/ cos(0)
1 0 6
Ru=1{0 1 —¢ (2.50)
0 ¢ 1

To get the linearized angular acceleration the linearized transformation matrix (2.50) will

be substituted into Equation (2.9) using taylors method (2.40).

w = Rwwp + Rw wp

10 4
w=10 1 —¢|ws
0 ¢ 1
& = wg 2.51)

2.5.2 Linearization of forces

Linear force and moment are affecting the quadcopter. Both of the forces are derived
in Equations (2.21) and (2.36) respectively. Each one is linearized using the operating
points. The first Equation is the linear force Equation which consists of three individual

parts. Thus, its possible to linearize the gravitational part individually. Equation (2.52)
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shows the gravitational part in the Fp.—, Equation linearized using the inverse of the

linearized linear transformation matrix deduced in Equation (2.48).

frotal-B = —flifi—B + fg—B + fi + fu

1 ¢ —6| |0 —0
Refyp=|—v 1 o]0l m=]¢]|gm (2.52)
0 —¢ 1 g 1

now we can substitute Equation (2.52) and Rewrite the Equation of linear acceleration

(2.23) in vector form as in (2.54),

0 —0 0 fuz
: 1
Vi=—1— 0 + ¢ |gm+i 0|+ |fuy (2.53)
kf(OF + Q3 + Q3 +03) 1 V.| | fuz
—0g + fimr
V=V = og + L (2:54)

The second Equation is the moment or torques deduced in Equation (2.34) and (2.36).
in order to linearize the angular acceleration the operating points is substituted in Equation
(2.36) and rewrite it as in Equation (2.55) based on the linearization deduced in Equation

(2.51)

Wy e fwx + U2/Ia:m
wy| = || = | fuy + U3/L, | (Euler) (2.55)
Wy t fwz + U4/[zz

The linearized equations of motions can now be represented in State Space form.

2.6 State Space and Control Model

In this section the linearized equations of motions derived in the previous section are
converted into state space form. This will make it easier to implement the desired linear

controllers.
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2.6.1 Equations of Motion and Control Inputs

A Linear accelerations

i i —0g + Lu=
0 fw| [T g g L
B Angular accelerations
W= by | = 8| = | fuy +U3/1,, (2.57)
0, t fuw-+ U4/,
C Control inputs
Ul=T =u.(Zg— Z)m = kf(QF + Q3 + Q2 + QI) (2.58)
U2 =Ty = tug(pg — ¢) Lo = L5 kf(—QF + Q3) (2.59)
U3 ="Typ=ug(0g—0)L,, =1xkf(—Q5+Q3) (2.60)
Ud =Ty = uy(vha — ) L. = b(—QF + Q3 — QF + 0F) (2.61)

2.6.2 State Space Representation

The state space is in the form:

InputsU1 U2 U3 U4]
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Outputsjz y z ¢ 0 V, 'V, V]

Disturbances|fus fuy fwz Twe Twy Tw:]

State variables

T, =1 (2.62a)

To =1y (2.62b)

T3 =2 (2.62¢)

Ty =V, (2.62d)

x5 =V, (2.62¢)

x6 =V, (2.62f)

T7=¢ (2.62g)

xg =10 (2.62h)

g =1 (2.621)

T10 = Wy (2.62))

T11 = w, (2.62Kk)

T1o = W, (2.621)
States equations

==V, =14 (2.63a)

To=y=V,=us (2.63b)

r3=2=V,=ux4 (2.63¢)

iy =V, =—0g+ f:f (2.63d)

i5 =V, = bg+ Juy (2.63¢)

(2.63f)
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T7 = Wy = T10 (2.63g)

Tg = Wy = T11 (2.63h)

Tg = w, = T12 (2.631)

B0 = Wy = fuz + U2/ 11 (2.63))
T =Wy = fuy +U3/1y, (2.63k)
T1o = Wy = fu. +U4/1,, (2.631)

C Output equations

Y1 =2 =1 (2.64a)

Yo =Y = To (2.64b)

Ys = 2 = T3 (2.64¢)

ys =V, = x4 (2.64d)

ys =V, = x5 (2.64¢)

Yo = Ve = g (2.64f)

yr = ¢ = 7 (2.64g)

ys = 0 = xg (2.64h)

Yo =1 = Xy (2.641)
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D State matrices

000100O0 O O0OO0OO0OO
00001O0O0 O OO0OO0OO
0000O0OT1TO0O O OO0OO0OO
0000O0O0OO0O —=gO0O0O00O0
00 00O0O0Og¢g 0 0O0O0O
Ao 0000O0OO0OO0O O OO0OO0OO (2.652)

0000O0OO0OO0O O OT1TO0OQO0
0000O0O0OO0O O OO0OT1OQO0
0000O0OO0OO0O O OO0OTO0OT1
0000O0OO0OO0O O OO0OO0OO
00 00O0O0OO0O O OO0OO0OO
_O 00 00O0OO0O O OO0OO O_

(0 0o 0o 0 |

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
g |V 0 0 0 (2.65b)

0 0 0 0

0 0 0 0

0 0 0 0

0 1/Izaxz 0 0

0 0 1/Iyy 0

| 0 0 0 1/12z]
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100000000O0O0O
01000000O0O0GO0O
001000000000
00010000000 O
C=10000100000U00 (2.65¢)
0000010000GO0O
00000010000 O
000000010000
00000000100 0
(0 0 0 0 0 0 |
0 0 0 0 0 0
0 0 0 0 0 0
1/m 0 0 0 0 0
0 1/m 0 0 0 0
L_ |0 0 Um0 0 0 (.65
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1/zz 0 0
0 0 0 0 1/lyy 0
| 0 0 0 0 0 1/1zz]

The model was checked for controllability using MATLAB. The system is of full rank

12 which is equal to the order of the system. Hence, the system is controllable.



Chapter 3

Linear Control (PID)

In this chapter a PID controller is applied on the quadcopter system to achieve stability for
position and attitude given the desired values. The main nested control loops for position

and attitude control are shown in Figure 3.1.

U1
x,y,z,yia_g } XY Zyaw
esire - U2
Fosition Roll des ——— Maotor RP System
"r‘r’fzr‘r‘ég control Pitch de% Attitude —}U3 Dynamics Dynamics Roll, Pitch
control U4 : Y
A

Figure 3.1: PID main control scheme

3.1 PID Control

PID controllers are the most used controllers in the industry. That is mainly due to:
e Simple structure
e Tuning without having a precise model.
e Good performance.

e Various manual method for determining the gains as well as various software for
automatic tuning such as Simulink.
The PID controller structure is shown in Figure 3.2 and Equation (3.1)
de(t)

¢
u(t) = Kpe(t) + KI/ e(t)d; + KDZZ— 3.1
0 ¢

u(s) = Kpe(s) + Kfée(s) — Kpse(s)

33
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» Kp
/

Propotional gain

Ref + ! 1— P Ki ,++ u ¥y

Integrator  Integrator gain System dynamics

du/dt piKd
/

Derivative  Denvative gain

Y

Y

Figure 3.2: Traditional PID controller

The controller consists of three parts.

e Proportional term.
It produces an output value which is proportional to the error value. The propor-

tional response can be adjusted by changing the proportional gain.

e Integral term
The integral term varies according to the integral of the error. It is responsible for
eliminating the steady state error. Its response can be adjusted by changing the
integral gain. However, since the integral term varies to the accumulated error, it
can cause the present value to overshoot the desired value especially in the case of

large errors.

e Derivative term
The derivative term varies according to the derivative of the error. It is responsible
for decreasing the overshoot and the settling time. However, differentiation of a
signal amplifies noise and can cause a process to become unstable. In other words

the derivative term acts as a high pass filter [27].

As aresult for a system with uncertainties such as the quadcopter. A method is needed
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to overcome the problems that are mentioned in the derivative and integral terms.

3.2 Effect of Nonlinearities and Noise

The quadcopter system does not account for noise and nonlinearities effects. This affects

the derivative and integral term which can be avoided using the following techniques.

3.2.1 Derivative filtering for PID

When applying the derivative term two problems could arise:

1. If the reference input has sudden large changes this would lead to a large derivative

term, this would result in a high control signal.

2. Usually there is noise produced by the measurement sensors with high frequency

which would lead to a large derivative term.

Since switching off the derivative term is not a good solution as it is the main contributor
to the transient response another solution is to change the form of the derivative term by
introducing a filter which will overcome the noise and disturbance by attenuating high

frequency. The resulting PID controller when adding the filter to the derivative term is:

1 Ns
u(s) = Kpe(s) + K};e(s) + KDN i

e(s) (3.2)

3.2.2 Anti integral windup

An integral action within a controller combined with an actuator that becomes saturated
gives undesirable effect. This is taking place when the control error is very large and
accordingly the integral saturates the actuator and hence the feedback path breaks. Such
situation is called integrator windup and leads to a large overshoot and high setting time.
There are several ways to avoid integrator windup. The first method is by stopping to
update the integral when the actuator is saturated. The second method is by introducing a

feedback which measures the actuator output to form an error signal between the actuator
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and the controller force and feeding this error to the integral through a gain. Thus, when
the actuator saturates the feedback tries to make the error signal zero which means the

integrator is reset [27] [28].

3.2.3 Modified PID controller structure

After applying the two techniques the PID structure becomes as shown in Figure 3.3

Propotional gain

Integrator ~ Saturation  Integrator gain

T )
= o
Derivative gain Filter Coefficent
1
s

integrator

Figure 3.3: Modified PID controller

3.3 PID Stability Controller

The main closed loop control structure depicted to the quadcopter system is shown in fig-
ure 3.4. Six individual PID controllers are applied for each degree of freedom to achieve

stability at the desired values.

3.3.1 Attitude and heading control

The Roll (¢) and Pitch (#) angles are responsible for the attitude respectively while the

Yaw (¢)) angle is responsible for the heading. For each one, a PID controller is applied to
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a u1
z ref _@ Altitude controller

z

L
e Roll ref
y ref .@ Longitude controller — —»@ Roll controller vz >
|

Roll

[ Y
Pitch ret
x ref e Latitude controller .@ Pitch controller LI

Pitch

X
Yaw ref e Yaw controller i
(heading)

yaw

Figure 3.4: Main controller structure
produce [U2 U3 U4]T respectively.

A Roll control

The controller is shown in Figure 3.5. The inputs are the Roll (¢) actual and desired while

the output is U2.

>
I/

Propotional gain1

1
» E » _/_ »

Integrator1 Saturation1 Integrator gain1

>

Derivative gain1 Filter Coeffeicent1

—

integrator1

Figure 3.5: Roll PID control
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B Pitch control

The controller is shown in Figure 3.6. The inputs are the Pitch (¢) actual and desired

while the output is U3.

>
V

Propotional gain2

1
S A

Integrator2  Saturation2 Integrator Gain

1>

Derivative gain2 Filter Coeffeicent?)

—

integrator2

Figure 3.6: Pitch PID control

C Yaw control

The controller is shown in Figure 3.7. The inputs are the Yaw (¢) actual and desired while

the output is U4.

p 6

Propotional gain4

[}
Y
n|—=

A

2

Yaw ref

Integrator4d Saturation3 Integrator gain4 lzz
(G )vaw
)

Filter Coeffeicent3
1

-]

Derivative gain7

integratord

Figure 3.7: Yaw PID control
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3.3.2 Position control

The position of the quadcopter is determined by the longitude (x direction), latitude (y di-
rection) and the altitude (z direction). For each one a PID controller is applied to produce

(U1 Oges daes)” respectively.

