1,318 research outputs found

    Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes

    Full text link
    We present an algorithm to construct quantum circuits for encoding and inverse encoding of quantum convolutional codes. We show that any quantum convolutional code contains a subcode of finite index which has a non-catastrophic encoding circuit. Our work generalizes the conditions for non-catastrophic encoders derived in a paper by Ollivier and Tillich (quant-ph/0401134) which are applicable only for a restricted class of quantum convolutional codes. We also show that the encoders and their inverses constructed by our method naturally can be applied online, i.e., qubits can be sent and received with constant delay.Comment: 6 pages, 1 figure, submitted to 2006 IEEE International Symposium on Information Theor

    FRESH – FRI-based single-image super-resolution algorithm

    Get PDF
    In this paper, we consider the problem of single image super-resolution and propose a novel algorithm that outperforms state-of-the-art methods without the need of learning patches pairs from external data sets. We achieve this by modeling images and, more precisely, lines of images as piecewise smooth functions and propose a resolution enhancement method for this type of functions. The method makes use of the theory of sampling signals with finite rate of innovation (FRI) and combines it with traditional linear reconstruction methods. We combine the two reconstructions by leveraging from the multi-resolution analysis in wavelet theory and show how an FRI reconstruction and a linear reconstruction can be fused using filter banks. We then apply this method along vertical, horizontal, and diagonal directions in an image to obtain a single-image super-resolution algorithm. We also propose a further improvement of the method based on learning from the errors of our super-resolution result at lower resolution levels. Simulation results show that our method outperforms state-of-the-art algorithms under different blurring kernels

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    On list decoding of wavelet codes over finite fields of characteristic two

    Get PDF
    ДоказываСтся, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ Π½Π°Π΄ ΠΏΠΎΠ»Π΅ΠΌ GF(2m) c Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… слов n = 2m β€” 1 ΠΈ (n β€” 1)/2 соотвСтствСнно, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ срСди коэффициСнтов ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния ΠΏΠΎΡ€ΠΎΠΆΠ΄Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° имССтся d + 1 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π½ΡƒΠ»Π΅ΠΉ, 0 < d < (n β€” 3)/2, допускаСт списочноС Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π° полиномиальноС врСмя. Π¨Π°Π³ΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°, ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ списочноС Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ с исправлСниСм Π΄ΠΎ e < n β€” Π΄/n(n β€” d β€” 2) ошибок, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² Π²ΠΈΠ΄Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π΅Ρ‘ примСнСния для списочного дСкодирования Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… слов. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ нСравСнство Π’Π°Ρ€ΡˆΠ°ΠΌΠΎΠ²Π° β€” Π“ΠΈΠ»Π±Π΅Ρ€Ρ‚Π° ΠΏΡ€ΠΈ достаточно Π±ΠΎΠ»ΡŒΡˆΠΈΡ… n Π½Π΅ позволяСт ΡΡƒΠ΄ΠΈΡ‚ΡŒ ΠΎ сущСствовании Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ΠΎΠ² c ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠ΄ΠΎΠ²Ρ‹ΠΌ расстояниСм (n β€” 1) /2

    БписочноС Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ΠΎΠ²

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ обсуТдаСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ списочного дСкодирования Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ΠΎΠ² ΠΈ приводится ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄Ρ‹ Π½Π°Π΄ ΠΏΠΎΠ»Π΅ΠΌ GF(q)GF(q) Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΉ характСристики с Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… слов n=qβˆ’1n=q-1 ΠΈ n/2n/2 соотвСтствСнно, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π΄ ΠΏΠΎΠ»Π΅ΠΌ Ρ‡Π΅Ρ‚Π½ΠΎΠΉ характСристики с Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… слов n=qβˆ’1n=q-1 ΠΈ (nβˆ’1)/2(n-1)/2 соотвСтствСнно Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚ списочноС Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Ссли срСди коэффициСнтов ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния ΠΈΡ… ΠΏΠΎΡ€ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ² имССтся d+1d+1 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π½ΡƒΠ»Π΅ΠΉ, 00 &lt; dd &lt; n/2n/2 для ΠΏΠΎΠ»Π΅ΠΉ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΉ характСристики ΠΈ 00 &lt; dd &lt; (nβˆ’3)/2(n-3)/2 для ΠΏΠΎΠ»Π΅ΠΉ Ρ‡Π΅Ρ‚Π½ΠΎΠΉ характСристики. Π’Π°ΠΊΠΆΠ΅ описываСтся Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ списочноС Π΄Π΅ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈ соблюдСнии пСрСчислСнных условий. Π’ качСствС дСмонстрации Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Ρ‹ приводятся ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ списочного дСкодирования Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… слов Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-ΠΊΠΎΠ΄ΠΎΠ² Π½Π°Π΄ полями Ρ‡Π΅Ρ‚Π½ΠΎΠΉ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΉ характСристики. Помимо этого, Π² Ρ€Π°Π±ΠΎΡ‚Π΅ построСна Π²Π΅ΠΉΠ²Π»Π΅Ρ‚-вСрсия ΠΊΠ²Π°Π·ΠΈΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΎΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π° ГолСя, Π΄Π»ΠΈΠ½Ρ‹ Π΅Π³ΠΎ ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… слов Ρ€Π°Π²Π½Ρ‹ 8 ΠΈ 4 соотвСтствСнно, ΠΊΠΎΠ΄ΠΎΠ²ΠΎΠ΅ расстояниС Ρ€Π°Π²Π½ΠΎ 4, ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ радиус ΡˆΠ°Ρ€ΠΎΠ² с Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ Π² ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… словах, ΠΏΠΎΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… пространство слов Π΄Π»ΠΈΠ½Ρ‹ 8, Ρ€Π°Π²Π΅Π½ 3

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Watermarking on Compressed Image: A New Perspective

    Get PDF
    • …
    corecore