A Altitude control

The controller is shown in Figure 3.8. The inputs are z actual and desired while the output

is Ul.

»{50
/

Propotional gain

1
o s

Integrator Saturation  Integrator gain J 1/m

Derivative gain Filter Coeffeicent

1
s

integrator

Figure 3.8: Altitude PID control

B Longitude control

The controller is shown in Figure 3.9. The inputs are x actual and desired while the output

is the Pitch (6).
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p{10
L

Propotional gain1

1
Lt = L
]

Pitch desired

Integrator1 Integrator gain1 -1/g
>
Derivative gain1 Filter coeffeicent
1
5 el
integrator1

Figure 3.9: Longitude PID control

C Lattitude control

The controller is shown in Figure 3.10. The inputs are y actual and desired while the

output is Roll (¢).

10

™ Ll

. Roll desired
Integrator2 Integrator gain2

%

Derivative gain2 Filter coeffeicent1

1/g

- Y

integrator2

Figure 3.10: Lattitude PID control
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3.3.3 Position and Attitude control tuning

The gains for each controller are tuned by three means. The first one is using the tune
feature in the Simulink. The second one is by trial and error and testing using the Simulink
constructed simulator and finally based on literature. The general effect of each of the

proportional, integral and derivative gains are stated in Table 3.1

Table 3.1: PID gains effect

Coeffeicent Effect Large value Small value
Kp Incresed Reduce Stability | Slower response,
acceleration and steady error
stability
K Decrease steady | Reduce stability, Large settling
error oscillatory time
response
Kp Increase stability, | Increase stability, | Could make the
reduce oscillation in crease system unstable
(small settling turbulence effect
time)




Chapter 4

Fuzzy Gain Scheduled PID Controller

The PID controller adopted in the previous chapter has static gains which were deter-
mined on several simulations and many trials. However, wind disturbance and sensors
measurement noise influence the PID controller performance. This is mainly due to the
fact that the static PID gains need to be real-time tuned to adapt with wind disturbance and
measurements noise. Thus, a proposed hybrid Fuzzy gain scheduled PID control (FPID)
is applied on the quadcopter system. The fuzzy control will be responsible for actively
choosing the gains for the PIDs that renders the quadcopter stable taking into considera-
tion the circumstances it is flying in. The suggested control approach is shown in Figure

4.1

XY ZYa v > XY 2w
eare PoFsF'r‘tIi[{)m Rolldes 9  ppp U2 Motor RPM, System
POEDLL control Bitch desy,|  Attitude —-):i Dynamics » Dynamics Roll, Pitch
control v

Figure 4.1: Fuzzy PID control

Two well knowns method are adopted to define the output for the fuzzy control.

e The first method is the mamdani which treats the output as the inputs and set a
predetermined range for the output. i f input x = small and input y = large then

output z = verylarge

e The second method is Takagi-sugeno (TS) which defines the output as a function

if inputr = small and inputy = large then output z = ax + by + ¢

Each method has its advantage and disadvantage. The Mamdani method requires a
large memory requirement . Thus, a powerful on board controller should be chosen. The

TS method on the other hand requires less memory requirement but more complicated to

42
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formulate. Hence, Mamdani approach is adopted where the rule base is based on linguistic
directions rather than mathematical functions. To construct a fuzzy control based on the

Mamdani approach certain steps must be carried out,

1. First different fuzzy linguistic variables should be set for each input and output, then
a fuzzy rule is set which converts fuzzy input variables into fuzzy sets of variable
outputs. The rules are in the form of IF/THEN statements. The rule is set according
to human reasoning and past observations. The basic operators of fuzzy logic are

(AND), (OR) and (NOT).

2. After setting the variables and the fuzzy rule fuzzification stage starts where each

input variable is converted into the relevant fuzzy variable.

3. Fuzzy implication is implemented using the rules developed to map the input vari-

ables to the output membership functions.

4. Fuzzy aggregation then takes place where the output sets are combined to form a

simplified definitions.

5. Final stage is the defuzzification where the output sets are translated to real values.

4.1 Developing of the Fuzzy Controller

Two inputs and three outputs are chosen for the control. The inputs are the error e and
rate of change in error ed while the outputs are K, K; and Kp. The general structure of
the Fuzzy control is shown in Figure 4.2 and the fuzzy linguistic variables are shown in

Table 4.1

ard e

FIRSTFUZZY -{
(mamdani)

Eg Eg ------------ ""-~-___u‘+ -

ed

Figure 4.2: General fuzzy control structure
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Table 4.1: Linguistic variables

L Large
Medium

S Small
NL Negative Large
NM Negative Medium
NS Negative Small

Z Zero

PS Positive Small
PM Positive Medium
PL Positive Large

4.1.1 Membership functions

The membership functions are chosen to be the same for all the inputs and outputs. They
are chosen to be triangular functions. For all inputs and outputs minimum and maximum
values are chosen based on testing and literature review [3][14][15].

Before proceeding the input values must be normalized using Equation (4.1).

ol = L Tmin_ 1)

Taz — Tmin
The outputs will be mapped into their real values using Equation (4.2)

Tr = x/(xmax - xmm) + Tmin (42)

After normalization the membership functions are shown in Figures 4.3 and 4.4.
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Figure 4.3: Inputs membership functions (e and ed )

Figure 4.4: Outputs membership functions (Gains)

4.1.2 Fuzzy rules
The rules set for the Propotional, Integral and Derivative gains are set as follows [3][14][15]:
e [Fe=NL AND ed = NL THEN Kp =M.

e [Fe=NL AND ed =NM THEN Kp=1L.

IFe=NL AND ed =NS THEN Kp=L.

IFe=NL AND ed =Z THEN Kp =L.

IFe=NL AND ed =PS THEN Kp =L.

IFe =NL AND ed = PM THEN Kp =L.

IFe =NL AND ed = PL THEN Kp =M.

IF e =NM AND ed = NL THEN Kp =S.
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e [Fe=NM AND ed = NM THEN Kp =M.

e [Fe=NM AND ed = NS THEN Kp =L.

e [Fe=NM AND ed =ZTHEN Kp=L.

e [Fe=NM AND ed =PS THEN Kp =L.

e [Fe=NM AND ed = PM THEN Kp =M.

e [Fe=NM AND ed = PL THEN Kp =S.

e [Fe=NS AND ed =NL THEN Kp =S.

e [Fe=NS AND ed =NM THEN Kp =M.

e [Fe=NS AND ed =NS THEN Kp =L.

e [Fe=NS AND ed=7ZTHEN Kp =L.

e [Fe=NS AND ed =PS THEN Kp=1L.

e [Fe=NS AND ed =PM THEN Kp =M.

IF e =NS AND ed = PL THEN Kp = S. And so goes on.

All the Fuzzy rules are shown in Tables 4.2 and Figure 4.3.

4.1.3 Defuzzification

After setting the rules the fuzzy outputs cannot be directly provided to the system. Thus,
Defuzzification process is required to convert the linguistic outputs into numbers. Any
change in the inputs should not produce a large change in the outputs. Inorder to achieve
this. The defuzzification method is chosen as centre average or centroid. The control

surfaces for Kp,K; and K are shown in Figures 4.5 and 4.6.
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Table 4.2: Fuzzy rules for Kp and K

e/ed NL NM | NS Z PS PM PL
NL M S S S S S M
NM L M S S S M L
NS L L M S M L L
4 L L L M L L L
PS L L M S M L L
PM L M S S S M L
PL M S S S S S M
Table 4.3: Fuzzy rules for Kp

eled NL NM | NS Z PS PM PL
NL M L L L L L M
NM S M L L L M S
NS S S M L M S S
Z S S S M S S S
PS S S M L M S S
PM S M L L L M S
PL M L L L L L M

Figure 4.5: Control surfaces for Kp and K
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Figure 4.6: Control surfaces for K

4.2 Implementing the Fuzzy Controllerl on the Quadcopter

The previous PID models are combined with the developed fuzzy control to be able to

get the PID gains online. The fuzzy control is added to the PID controllers as shown in

Figure 4.7.
3 . R A
Roll ref .
Integrator!  Saturation1
("4 )Roll

= du/dt

Dervative

ed kp
$al o [XN\ |
»1€ fen fcnkd

MNormalize Fuzzy Logic Denormalize

Controller

Figure 4.7: Fuzzy gain scheduled PID control



Chapter 5

Hybrid Control Strategy

In this chapter a hybrid control strategy is presented that constitutes three control tech-

niques. These control techniques:

e FPID with state coordinates transformation
e State feedback control, and

e Sliding mode control.

The configuration of the hybrid control strategy is arranged into two control loops. The
inner control loop aims to control the quadcopter’s attitude and altitude while the outer
control loop aims to control the quadcopter’s position. Two configurations were devel-

oped to configure the developed hybrid control strategy:

1. A sliding mode control is used for the outer control loop while for the inner con-
trol loop two control techniques are used to realize it: FPID with state coordinates
transformation and a state feedback control.

2. FPID control is used for the outer control loop while for the inner control loop two
control techniques are used to realize it using the same formation as in the first

configuration of the hybrid control strategy.

5.1 Hybrid Control Strategy: Configuration 1

The first configuration of the hybrid control strategy is shown in Figure 5.1. The configu-

ration adheres to:

e For the outer loop, The position controller is based on a sliding mode controller. The
trajectory generator and the position controller delivers the desired attitude and al-
titude [z4 ¢q 04 4] to the inner control loop.

e In the inner control loop:

49
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— The attitude and altitude controller consists of FPID controller which produces
the linear control forces [v1 v2 v3 v4] using the system states and the desired
attitude and altitude provided by the outer loop.

— Then the linear control forces are transformed into the nonlinear control inputs

[U1 U2 U3 U4] via the state feedback control law.

Outer Control Loop (Sliding mode Controller)

Inner Control Loop (FPID and State feedback)
| = = o IR
@2 4 viy, UL o |
) V2 al
Trajectory desired l ] FPID ) A »|  State feedback uz > System 1 |
generator v Lo | Atitude and Altitude B u= )+ u3 > Dynamics 1
desel SMC control LS us o |
Position o - L
desire - A I
| control State transformation 1 |
LA | A satesz6,v,6) States (x, v, 2 . v, 6,8, v 6) |
' I
| States (x,y, ¢, 8) |

Figure 5.1: Configuration 1 of the hybrid control startegy scheme using FPID with state

transformation, state feedback and SMC

5.1.1 Inner control loop: FPID with state coordinates transforma-

tion and a state feedback control

As previously stated a quadcopter system is considered as a coupled under-actuated sys-
tem. Thus, if applying a full feedback linearization the decoupling matrix A that rep-
resents the LIE derivatives of the states will be singular[29] [30]. Two methods were

suggested for solving this problem,

1. The first method is called ”dynamic extension” [28][31][29] in which the whole
system is represented as one block and a new states are introduced to it. This
is achieved by differentiating the output responsible for the system being coupled
until the other inputs show up. This method is able to solve the problem however it

results in very high derivative terms which are very complicated to compute.
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2. The second method is called "Feedback linearization using partial states and stabi-
lization of the internal dynamics”. It is carried out by dividing the system into two

subsystems (inner and outer control loops).

e The inner control loop is controlled using a state feedback control technique

alone or as a combination with other linear controllers, such as, LQG and Hoo.

e The outer control loop is considered as an internal dynamics for position con-

trol, which is stabilized using one of the relevant controllers [32] [29] [30].

The second method is much simpler than the first one since the derivatives of the
outputs are of lower terms. However, the internal dynamics must be stable for the
overall stability of the system to be achieved. Hence, feedback linearization using

partial states linearization and stabilization of the internal dynamics is developed.

Before proceeding the system’s Equations of motion derived in Chapter 2 are shown

in Equation 5.1.

Ul

Z = (cos ¢sinf costp + sin psin ). — (5.1a)
m
. o . Ul
i = (cos ¢sinfsiny) — sin ¢ cos ). — (5.1b)
m
1
Z = —g+ (cos ¢cos O)U— (5.1¢c)
m
. U2 I,—L.
S 1
¢ L 0y (5.1d)
. U3 L.—1L,
=—+ 2200 (5.1e)
‘[yy ]yy
L U4 Ly—1y,
(8 T + I ¢ (5.1)

The states for the inner control loop [z ¢ 6 )] are considered as outputs and the control
forces [U1 U2 U3 U4] as the control inputs. The nonlinear subsystem is described in the

form of:

(5.2)
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From Equations 5.1 and 5.2, we have

Z —g (cosgcosf).= 0 0 0] |Ul
e fulez i) 0 L o9 0] |v2
= =] "+ e (5.3)
6 S 0 0+ 0] |U3
7 III Iyy
v [T ¢>9 ] 0 0 0 o= |U4]
Where, ) )
-9
Lyy—1
yy zzew
fly=1|, " (54)
ZZIny‘L¢/[7Z)
i
(cospcosf).= 0 0 0
0 = 0 0
g(x) = o (5.5)
0 0 £ 0
I 0 0 0 o]
z
¢
y=nh(z)= (5.6)
9
_w_

Assuming all system states are measurable. A state feedback control law can be used

in the form of:

= a(z) + f(x).v (5.7)

Where v = [vl v2 v2 v2] is the linear control force vector which is fed to the state
feedback control. From the literature, the formulation of «(x) andf(x) is represented as,

[33] [34]
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afr) = —A"1b(x)
5lr) = A~

(5.8)

Where A is the decoupling matrix which must be nonsingular and b(z) is the Brunovsky
normal form. b(z) and A is computed as expressed in Equations 5.11 and 5.12 respec-
tively.

We focus now on a single-input, single output system. More details on this technique

is in appendix A. The derivative of the output y can be expressed as [29][30]:

=b(z) + Ax).u (5.9)

Where r; is the relative degree that represents the number of times the output y is
differentiated until the input shows up. To be able to transform the nonlinear system into
a linear one via state feedback, the total relative degree » must be equal the total order
of the system. Thus, differentiating the output vector till u shows up yields,[33] [29][30]
[33] [34]

ARRE
U ¢
=|.| =b)+A(z)u (5.10)
U 0
i Y

The total order of the whole quadcopter system including the internal dynamics is
equal to 12. However, the total order of the quadcopter inner control loop system under
consideration is n = 8 and the relative degree is r1 = 72 = r3 = r4 = 2. Therefore the
total relative degree » = 8. . Thus, the total relative degree and the order of the system
are equal » = n. Hence, The system can be transformed via a state feedback into a new
system which is fully linear and controllable.

b(x) and A(x) is formulated as,
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L?hl(l’)
L"2hy(x
bx)= | ! 2(7) (5.11)
_L7}4h4<.§€)_
Lo L} hy(x) Lo, L' 'ha(z) Lo, L7 ha(z) Lg, L7} by (2)

Ale) Lo L' ho(x) Lo, L ho(x) Ly, L' 'ho(x) Lg, L ha(x) 5.12)
xTr) = .
Lo L ho(z) Lo, L 'hs(x) Ly, L 'hs(x) Lg, L hs(x)

Lo L't hy(x) L, L ha(z) Lg, L7 ha(x)  Lg, L™ hy(x)

The input-output decoupling problem is solvable if and only if the matrix A is non-
singular. Accordingly, the static state feedback control law can be applied.

Substituting Equation 5.4, 5.5 and 5.6 in Equations 5.11 and 5.12 yields,

-9
zz 0
b(z) = o (5.13)
Leselec )
Izz:zlyy ¢9
(cospcosf)= 0 0 0
0 =~ 0 0
Az) = o (5.14)
0 0 + 0
vy
I 0 0 O t_

As a result since = n and A is nonsingular, the input-output decoupling problem
has been solved using a state feedback control law.
As for the controller responsible for the linear control force vector v = [v1 v2 v2 v2]

it consists of:

e State coordinate transformation, and

e FPID control with the same formulation as in chapter 4.

The state coordinates transformation aims to transform the nonlinear states into linear

ones. The control scheme for the inner control loop is shown in Figure 5.2.
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vl e U1

o L.

FPID 2 >

=] Z L. uz
ﬂﬂ—ugg;ﬁ’ Attitude & Altitude i 2 State feedback > System
control > u= a()+B(x).v Bi 3| Dynamics
> >
T States (q) A

States Coordinates | States (x)

Transformation

Figure 5.2: Inner control loop for the hybrid control strategy

5.1.2 QOuter control loop: Stability of the internal dynamics using

SMC

A sliding mode controller is developed to insure stability of the internal dynamics.

A Sliding mode control design

A Sliding Mode Control is a Variable Structure Control. The purpose of the SMC is
to drive the nonlinear system’s states onto a prespecified surface in finite time and to
maintain the system’s states trajectory on this surface. The surface is called a switching
surface or sliding surface. Once the sliding surface is intercepted, the control maintains
the system’s states on the sliding surface.[35][22].

Consider the system to be controlled is described by:

i = f(x)+ g(x)u
y = h(x),

(5.15)

Where z(t) is the vector of state variables. f(x) and g(z) are both nonlinear function.
u is the control input. y is a vector of the system outputs.
The design of the sliding mode control consists of two steps. Th choice of the sliding

surface, and the design of the control law.

e Step 1: propose the general form for the sliding surface[35]:
i=n n—1
i=1 i=1

Where A; (Lambda) is the plant coefficient and e is the error.
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Generally the sliding surface is given by the following function:

S(x) =e+ Aé (5.17)

Where A is a constant positive value and ¢ is the derivative of the error.

A suitable nonlinear control force u has to be found so as to track the error on the
sliding surface. To achieve this purpose, a positive Lyapunov function V is defined

as:

1
V= 552 (5.18)

To insure the system is stable the following condition should be valid [35]:

) 1. )

V= 552 =85 =—k.|S] (5.19)
Where £ is a positive definite constant.

Step 2: The Choice of the Sliding Surface.

The sliding mode control consists of two terms; the equivalent control term and the

switching control term:

U = Ueq + Us (5.20)

Where u,, is the equivalent part of the control system which consists of the system
dynamics. and u, is the switching term that is responsible for sliding along the
chosen surface.

us = —ksign(9) (5.21)

Where,

-1 if S <0
sign(s) =
1 if S>0.
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B Sliding mode control implementation

The outer loop is considered to be the internal dynamics of the quadcopter system which
were not included in the inner control loop. The internal states are responsible for provid-
ing ¢ and 6 desired to the inner control loop subsystem. As for the outer control loop the
equation of motion are particularly hard to deal with due to the coupling complexity. In
order to decouple the equations of motion the 1) angle is assumed that it does not affect

the position x and y [33] [29] [30]. Substituting ¢/ = 0 in equation 5.1a and 5.1b yields:

Ul

T = cos(9) sin(@)ﬁ (5.22)
1
j=- sin(<b)U— (5.23)
m
From Equation 5.1c we have:
Ul = M (5.24)
cos ¢ sin 6

Where v, is the linear control force input provided by the FPID controller for attitude and
altitude.

From Equations 5.22 and 5.23 ¢, and 6, can be expressed as:

—u, cos 6
— t v " 5.25
Pq = arc cm( —— > ( )
0, = arctan( Ye ) (5.26)
v1+g

Where u, and u, are the Sliding mode control forces. Let us define the state error

e = (xq — x, yq — y) and the sliding mode error as:

S=é+Ae (5.27)

Note that ¢ + Ae = 0 defines a stable sliding mode surface. The function of the
controller to be designed is to force the system onto this surface by making S small. The
parameter A is selected for a satisfactory sliding mode response.

A proposed controller to keep S small and S S < 0 is shown in Equations 5.28 and
5.29 respectively,

Uy = —kp18ign(Sy) + g + kyoey (5.28)
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uy = —ky1sign(Sy) + va + kyoe, (5.29)

Where £,and k, are positive definite constants. Moreover, selection of those constants
effect the chattering phenomenon and the quality of tracking. Hence, proper balance
should be considered.

To ensure the proposed control law stabilizes the internal dynamics a proof must be
carried out using lyapunov method.

The lyapunov function is defined as:
L o
V(Sy) = 55 (5.30)

If V(S,) < 0then SS = —Fk.|S| < 0. This condition is achieved by choosing k
as a positive definite constant. Thus, the necessary conditioned is fulfilled where the
system’s state converges to the sliding surface and the stability of the internal dynamics
is guaranteed.

As aresult, the controller used to stabilize the outer loop is going to have the following

form:
Pa = arctan(_uy—cose> — arctan<_<ky13i9n(5y) + Ja + ky2e,) cos 9)
v1+g v+ g 531)
04 = arctcm( ) _ arcmn(%msz‘gn(&) + iy + kmem))
vty vy +g

C Chattering effect

After testing the developed sliding mode controller and simulating the quadcopter model.
It was observed that there is a chattering effect. Where, chattering happens because the
control signal exhibits high frequency oscillations after the system state reaches the slid-
ing surface. This is due to the switching nature of the sliding mode controller. The
controller is always trying to force the value of S to zero. However, due to the delay
between the control action and the change of the s sign the trajectory passes the surface s
and so goes on. This causes the chattering effect.

There are several approaches to implement SMC with reduced chattering. one is the

boundary layer solution [35]. Another approach is the use of High Order Sliding Mode
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(HOSM) algorithms[36][37].
With introducing of the saturator the the discontinous control law is replaced by a
saturation function which approximates the sign(s) term in a boundary layer of the sliding

manifold. This makes the SMC formulated as,
us = —ksat(S). (5.32)

The use of HOSM is considered the simplest alternative to obtain continuous and
smooth control signals. For a smooth control signal the relative degree of the designed
sliding mode surface. Which can be achieved by lowering the term S. [35]. Thus the

sliding mode control coefficients were changed to the values shown in Table 7.9

5.2 Hybrid Control Strategy: Configuration 2

The second configuration of the hybrid control strategy is shown in Figure 5.3. The inner
control loop is exactly the same as the first configuration which is controlling the attitude
and altitude using a FPID with state tranformation and state feedback. However, for the
stability of the internal dynamics in the outer control loop, this configuration uses an FPID
similar to the one used in chapter 4.

Outer Control Loop (FPID)

Inner Control Loop (FPID and State feedback) I
I O —_— —_— —_— — — — — — — — — —
' I
. 9.z o viy, 1} N |
' | desied i FPID 2y U2 o
Trajectory ) ) »| State Feedback > System N I
generator Vo Atitude and Altitude |_v3 | u= ax)+BAY U3 > Dynamics |
desirdd control v > ud o
Position Y Ll | I
| control State transformation 1
| A setes(z,4,u,9) States (% ¥, 2 ¢,y 6,8, 9 8) | I
States (x .y ¢, 6) !

Figure 5.3: Configuration 2 of the hybrid startegy scheme using FPID, with state trans-

formation, state feedback and FPID
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5.2.1 Outer control loop: Stability of the internal dynamics using

FPID

The controller used to stabilize the outer control loop is the FPID. The gains for the
controller are scheduled using a fuzzy controller with same rules developed in chapter 4
and the relevant Equation of motion are linearized as in chapter 2.

Thus, ¢4 and 6, could be expressed as:

Uy Kpye(s) + Kppte(s) + KDINN—ée(s)

0; = — = = (5.33)
g g
1 Ns
5y — vy Kpye(s) + Kpyse(s) + Kpywse(s) (5.3
g g

Where v,, and v, are the linear control inputs provided by the FPID position controller

to ensure the stability of the whole system.



Chapter 6

Trajectory Planning

The main aim of this chapter is to provide the quadcopter with a feasible trajectory in
a such a way a quadcopter would accelerate and decelerate in a smooth path. Thus, a

technique is required to generate a smooth trajectory given any number of waypoints.

In [38] and [39] it was suggested that smoothness of a trajectory could be achieved
using jerk, which is the time derivative of acceleration or the third time derivative of

position. Thus it is defined as:

()= —5 6.1)

In order to move the quadcopter from one point to another smoothly, it should mini-
mize the sum of the squared jerk along its trajectory. Hence, smoothness can be calculated

by a jerk cost:

ty

/ T(t)3dt (6.2)
t;

Where ¢; is the start time, ¢ is the end time and x(¢) is a particular trajectory.

In [34] it was suggested that there is a function z(¢) that smoothly connects a starting
point to a target point in a given amount of time. This function z(¢) has the minimum jerk
cost compared to any other possible functions. To prove this let us say that we want the
quadcopter to move 10 m in the the x direction in 1 second. The quadcopter will have zero
velocity at the start and end point. Now a jerk cost should be assigned to each possible
trajectory and then find the trajectory with the least cost [38][39]. Thus, the following

function should be minimized.

61
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H(z(t)) = = / T (t)2dt (6.3)

To find the minimum of this function a technique called calculus of variations was
used [38]. The main idea is to find the derivative of the function with respect to a small
perturbation and when that derivative equals zero then a minimum is found. The variation
is a function that is called 7(t). After finding the derivative of the function with respect to

the variation and using integration by parts, the final form is [38]:
ty=1

M|e:0 - / nxﬁdt =0 (6.4)

e
t;=0

The above property is true for any function 7(¢) and therefore it could be reached that:

2© =0

This means that some function z(t) that have its sixth derivative equal to zero will min-
imize the jerk function and gives a smooth trajectory. Moreover, the differential Equation

2% which will give us a smooth trajectory has the general solution of:

z4(t) = ag + art + ast® + ast® + ast* + ast® (6.5)

differentiating 6.5 twice yields [38][30]:

ZEd(t) =ay + 20,2t + 3a3t2 + 4a4t3 + 5(15t4 (66)
iq(t) = 2ay + 6ast + 12a4t* 4 20ast> (6.7)

Since the initial and final velocities and acceleration are equal zero, it can be con-

cluded from Equations 6.5, 6.6, 6.7 m[38].

Ty =7 + (dﬂmti” —d 15t + dx36t5> (6.8)

Where,
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Ty — T
dpyp = —/———
Pt —ta)?
Tr — XT;
dyy = (tff——tl-)‘l (6.9)
Ty — I
Apg = ———
Tty -t

Where d, is a constant which depends on initial and final conditions.

This can be extended to three positions [xyz| rather than only [x] [39] where:

Tqg=T; + (dacl 10t3 - dx215t4 + dx36t5>
g =i+ (d 108 — dyp15t" + dys6t°) (6.10)
P (dzll()t?’ — o158t dZ36t5>

Where z;, y; and z; are the initial positions.
An example for the method will be carried out. Let us assume that ¢; = 0, t; = 10,

zq; = 0 andzg = 30. Thus,

30 — 0

dpy = ————2 = 0.03

LT (10-0)3
30 — 0

dpy = ————— =0.003 _

2= 10 0)1 (6.11)
30 — 0

dpg = ———— = 0.0003

T (10— 0)p

Substituting 6.13 in 6.10:

2y =0+ (0.03 % 10£% — 0.003 x 15¢* + 0.0003 x 6t5>
(6.12)

vy = <O.3t3 —0.045¢* + 0.0018t5)
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30 T T T T T T T T

201 .

Position{m)
o
T
|

Figure 6.1: Trajectory generation for Equation 6.12

Lets introduce another example with ¢; = 10, t; = 15, x4 = 30 and x4 = 40. Thus,

40 — 30
dyy = ————— = 0.08
(15— 10)3
40 — 30
dpp = —————— =0.016 :
7 (15— 10)4 ©.13)
40 — 30
dy3 = ————— = 0.0032
° T (15— 10)5

2y = (0.&53 _0.24¢% + 0.01925) (6.14)
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40 T T T T T T T —
39~ - -

38 - - -

36 [~ .

Position{m)
g
T
|

KK o~ n
32 ~ i

- 7

30 | | | | | | |
10 105 1 115 12 125 13 13.5 14

Time(s)

Figure 6.2: Trajectory generation for Equation 6.14

Now adding both desired positions represent the total trajectory with ¢; = 0, £y = 15,
zq; = 0 and x4 = 40 with an intermediate way point with desired distance of 30 meters

at a desired time of 10 seconds.

40

\

n @

o >
T
|
|

Position(m)
[
=

Time(s)

Figure 6.3: Trajectory generation with a way point

This can be extended to our quadcopter system. Where a desired initial point and final

point are given with desired way points if needed. In order to implement this an algorithm
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will be made to achieve the desired trajectory. Matlab was used to create the function used

to plan a trajectory to achieve any desired final positions with desired way points.

To test the algorithm an example is given below with an intermediate point.

Table 6.1: Desired way points

Position/Time 0 sec 10 sec 20 sec 30 sec 40 sec 50 sec
X (m) 0 30 35 40 25 20

Y (m) 0 10 15 30 20 5

Z (m) 0 30 35 40 25 25

Given the desired way points for x, y and z in Table 6.1. Equation 6.10 to plan the

quadcopter trajectory. Thus, for th first way point

Att = 10sec
T4 = (0.3t3 — 0.045t* + 0.0018t5) (6.15)
Yqg = <O.1t3 —0.015t* + (3/5000)t5> (6.16)
2= <0.3t3 — 0.045t4 + 0.0018t5> (6.17)
Att = 20sec
2g =30 + ((1 /2003 — (3/400)¢* + (3/10000)t5> 6.18)
ya =10+ ((1 12003 — (3/400)t* + (3/10000)t5) (6.19)
20 =30+ ((1 203 — (3/400)¢* + (3/10000)t5> (6.20)
Att = 30sec
Ta =35+ ((1 12003 — (3/400)t* + (3/10000)#”) 6.21)
ya =15+ (0.15)t3 —0.0225¢4 + (9/10000)155) (6.22)
24 = 35+ ((1 /20)¢% — (3/400)¢* + (3/10000)t5> (6.23)
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Att = 40sec
Tq =40 + ( —(1/20)3 — (—3/400)t" + (—3/10000)t5) (6.24)
ya = 30+ ( —(1/10)£* — (—0.015)¢* + (—3/5000)t5> (6.25)
g = 40 + ( — (1/20)£* — (—3/400)t* + (—3/10000)t5> (6.26)
Att = 50sec
Tg =25+ ((—1 /20083 — (—3/400)¢* + (—3/10000)t5> 6.27)
o =20 + ( —0.15)f% — (—0.0225)¢1 + (—9/10000)#”) (6.28)

2qg = 25 (6.29)

Each planned trajectory is shown in Figures 6.4, 6.5 and 6.6.

40 T T T T T T T T T
L \
7 \
35 - — - Ay -
///' \.\
- \
00 — \ .
/ N
/ N
/

— 257 S— T i
£ / -
5
220 —
‘@
]
o

15 n

10 -

st/ .
_.."
0 / 1 1 1 1 1 1 1 1 1
] 5 10 15 20 25 30 35 40 45 50
Time(s)

Figure 6.4: X trajectory planning
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Figure 6.5: Y trajectory planning
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Figure 6.6: Z trajectory planning

In Figure 6.7 the three planned trajectory are plotted together. Note that this plot is

not against time.
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Figure 6.7: 3D trajectory generation

After developing the technique for trajectory planning, it is used to generate a trajecto-
ries for the quadcopter. The implementation of the trajectory planner with the quadcopter

control system is shown in Figure 6.8.

o
Current & > Trajectory Control of > System
Destination planner the Quadcopter Dynamics
position
States

Figure 6.8: Trajectory planning added to the system



Chapter 7

Simulation and Results

Once the control techniques were developed, simulation is carried out to validate the con-
trollers and compare the difference between each one. Simulation was carried out under
two conditions. The first one without introducing sensor measurement noise and wind dis-
turbances while the second one with the presence of sensor measurement noise and wind
disturbances. Furthermore, to make it easier to interact with and test the quadcopter’s
controllers a graphical user interface is developed. Moreover, for more advanced users it

is possible to add on their own control techniques with ease using Simulink based model.

7.1 GUI

The GUI is developed using MATLAB. Each of the developed controller techniques were
modeled using Simulink and integrated with the developed GUI. The GUI is user friendly

and enables users to graphically interact to realize the following:

e Adjust the parameters of the quadcopter.

e Select among the available controllers to run and test.

e Select among the available predetermined paths.

e Add measurement noise and wind disturbance as necessary for the test.
e Use the default or change the simulation running time.

e Plot the attitude, altitude, position and 3D trajectory under the execution of each

control technique.

The interactive layout of the developed GUI is shown in Figure 7.1.
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Quadcopter Simulator
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Close 3D plot

(b) 3D trajectory view

Figure 7.1: Graphical User Interface

7.2 Parameters

The parameters used are from the hardware implementation chapter 8 shown in Table 7.1,

where the quadcopter parameters were identified and calculated.
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Table 7.1: Parameters

Definition Coefficient Value Unit
Mass m 1.2 Kg
Inertia around x Ix 2.344 % 1072 Kg.m?
Inertia around y Iy 2.344 %« 1073 Kg.m?
Inertia around z Iz 3.333 %1072 Kg.m?
Propeller’s radius r 0.10 m
Arm’s length 1 0.3 m
Rotor’s inertia Jr 61075 Kg.m?
Thrust coefficient Ct 3.13 %1075 Ns?
Drag coefficient b 74%1077 Nms?
Cross section of propeller A, 7r? m?
Density of air P 1.2754 Kg.m3

7.3 Simulation Results:

Case 1 without including disturbance or noise

7.3.1 Altitude and attitude stabilization

The stability of the quadcopter has been tested without any disturbance or noise. All
the developed control techniques are given initial and desired values to test whether the
quadcopter can stabilize itself. Table 8.1 lists the initial and desired values of the attitude

and altitude. The simulation time was set to 10 seconds.

Table 7.2: Attitude and Altitude initial and desired values

Initial Desired

Attitude 57° 0°

(¢, 0, ¥)
Altitude (2) 0Om 10 m
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The following is the testing results in association with each of the developed control
techniques.
A PID control technique

Using the developed mathematical formulation of the PID control technique with the PID
gains listed in Table 7.3. The results of the altitude () and the attitude (¢, 6, 1) stability

tests are shown in Figures 7.2 and 7.3 respectively.

Table 7.3: Gains and Filter coefficient Parameters

State Kp K; Kp N
Roll (¢) 9 1 15 10
Pitch 6) 1 15 10
Yaw (v)) 8 1 7 10

Altitude (z) 10 1 8 10
Longitude (x) 1 6 10
Lattitude (y) 1 6 10
. . ‘ Altit‘ude .
Erop——

o
o
w
-
w |
=
~
=
©

10
Time (s)

Figure 7.2: Altitude stability response using PID control
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Figure 7.3: Attitude stability response using PID control

B FPID control technique

Using the developed mathematical formulation of the FPID control technique with the
insertion of PID range of output gains listed in Table 7.4 and the range of input gains
listed in Table 7.5. The results of the altitude (Z) and the attitude (¢, 6, 1) stability tests

are shown in Figures 7.4 and 7.5 respectively.

Table 7.4: Outputs gain range

Minimum Maximum
Kp 5.5 11
K 0.7 1.5
Kp 7 15

Table 7.5: Inputs gain range

Minimum Maximum
e -10 10
ed -1 1
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Figure 7.4: Altitude stability response using FPID control
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Figure 7.5: Attitude stability response using FPID control

C Hybrid control strategy: Configuration 1

The testing of the first hybrid control configuration requires the setting of both FPID
inputs and outputs gain range as listed in Tables 7.6 and 7.7, and setting the SMC control

parameters.

Table 7.6: Outputs gain range

Minimum Maximum
Kp 8 15
K 0.7 1.5
Kp 18 35
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Table 7.7: Inputs gain range

Minimum Maximum
e -10 10
ed -1 1

However, the SMC is associated with chattering effect and this effect is sensitive to
the selection of its control parameters (k, and k,). Hence, it is necessary to study this
effect properly and find out the suitable values of these parameters while maintaining
effective trajectory tracking performance. Thus, in order to illustrate chattering effect
within configuration 1, the selected SMC control parameters are listed in Table 7.8. Ac-
cordingly, position [x y] , roll desired (¢4) and pitch desired () signals are tested using

the parameters listed in Tables 7.6, 7.7, and 7.8 respectively.

Table 7.8: Sliding Mode control simulation parameters

State A kl kg
x 1.1 5 0.8
y 0.8 7 0.7

Figures 7.6 and 7.7 are the results which shows the positions [z, y] converging to zero
with a noticeable chattering. While, roll desired (¢,) and pitch desired (6;) angles shows

severe chattering..

o -
EE
T
/s
- o
]

o
&
/‘/

/

T
i
i
{
{
{
{
)
0
{
i

X position (m)
Y position (m)

., &
=

s
o L o oo

)]
)

5 10 15
Time (s) Time (s)

(a) Longitude (X) (b) Latitude (Y)

o
5
El
)

Figure 7.6: x and y position with chattering effect.
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Figure 7.7: Roll and pitch with chattering effect.

Now, SMC control parameters were tuned to reduce the effect of chattering and set it
as listed in Table 7.9. The same test was conducted with the parameters listed in Tables

7.6,7.7, and 7.9 respectively.

Table 7.9: Sliding Mode control refined simulation parameters

State A kl ]{32
x 1.1 0.7 0.002
Yy 0.8 0.5 0.01

The results are presented in Figures 7.8 and 7.9 respectively. It shows a smoother sig-

nal for the positions [z, y] with reduced chattering for roll desired(¢,) and pitch desired

(0,) angles.
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Figure 7.8: = and y position with reduced chattering effect.
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Figure 7.9: Roll and pitch with reduced chattering effect.

After concluding the required setting parameters listed in Tables 7.6, 7.7, and 7.9 for

FPID and SMC within the first configuration of the hybrid control strategy. The results

of the altitude (z) and the attitude (¢, 6, 1, ) stability tests are shown in Figures 7.10 and

7.11 respectively.
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Figure 7.10: Altitude stability response using first hybrid control configuration
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Figure 7.11: Attitude stability response using first hybrid control configuration
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Moreover, to illustrate the chattering effect, the same test was carried out using the
parameters listed in Tables 7.6, 7.7, and 7.8. The results of the attitude and altitude stabil-

ity test with the chattering effect are shown in Figures 7.12 and 7.13 respectively.
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Figure 7.12: Altitude stability response using first hybrid control configuration with chat-

tering
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Figure 7.13: Attitude stability response using first hybrid control configuration with chat-

tering

D Hybrid control strategy: Configuration 2

Using the developed mathematical formulation of the second configuration of the hybrid
control strategy and using the parameters listed in Tables 7.6 and 7.7 for the inner control

loop FPID while using the parameters in Tables 7.4 and 7.5 for the outer control loop
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FPID. The results of the altitude () and the attitude (¢, 6, 1) stability tests are shown
in Figures 7.14 and 7.15 respectively.
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Figure 7.14: Altitude stability response using second hybrid control configuration
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Figure 7.15: Attitude stability response using second hybrid control configuration

E Comparison between all developed control techniques: Altitude and atitude

A comparison is carried out in Figures 7.16 and 7.17 between the four developed control

techniques. The response of the quadcopter using four control techniques shows good

stability with very small steady state error. This is mainly because no uncertainties are

added to the simulation.
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Figure 7.17: Attitude stability comparison

7.3.2 Position tracking

The ability of the quadcopter for position tracking has been tested without any disturbance

or noise. All the developed control techniques were given a position trajectory to follow.
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The simulation time was set to 50 seconds.

A PID control technique

The given PID grains are listed in Table 7.3 and the test results of longitude (x) and
latitude (y) tracking are shown in Figure 7.18.

Using the developed mathematical formulation of the PID control technique with the
PID parameters listed in Table 7.3. The results of longitude (z) and latitude (y) trajectory

tracking tests is shown in Figure 7.18.
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Figure 7.18: Longitude and latitude tracking using PID control

B FPID control technique

The listed range of PID output gains and the range of input gains are listed in Tables 7.4

and 7.5. The test results of longitude (x) and latitude (y) tracking are shown in Figure
7.19.
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Figure 7.19: Longitude and latitude tracking using FPID control
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C Hybrid control strategy: Configuration 1

The developed hybrid control strategy with first configuration was tested using parameters
listed in Tables 7.6, 7.7 and 7.9 and the test results of longitude (x) and latitude (y)
tracking tests are shown in Figure 7.20.

7.6, 7.7 and 7.9, the results of longitude () and latitude (y) trajectory tracking tests

is shown in Figure 7.20.
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Figure 7.20: Longitude and latitude tracking using first control configuration

D Hybrid control strategy: Configuration 2

The developed hybrid control strategy with second configuration was tested using the
parameters listed in Tables 7.6, 7.7 for the inner FPID and Tables 7.4 and 7.5 for the outer
control loop. The test results of longitude () and latitude (y) tracking tests are shown in

Figure 7.21.
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Figure 7.21: Longitude and latitude tracking using second hybrid control configuration
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E Comparison between all developed control techniques: Position tracking

Comparison between the four developed control techniques are shown in Figure 7.22. The
four control techniques shows good results in terms of the position x and y tracking with

almost the same values.
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Figure 7.22: Longitude and latitude tracking response (comparison)

7.3.3 3D trajectory tracking

This simulation test aims to evaluate the ability of each controller to follow a desired 3D
trajectory. Two 3D trajectories are tested: spiral trajectory and a random trajectory. The
four control techniques shows good results in terms of the following the 3D trajectory

with almost the same values.
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A Spiral trajectory

A spiral trajectory is generated and it is given the desired trajectory. The simulation run-

time was set to 250 seconds. Figure 7.23 shows the ability of each of the developed con-

trol techniques to track the desired 3D trajectory while Figure 7.24 shows a comparison

between the tracking ability of all the control techniques.
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Figure 7.23: Spiral trajectory tracking response with each of the developed control tech-

niques
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Spiral Trajectory Comparison
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Figure 7.24: Spiral trajectory tracking response comparison between all the control tech-

niques

B Random trajectory

A random trajectory is generated and it is given to the system as the trajectory. The
simulation run time was set to 50 seconds. Figure 7.25 shows each control ability to
track the desired trajectory while Figure 7.26 shows a comparison between all the control

techniques.
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7.4 Simulation Results:
Case 2 with the presence of disturbance and noise

In this section the simulation is performed to verify the robustness of each control control
technique against wind disturbances and sensor measurement noise. The wind distur-
bance was introduced as a frequency of cos(2t) while the measurement noise was in-
troduced to the system as uniform noise with zero-mean and standard deviation of 0.05.

[22][30][31]

7.4.1 Altitude and attitude stabilization with noise and disturbance

All the developed control techniques are given initial and desired values to test whether
the quadcopter can stabilize itself. Table 8.1 lists the initial and desired values. The
simulation time was set to 10 seconds. The following is the testing results in association

with each control technique.

A PID control technique

The PID control technique with the parameters listed in Table 7.3 was tested and the test
results of altitude (Z) and attitude (¢ 0 1)) stability are shown in Figures 7.27 and 7.28

respectively.

Time (s)

Figure 7.27: Altitude stability response using PID control
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Figure 7.28: Attitude stability response using PID control

B FPID control technique

The FPID control technique with the PID parameters range listed in Tables 7.4 and 7.5

was tested and the results of altitude (Z) and attitude (¢, 6, 1) stability are shown in

Figures 7.29 and 7.30 respectively.
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Figure 7.29: Altitude stability response using FPID control
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Figure 7.30: Attitude stability response using FPID control

C Hybrid control strategy: Configuration 1

The first configuration of the hybrid control strategy with the parameters listed in Tables
7.6, 7.7 and 7.9 was tested and the test results of the altitude () and the attitude (¢, 6, )

stability are shown in Figures 7.31 and 7.32 respectively.
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Figure 7.31: Altitude stability response using first hybrid control configuration



91

CHAPTER 7.

SIMULATION AND RESULTS
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Figure 7.32: Attitude stability response using first hybrid control configuration

D Hybrid control strategy: Configuration 2

The second configuration of the hybrid control strategy using the parameters listed in

Tables 7.6 and 7.7 for the inner control loop FPID while using the parameters in Tables

7.4 and 7.5 for the outer control loop was tested and the results of altitude (£) and attitude

(¢, 0, 1) stability are shown in Figures 7.33 and 7.34 respectively.
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Figure 7.33: Altitude stability response using second hybrid control configuration
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Figure 7.34: Attitude stability response using second hybrid control configuration

E Comparison between all developed control techniques: Altitude and attitude
A comparison is made in Figures 7.36 and 7.35 between the four control techniques where
the first configuration in the hybrid control strategy shows robust results compared to the

other three techniques.
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Figure 7.35: Altitude stability comparison between all the control techniques
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Figure 7.36: Attitude stability comparison between all the control techniques

7.4.2 Position tracking with noise and disturbance

The ability of the quadcopter to track position has been tested with the presence of distur-

bance and noise. All the developed control techniques are given a position trajectory to

follow. The simulation time was set to 50 seconds.

A PID control technique

The PID control technique with the PID parameters listed in Table 7.3 was tested and the

results of longitude (x) and latitude (y) position tracking are shown in Figure 7.37.
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Figure 7.37: Longitude and latitude tracking using PID control

B FPID control technique

The FPID control technique with the output gain range listed in Tables 7.4 and 7.5. The
test results of longitude (z) and latitude (y) position tracking tests are shown in Figure

7.38.
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Figure 7.38: Longitude and latitude tracking using FPID control

C Hybrid control structure: Configuration 1

The first configuration of the hybrid control strategy with the parameters listed in Tables
7.6, 7.7 and 7.9 was tested and the test results of longitude (x) and latitude (y) position

tracking are shown in Figure 7.39.
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Figure 7.39: Longitude and latitude tracking using first hybrid control configuration

D Hybrid control strategy: Configuration 2

The second configuration of the hybrid control strategy with the parameters listed in Ta-
bles 7.6 and 7.7 for the inner control loop FPID while using the parameters in Tables
7.4 and 7.5 for the outer control loop. The test results of longitude (z) and latitude (y)

position tracking are shown in Figure 7.40.
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Figure 7.40: Longitude and latitude tracking using second hybrid control configuration

E Comparison between all developed control techniques: Position tracking

Comparison between the four developed control techniques are shown in Figure 7.41
where the first configuration in the hybrid control strategy shows robust results compared
to the other three techniques. The second configuration and the FPID shows small pertur-

bations and the PID control shows large perturbations.
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Figure 7.41: Longitude and latitude tracking comparison between all the control tech-

niques

7.4.3 3D Trajectory tracking with noise and disturbance

The final simulation is to test the ability of each of the developed control techniques to
follow a desired 3D trajectory under the presence of disturbance and noise. Two 3D trajec-
tories were tested: a spiral trajectory and a random trajectory where the first configuration
in the hybrid control strategy shows robust results compared to the other three techniques.
The second configuration and the FPID control shows small perturbations and the PID

control shows large perturbations.

A Spiral trajectory

A spiral trajectory is generated and it is given to the system as the desired trajectory. The

simulation runtime was set to 250 seconds. Figure 7.42 shows each of the developed
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control techniques ability to track the desired 3D trajectory while Figure 7.43 shows a

comparison between all the developed control techniques.

Spiral Trajectory with PID control Spiral Trajectory with FPID control
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Figure 7.42: Spiral trajectory tracking with each control technique.
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Spiral Trajectory Comparison
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Figure 7.43: Spiral trajectory tracking comparison between all the control techniques

B Random trajectory

A random trajectory is generated and it is given to the system as the desired trajectory.
The simulation run time was set to 50 seconds. Figure 7.44 shows each of the devel-
oped control techniques ability to track the desired trajectory while Figure 7.45 shows a

comparison between all the developed control techniques.
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Chapter 8

Hardware Development and

Implementation

A quadcopter was designed and implemented for the purpose of validating the results
acquired by the simulation. This chapter discusses the developed hardware of the quad-
copter. Available on shelf hardware modules are used in this research to develop the quad-
copter. Steps of the physical integration of the modules to form the system are discussed
in this chapter. Furthermore, the chapter introduces the calculation of the quadcopter’s
main parameters that are used to support the simulation and the control techniques devel-

opment along with the real experimental testing.

8.1 Quadcopter Design and Requirements

The quadcopter was designed to fulfill the principle of self-contained flying operation that
supports two modes of operational functions: autonomous and remote flying.

Before designing and developing the required quadcopter, it is necessary first to list the
design constraints then, list the functional and specification requirements to help con-
clude the type and the technical specification of the required hardware. Accordingly, the

following design constraints were considered,

e Lift a minimum of 1 kg payload,

Robust against winds up to 15 km/h,

Maximum flight speed speed of 15 m/s and maximum climbing rate of 10 m/s,

¥ 1s assumed to be zero to the coupling and complexity of the position equations of

motions, and

Sustain self contained flying for at least 10 minutes.

The required functional and technical requirements that support flying and navigation of

100
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the quadcopter should cover:

e Attitude and Altitude control,

e Position control,

e Trajectory generation and tracking.

e Maneuverability and agility,

e Remote and autonomous modes of operation,

e Sensing Capabilities to measure altitude, attitude, position, orientation and speed,
and

e Wireless communication between the quacopter and a ground station.

Accordingly, in order to fulfill such requirements, the developed quadcopter was de-

signed to include the following hardware modules:
e Quadcopter frame structure.
e Brushless motor module:

— Propeller,
— Brushless DC motor, and

— Electronic speed controller.

Sensor module:

— Global Positioning System (GPS) and Compass, and

— Telemetry.

Wireless Transceiver module.

Quadcopter controller module.

Battery module.

Figure 8.1 shows the layout of the designed quadcopter with the main hardware mod-

ules while Figure 8.2 shows the developed quadcopter with all hardware modules.
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Motor + Propeller
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Sensor
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Figure 8.1: The layout of the quadcopter system.

Figure 8.2: The developed quadcopter.
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8.2 Hardware Modules

8.2.1 Quadcopter frame structure.

The frame structure of the commercial quadrotor named Tarot FY650 Ironman model
is used to form the body skeleton of the developed quadcopter. The frame structure is
composed of four carbon fiber tubes that are connected to a central carbon fiber hub
forming a plus shape. At each of the other ends of the carbon tubes there is a flight seat
motor mount to host a motor-propeller assembly. The hub is made out of two carbon fiber
plates of 163 mm x 145 mm each and a clearance distance between them of 25 mm. The

specifications of the frame structure are listed in Table 8.1:

Table 8.1: Frame Specification

Parameter Specification
Distance between the center of opposite corner motors 650 mm
Arm length 300 mm

Total weight of the frame structure (without motors) 476 g

Height from ground to lower plate of the hub 180 mm
Height from ground to the upper plate of the hub 220 mm
Arm tube diameter 16 mm

Arm tube weight (including the flight seat motor mount) 99 g per arm

Hub weight 80g

The frame structure after assembly is shown in Figure 8.3.
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Figure 8.3: Frame specifications.

8.2.2 Brushless Motor Module

The brushless motor module consists of three main components that are shown below:
e Propeller,
e Brushlkess DC motor, and

e Electornic speed controller (ESC).

A Propeller

The propeller combined with the motor are responsible for achieving the desired lift force.

The relation for calculating the lift force per motor with a propeller is,
fiige = CrpAr? ()

Where €2 is the motor’s RPM. p, Cr, A, and r are the air density, the propellers lift coeffi-
cient, cross sectional area of the propeller’s rotation and propellers diameter respectively.
To achieve the required design constraints the propeller used along with the motor should

produce the minimum desired lift force.
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B Brushless DC motor

The quadcopter’s motor were chosen to fulfill the required payload of at least 1 kg and to
achieve agility and maneuverability. The agility and maneuverability aims to generate a
smooth flight and this demands that the total thrust of the motors to be at least 50% more
than the total weight of the quadcopter.[40]

The quadcopter’s total weight with all hardware modules is 1.2 kg, hence, to achieve

this purpose the total thrust of the motors should cover,

e 50% more thrust than the total weight of the quadcopter which is equal to 1200 +
600 = 1800g,
e 1000 g of payload

Thus, the minimum total thrust the motor should produce is 1800 + 1000 = 2800g. This
means that each motor should produce at least 2800/4 = 700g. Accordingly, The selected
motor is the Emax BL2220/07 that is going to produce a thrust of 1300g in association
with a propeller of size 10” diameter by 4.7 pitch. As a result, The total thrust of the
selected motor is 1300 * 4 = 5200g which is more than the required total thrust by 85%.
The specifications of the selected motor is shown in Table 8.2 and its picture is listed

in Figure 8.4.

Figure 8.4: Emax BL2220 Motor.

C Electronic Speed Controller (ESC)

The purpose of the ESC is to regulate the voltage for the brushless motor. The main

requirement in the selection of the ESC is to deliver sufficient current for the DC brushless
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Table 8.2: Motors Specification

Parameter Specifications
Propeller size 10”x47”
Revolutions per minute per one volt (RPM/V) 1200 RPM
Maximum revolutions per minute (RPM max) 8560 RPM
Maximum current 25 A
Thrust (With a propeller of 107%45”) 1300 g
Dimensions of the motor size 22 mm height /
20 mm diameter
Motor shaft diameter 4 mm
Weight of one motor 8 ¢g

motor to work between the minimum and maximum speed. The maximum current of the
chosen motor is 25A to operate at 8560 RPM. Accordingly, the selected ESC is Turnigy

K force series 40A is shown in Figure 8.5. The specification are listed in Table 8.3.

Table 8.3: Turningy ESC specification

Parameter Value
Weight 73 g
Size (length x width x height) 150 mm x 14 mm
x 112 mm)
Current 40 A
Burst current 60A
BEC output (Battery Eliminator Circuit) 5.25V or 6V, 3A
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Figure 8.5: Turningy ESC.

8.2.3 Sensor module

Several types of sensors have been chosen to support navigation and control requirements.

These sensors include:
e GPS and Compass, and

e Telemetry.

A GPS and compass

The GPS is used to measure the longitude and latitude of the quadcopter. While a com-
pass is used to measure the orientation of the quadcopter. The GPS module chosen is the
Quanum GPS module shown in Figure 8.6. It has the Ubox LEA-6H GPS receiver and

incorporates the HMCS5883L digital compass.

The features of the selected GPS and compass are,

e Ublox LEA-6H module
e 5 Hz update rate
e Size: 27.5x 27.5 x 7Tmm

Rechargeable 3V lithium backup battery

Low noise 3.3V regulator

ArduPilot Mega (APM) and HKPilot Mega compatible 5-pin Molex connector

Weight: 38g with case
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e Configuration: Baud rate 38400, SHz

Figure 8.6: Quanum GPS module

B Telemetry

The telemetry should be able to send the sensors data such as IMU, gyroscope and ac-
celerometer to the controller and the ground station. Hence, The telemetry used is 3DR
915 Mhz shown in Figure 8.7. Having a dimension of 25.5 mm x 53 mm x 11 mm and a

weightof 11.5 g

Figure 8.7: 3DR telemetry



109 CHAPTER 8. HARDWARE DEVELOPMENT AND IMPLEMENTATION

8.2.4 Wireless transceiver

Based on the required design constraints, the wireless transceiver should has at least six
channels. Four channels for the attitude and altitude inputs, and two channels for pre-
determined flight modes. As a result, the RC chosen is the FlySky FS-i6-M2 shown in

Figure 8.8, and its main features are:

e Six channels,
e RF range: 2.40-2.48Ghz, and
e Bandwidth: 500Khz.

wy
e

D]

,
5 }ﬁ

Figure 8.8: FlySky FS-i6 RC.

8.2.5 Quadcopter controller

The controller of the quadcopter should be able to:

e Supervise all hardware modules,
e Gather sensory information,

e Execute the developed control techniques,
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e Record flight data, and

e Communicate with the ground station.

Based on the aforementioned and the available controllers along with the required techni-
cal specifications asserted by other hardware modules and programing environment, the
selected controller module is the Ardu Pilot Mega 2.6 (APM) shown in Figures 8.9 and
8.10 respectively. The ArduPilot Mega 2.6 is a complete open source autopilot system, it
allows the user to turn any quadcopter capable of performing programmed missions with

waypoints. The OS / Firmware for the APM 2.6 for MultiRotors is Arducopter.
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Figure 8.9: APM 2.6.
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Figure 8.10: APM 2.6 board layout.
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The list of features decribing APM controller is:

e Arduino Compatible,

e 3-axis gyro, accelerometer and magnetometer, along with a high-performance barom-
eter,

e Onboard 4 MP Dataflash chip for automatic data logging,

e Invensense’s 6 DoF Accelerometer/Gyro MPU-6000,

e Barometric pressure sensor, MS5611-01BAO03, from Measurement Specialties, and

o Atmel’s ATMEGA2560 and ATMEGA32U-2 chips for processing and USB func-

tions.
The APM board specifications is shown in Table 8.4

Table 8.4: APM 2.6 Specification

Parameter Value
Dimension 70.5x45x13.5mm
Weight 31g
Program Memory Type Flash
Program memory 256
CPU speed 16 MIPS
Ram 8192 bytes
Data EEPROM 4096 bytes
Digital communication peripherals 4-UART, 5-SPI, 1-12C
Capture/Compare/PWM Peripherals 4 Input Capture, 4 CCP, 16PWM
Timers 2 x 8-bit, 4 x 16-bit
Comparators 1
Temperature Range -40to 85 C
Temperature Range -40to 85 C
Operating Voltage Range 1.8TOSS5v
Pin Count 100
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8.2.6 Battery module

The battery module consists of:

e Battery,
e Battery monitoring unit, and

e Power distribution board.

A Battery

The battery is selected to fulfill,
e Sufficient discharge rate for the quadcopter with all the hardware modules, and
e Self contained flight of at least 10 minutes.

The motors are the main components that the battery will power, In addition all the other
hardware modules. The maximum current for the motor is 25A. Thus, calculation for
the discharge rate and flight time to identify the minimum requirements for the battery in
terms of discharge rate and flight time is carried out respectively, The battery specifica-
tions is assumed to carry out the calculations of the charge rate and the flying time. The
specifications assumed to have a battery capacity of 2200 mAh and maximum burst of

60c.
e Discharge rate

Battery capacity * mazimum burst = dischargerate = 2200A x 60c = 132A for 10 seconds.

e Flight time with an average constant current draw of 10A

2200mAh

1000 J10A = 0.22hours = 0.22 * 60 = 13.2 minutes.

Thus a battery with the assumed specs is sufficient for the requirements. As a result,
the battery chosen is a Wild Scorpion Li-Po Battery shown in Figure 8.11. The main

features of the selected battery are:
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Capacity: 2200mAh

Maximum burst (Discharge rating): 60 c
Battery section: 3S (11.1V)

Cell unit: 3 Cells

Weight: 190 g

e Dimensions: 23.5 x 35 x 68 mm

Figure 8.11: Lithium Polymer Battery.

B Battery monitoring unit

The battery monitoring unit is used to monitor the voltage level of the battery and to
ensure that the quadcopter has sufficient amount of supplied power to support its flight.
When the voltage is below the set value, the buzzer will beep and the LED light will flash.

The battery monitor used to is shown in Figure 8.12.

Figure 8.12: Battery monitor module.
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C Power distribution board

This power distribution board shown in Figure 8.13 is ready wired and assembled.It is
used with the quadcopter frame to distribute power from the flight battery to all relevant

hardware modules.

Figure 8.13: Power Distribution Board.

8.3 Quadcopter’s Parameters Identification

8.3.1 Airframe

The total mass of the quadcopter is weighted, resulting in a total approximate mass of
m = 1.2kg. The weight of each motor is m, = 0.085kg. The moment of inertia of the
quadcopter is calculated using the measured weights and dimensions of the assembled
frame. For simplification the quadcopter is regarded as two perpendicular rods with one
point mass on each edge representing the rotor’s mass and a solid sphere in the middle.
The arm length measured is [, = 0.3m. All the quadcopter’s mass excluding the rotor’s is
assumed to be homogeneously distributed inside the sphere of radius R = 7.5 cm, centered
at the origin of the axes. Knowing that the moment of inertia of a solid sphere around an
axis is given by I, = (2/5)m,R?. Where as for a point-mass distant [, from the rotation

axis is given by I, = m,[?, and having the sphere mass as m, = m — 4m, = 1.16kg.
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Hence, the moment of inertia around axes x and y can be calculated as:
2 2 2 -2 2
Ly = I, =2(m,l;) + SmsR = 2.344 x 10~ “kgm (8.1
For the Z-axis, the four rotors need to be considered, thus

4
2 _
L.=) (ml+ gmst) = 3.333 % 10 *kgm® (8.2)

J=1

Table 8.5 summarizes the identified parameters for the quadrotor’s airframe.

Table 8.5: Identified quadcopter airframe parameters.

Symbol Value Description

m 1.2 kg Total quadcopter mass

la 0.3m rotor lever length to quadcopter’s CG

Iy =1y, 2.344 % 10~ 2 kgm? quadcopter’s moment of inertia around X and Y
axes

1., 3.333 x 10~ 2kgm? aircraft’s moment of inertia around Z axis

8.3.2 Propellers

The propellers installed on the quadcopter have dimensions of 10”7 x 4.7” in diameter and
pitch respectively. A test stand experiment setup that rotates the propeller at a specified
speed and measuring the thrust force generated is used to determine the propellers thrust

coefficient, C and torque coefficient C'p.

The University of Illinois at Urbana-Champaign (UIUC) had performed a series of
experiments as described in [41] and [42] to determine the performance of different small-
scale propellers at low Reynolds number. The experimental results for the propeller of
dimensions 10”x 4.7” were summarized in Table 8.6, while the plots for the thrust and

power coefficients against the propeller speed are plotted in Figures 8.14 and 8.15.
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Table 8.6: (10 x 4.7) Propeller Thrust & Power Coefficients at Different Speed.[41]

Propeller Rotational ~ Propeller Rotational =~ Thrust Coefficient, Power Coefficient,

Speed (RPM) Speed (rad/s) Cr Cp
2377 248.9189 0.1059 0.0431
2676 280.2301 0.1079 0.0437
2947 308.6091 0.1079 0.0437
3234 338.6637 0.1104 0.0444
3494 365.8908 0.1117 0.0450
3762 393.9557 0.1143 0.0460
4029 421.9159 0.1158 0.0466
4319 452.2846 0.1177 0.0474
4590 480.6637 0.1200 0.0484
4880 511.0324 0.1223 0.0494
5147 538.9926 0.1237 0.0500
5417 567.2669 0.1252 0.0508
5715 598.4734 0.1263 0.0513
5960 624.1297 0.1278 0.0520
6226 651.9852 0.1286 0.0524
6226 651.9852 0.1286 0.0531

APC Slow Flyer 10x4.7

Static Case
0.15

To

ool N I : :
1500 3000 4500 6000 7500

Q (rpm)

Figure 8.14: Thrust Coefficient vs Propeller Speed Plot.[41]
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Figure 8.15: Power Coefficient vs Propeller Speed Plot. [41]

8.3.3 Motors

The data sheet provided by the motor’s manufacturer were adequate to interpret all the

parameters needed for the motor dynamics. The parameters are listed in Table 8.7.

Table 8.7: Motor Parameters

Symbol Value Description

m 0.075 kg Motor mass

RPM/V 1200 RPM Revolution per minute per volt
RPM 8560 RPM Revolution per minute

Thrust 1300 g Thrust

R, 63 mohms Armature current

1aMaAT 28 A Maximum armature current
hxl 20 * 22 mm Dimensions

Jr 6 * 10~°kg.m? Motor’s inertia
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8.4 Real Time Control Implementation

A free open source application is used to work specifically with the selected quadcopter
controller called mission planner[43]. The mission Planner is a ground control station for
the quadcopter. It is compatible with Windows only and it can be used as a configuration

utility for the quadcopter to support:

e [oad the firmware into the APM that controls the quadcopter,

Setup, configure, and tune the quadcopter for optimum performance,

Plan, save and load autonomous missions into the controller on Google maps,

Download and analyze mission logs created by the APM,

Monitor the quadcopter status while in operation,

Record telemetry logs, and

View and analyze the telemetry logs.

However, the mission planner application uses PID as the control technique for the
quadcopter and cannot be changed, only the controller gains could be tuned. Thus, it
won’t be possible to apply the control techniques developed early on for the quadcopter.
As a result, another mean is used to implement the developed control techniques using
Simulink and MATLAB. A feature called Run On Target Hardware (ROTH) is used to
achieve all the mission planner features and at the same time be able to upload any control

technique. as long as the available controller memory can accommodate it.

8.4.1 Run on target hardware

The ROTH feature converts the model built on Simulink using a compiler into embed-
ded code and then upload it to the APM. However in order to be able to build a model.

Simulink blocks for all the components available in the APM board should be available.
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Fortunately, [44] made a library specifically for the APM board named Ardupilot 2.0

Simulink blockset. The library consists of the following blocks:

e Sensor Blocks

Inertial Measurement Unit (IMU),

Barometric Pressure Sensor,

Magnetometer,

GPS, and

Pilot Probe.

Receiver Input / Servo Output Blocks

— RC Read, and

— RC Write.

Timing Blocks

— Clock, and

— Real Time Monitor.

Data Output Blocks

— Telemetry
— USB Output, and

— Flash Memory Chip.

LED Blocks

APM Simulink library is installed on the available MATLAB while setting all the nec-
essary compilers and configuration. A Simulink model is built with the help of the APM
Multicopter Development Kit [45]. The model developed consists of three subsystems.
the first subsystem is for the hardware inputs, the second subsystem is for the control tech-

nique model built on Simulink in the previous chapters and the last subsystem consists of
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the hardware outputs. The main scheme is shown in Figure 8.16. The hardware subsys-
tems are shown in Figures 8.17 and 8.19 respectively. Moreover, the control subsystem is
shown in Figure 8.18 which consists of a control block that hosts the control technique.
Using the model developed, it is possible to replace the control block with one control
technique with another block that includes the desired control technique. This would
make it easy for any other user to test different control techniques on the quadcopter.
However, after compiling the code the APM board cannot run it if it is computationally
expensive or if the size of the compiled code is larger than the available memory storage

of the APM board.

Hardware inputs Desied 3] Conrol system

Trajectory Hardware oulputs

Figure 8.16: Main simulink model layout for hardware implementation.
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Figure 8.17: Hardware inputs subsystem.
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Figure 8.19: Hardware outputs subsystem.

8.5 Quadcopter Flight Test

After downloading the Simulink based controller application successfully on the APM,
a flight test was set up to assess the performance of the quadcopter. The flight test was
carried out at the American University in Cairo Campus. Figure 8.20 shows a photo of

the quadcopter test.

8.5.1 Flight test procedure

The main objective of the flight test is to analyze the transient and steady-state perfor-
mance of the three attitude controllers developed while holding a desired altitude. The

steps for the flight test are further elaborated below:

A Stepl

Set up the ground computer to record the flight test data by connecting the telemetry radio.
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Figure 8.20: Quadcopter flight test.

B Step 2

Once the ground computer is setup to record the flight data, the motors on the quadcopter
are armed and the copter flies using the RC while holding the altitude. During the flight
of the quadcopter, roll, pitch and yaw commands are transmitted from the RC transmitter

to obtain the attitude controllers response.

C Step3

When the quadcopter is landed, The motors are disarmed. A MATLAB log file is then
generated for data analysis using the flight data recorded. The MATLAB file is generated

using the mission planner software.

8.5.2 Flight test results: Calm weather

A series of flight tests were conducted for each inner control loop of each on-board control

technique to determine the performance of the quadcopter.
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A Roll angle

The plots of the flight data for the actual roll angle and the desired roll angle for a dura-
tion of 35 seconds and for each of developed controller are shown in Figures 8.21, 8.22
and 8.23 respectively. The dashed line represents the desired roll magnitude command

transmitted by the RC transmitter and the solid line represents the actual magnitude of

roll measured by the APM IMU.
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Figure 8.21: Roll plot (PID)
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Figure 8.22: Roll plot (FPID)

e Hybrid control strategy
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Figure 8.23: Roll plot (FL)

B Pitch angle

The plots of the flight data for the actual pitch angle and the desired pitch angle for a
duration of 35 seconds and for each of the developed control techniques are shown in
Figures 8.24, 8.25 and 8.26 respectively. The dashed line represents the desired pitch
magnitude command transmitted by the RC transmitter and the solid line represents the

actual magnitude of pitch measured by the APM IMU.
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Figure 8.24: Pitch plot (PID)
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Figure 8.26: Pitch plot (FL)
C Yaw angle

The plots of the flight data for the actual yaw angle and the desired yaw angle for a
duration of 35 seconds and for each of the developed control techniques are shown in
Figures 8.27, 8.28 and 8.29 respectively. The dashed line represents the desired yaw
magnitude command transmitted by the RC transmitter and the solid line represents the

actual magnitude of yaw measured by the APM IMU.

e PID
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Figure 8.27: Yaw plot (PID)
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Figure 8.28: Yaw plot (FPID)
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Figure 8.29: Yaw plot (FL)

The controllers shows the ability of tracking the desired inputs. However, some delay
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is shown. The delay is because of the APM control board slow performance, this delay

was random in each flight test.

8.5.3 Flight test results: Windy weather

A series of flight tests were conducted for each inner control loop of each on-board control
technique to determine the performance of the quadcopter in windy weather, similar to

case two in the simulation and testing chapter.

A Roll angle

The plot of the flight data for the actual roll angle and the desired roll angle for a duration
of 35 seconds for each of developed controller are shown in Figure 8.30. Where the hybrid
control strategy and the FPID controller shows robust results, while the PID controller

shows very large perturbations.
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Figure 8.30: Roll plot (comparison)

B Pitch angle

The plots of the flight data for the actual pitch angle and the desired pitch angle for a
duration of 35 seconds for each of the developed control techniques are shown in Figure

8.31.
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Figure 8.31: Pitch plot (comparison)

The plots of the flight data for the actual yaw angle and the desired yaw angle for a

duration of 35 seconds for each of the developed control techniques are shown in Figure

8.32
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Figure 8.32: Yaw plot (comparison)



Chapter 9

Conclusion and Future Work

The content of this thesis shows that it successfully achieved the stated objectives to a
high extent. A mathematical model representing the dynamics of a quadcopter has been
derived in association with the stated assumptions. The developed mathematical model
enables the user to gain understanding of how a quadcopter is behaving in real time. In
addition, it has been shown that the derived mathematical model of quadcopter’s flight dy-
namics can be represented using Simulink. Moreover, the same approach has been used

to represent a designed controller that helps to stabilize and control a quadopter’s flight.

Furthermore, in order to ensure a feasible desired trajectory before tracking it, a tra-
jectory planning algorithm has been developed and tested successfully. Subsequently, a
simulation environment with a friendly GUI has been developed to simulate the dynam-
ics of a quadcopter ’s mathematical model and then to use it as a test bed to validate the
developed control techniques with and without the effect of wind disturbance and mea-

surement noise.

Three control techniques were developed and tested. These control techniques are:
e PID control,

e FPID control, and

e Hybrid control strategy. This includes two configurations:

(a) A sliding mode control is used for the outer control loop while for the inner
control loop two control techniques are used to realize it: FPID control with

state coordinates transformation and a state feedback control.

(b) FPID control is used for the outer control loop while for the inner control loop
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two control techniques were developed and implemented to realize it using

the same formulation as in (a) above.

The quadcopter with each control technique has been tested using the simulation envi-
ronment under different operational conditions. The results in terms of tracking a desired
trajectory shows the robustness of the first configuration of the control techniques within
the hybrid control strategy under the presence of wind disturbance and measurement noise
compared to all the other techniques developed. Then, the second configuration of the
control techniques came second in terms of results quality. The third and fourth results in

the sequence shown by the fuzzy scheduled PID and the standard PID respectively.

Finally, the thesis demonstrated the successful implementation of a flight controller
developed using Simulink on board the APM board by using the Simulink build func-
tion, while eliminating the need to be proficient in high level programming language. The
controllers developed were tested in term of the attitude stability and compared the result
against the simulation results Finally, validating the simulation results on a real system,
a quadcopter has been successfully designed, implemented and tested. The developed
control techniques were tested using the implemented quadcopter and the results were

demonstrated and compared with the simulation results.

The methods outlined in this thesis provide control engineering students with an en-
abling tool to implement their flight controller design that was developed in Simulink
directly onto an APM board. The flight controller design can subsequently be put through
an actual flight test and the performance of the flight controller can be readily analyzed

with the ground control station.
As a continuation for this thesis, the following areas can be considered for future
research works:

e Instead of the FPID controller used with the state feedback linearization technique,

alternatives to the controller design (e.g. LQR, Hoo) can be implemented on the
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quadcopter.

e APM autopilot board was used as the controller for the quadcopter in this thesis. A

more reliable and faster controller could be used such as Pixhawk autopilot.

e The GPS signal detected by the quadcopter within the indoor facility was not always
in good condition. Therefore, an image motion capture system could be integrated

to provide the quadcopter with accurate position and attitude indoor and outdoor.

e The APM board uses barometric sensor for measuring the altitude which is not
always reliable since the air pressure changes due to many factors such as wind
and propellers thrust. Thus, a range finder could be implemented on the quadcopter
such as a laser sensor or sonar which would make the altitude measurement much

more accurate.
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Appendix A

Feedback Linearization

The feedback linearization is based on two operations: [33] [34]

e nonlinear change of coordinates;

e After the feedback linearization, the input-output model is linear in the new set of

coordinates.

Most feedback linearization approaches are based on input-output linearization or
state-space linearization. In the input-output linearization approach, the objective is to
render a linear input-output map from the new input v to the actual output y. A controller
is then designed for the linearized input-output model. A linear controller is then syn-
thesized for the linear input-state model. However, this approach may lead to a complex
controller design task because the map between the transformed inputs and the original
outputs y is generally nonlinear. Feedback linearization produces a linear model by the
use of nonlinear coordinate transformations and nonlinear state feedback. In some appli-
cations, the control objectives can be achieved with a nonlinear static feedback control
law of the form,

u=a(z)+ p(x)v (A.1)

where « is an m-dimensional vector of nonlinear functions and /3 is an m_Xm matrix of
nonlinear functions. For some processes, it is not possible to satisfy the control objective
with a static control and hence a dynamic state feedback control law must be implied.

The suggested feedback linearization technique in this thesis is based on the input-
output linearization explained below.

Consider a system with state x € R", input © € R and output y € R whose dynamics

are given by: [33] [34]
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(A.2)

We focus now on a single-input, single output system, i.e., v, y € R. The derivative of the

output y can be expressed as:

o
Oz

The derivative of h along the trajectory of the state = is known as the Lie Derivate and

y [f(z) + g(x)u] (A.3)

is denoted as:

o
y_ax

If on the first derivativeL, h(z) = 0, we have

[f(@) + g(z)u] = Lh(z) + Loh(z)u (A4)

y=y' = Lh(x) (A.5)

Note that, in this case, the output y remains independent of input u. However, further

higher order derivatives can be considered, specifically,

y? = Lih(z) + LyLh(x)u, (A.6)
y® = Lih(x) + LyL3h(z)u, (A.7)
y' = Lih(x) + L L' ' h(x)u, (A.8)

and if for a certain Lngc_lh(x)u # 0, then the Equation A.8 can be linearized with
full state feedback by,

1 )

1

LyLY 'h(=)

In the state region where the inverse exists the feedback linearized model

becomes,
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O (A.10)

The value ¢ is defined to be the relative degree of the system. The resulting linear
dynamic system defined in Equation A.10 can be stabilized by a standard linear control
technique and consists of a set of = — 1 integrators up to the required output y. Moreover,
with this linearization a linear controller can be designed such that the overall system can
be proven to be exponentially stable [33][34]. The concepts used for SISO systems can
be also extended to MIMO systems. In the MIMO case, we consider square systems (that

is systems with the same number of inputs and outputs) of the form,

(A.11)

where z € R" is a state vector, u € R™ is a control input vector (of components u;), y
€ R is a vector of system output (of components y;), f , h are smooth vector fields, and G
in an n X m matrix whose columns are smooth vector fields g;. Input-output linearization
of MIMO systems is obtained similarly to the SISO case, by differentiating the outputs y;
until the inputs appear. Assume that r; is the smallest integer such that at least one of the

inputs appears in ("¢ then,

Yy = Lihi(x) + > Lg L hy(x)uy, (A.12)
j=1
with L, L;ﬁlhi(x) # 0 for some z. Performing the above procedure for each output
y; yields
(ri) =L}
Y1 f 1(2)
= : + E(z)u, (A.13)
ygm) =Ly hun ()

yields m equations of the simple form

y{ = o, (A.14)
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Since the input v; only affects the output y;, Equation A.13 is called a decoupling
control law, and the invertible matrix E(x) is called decoupling matrix of the system.
The system in Equation A.11, is then said to have relative degree (71, .....,7,,), and the
scalar r = r; 4 ... + r,,, is called the total relative degree of the system. An interesting
case corresponds to the total relative degree being n. In this case, there are no internal
dynamics. With the control law in the form of Equation A.13, we thus obtain an input-
state linearization of the original nonlinear system. With the equivalent inputs v; designed
as in the SISO case, both stabilization and tracking can then be achieved for the system

without any worry about the stability of the internal dynamics.
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