13 research outputs found

    Block algorithms for reordering standard and generalized Schur forms

    Full text link

    On the (non)existence of best low-rank approximations of generic IxJx2 arrays

    Get PDF
    Several conjectures and partial proofs have been formulated on the (non)existence of a best low-rank approximation of real-valued IxJx2 arrays. We analyze this problem using the Generalized Schur Decomposition and prove (non)existence of a best rank-R approximation for generic IxJx2 arrays, for all values of I,J,R. Moreover, for cases where a best rank-R approximation exists on a set of positive volume only, we provide easy-to-check necessary and sufficient conditions for the existence of a best rank-R approximation

    A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc

    Full text link
    In the context of large-scale eigenvalue problems, methods of Davidson type such as Jacobi-Davidson can be competitive with respect to other types of algorithms, especially in some particularly difficult situations such as computing interior eigenvalues or when matrix factorization is prohibitive or highly inefficient. However, these types of methods are not generally available in the form of high-quality parallel implementations, especially for the case of non-Hermitian eigenproblems. We present our implementation of various Davidson-type methods in SLEPc, the Scalable Library for Eigenvalue Problem Computations. The solvers incorporate many algorithmic variants for subspace expansion and extraction, and cover a wide range of eigenproblems including standard and generalized, Hermitian and non-Hermitian, with either real or complex arithmetic. We provide performance results on a large battery of test problems.This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519. Author's addresses: E. Romero, Institut I3M, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain), and J. E. Roman, Departament de Sistemes Informatics i Computacio, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; email: [email protected] Alcalde, E.; Román Moltó, JE. (2014). A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Transactions on Mathematical Software. 40(2):13:01-13:29. https://doi.org/10.1145/2543696S13:0113:29402P. Arbenz, M. Becka, R. Geus, U. Hetmaniuk, and T. Mengotti. 2006. On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Comput. 32, 2, 157--165.Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Eds. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA.C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. 2009. Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36, 3, 13:1--13:23.S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. 2011. PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.2, Argonne National Laboratory.S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. 1997. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds., Birkhaüser, 163--202.M. A. Brebner and J. Grad. 1982. Eigenvalues of Ax =λ Bx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process. Linear Algebra Appl. 43, 99--118.C. Campos, J. E. Roman, E. Romero, and A. Tomas. 2011. SLEPc users manual. Tech. Rep. DSICII/24/02 - Revision 3.2, D. Sistemes Informàtics i Computació, Universitat Politècnica de València. http://www.grycap.upv.es/slepc.T. Dannert and F. Jenko. 2005. Gyrokinetic simulation of collisionless trapped-electronmode turbulence. Phys. Plasmas 12, 7, 072309.E. R. Davidson. 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 1, 87--94.T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, 1:1--1:25.H. C. Elman, A. Ramage, and D. J. Silvester. 2007. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2. Article 14.T. Ericsson and A. Ruhe. 1980. The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comp. 35, 152, 1251--1268.M. Ferronato, C. Janna, and G. Pini. 2012. Efficient parallel solution to large-size sparse eigenproblems with block FSAI preconditioning. Numer. Linear Algebra Appl. 19, 5, 797--815.D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. 1998. Jacobi--Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 1, 94--125.M. A. Freitag and A. Spence. 2007. Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electron. Trans. Numer. Anal. 28, 40--64.M. Genseberger. 2010. Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi-Davidson method for large scale eigenvalue problems. App. Numer. Math. 60, 11, 1083--1099.V. Hernandez, J. E. Roman, and A. Tomas. 2007. Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33, 7--8, 521--540.V. Hernandez, J. E. Roman, and V. Vidal. 2005. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 3, 351--362.V. Heuveline, B. Philippe, and M. Sadkane. 1997. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numer. Algor. 16, 1, 55--75.M. E. Hochstenbach. 2005a. Generalizations of harmonic and refined Rayleigh-Ritz. Electron. Trans. Numer. Anal. 20, 235--252.M. E. Hochstenbach. 2005b. Variations on harmonic Rayleigh--Ritz for standard and generalized eigenproblems. Preprint, Department of Mathematics, Case Western Reserve University.M. E. Hochstenbach and Y. Notay. 2006. The Jacobi--Davidson method. GAMM Mitt. 29, 2, 368--382.F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. 2010. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J. Comput. Phys. 229, 8, 2932--2947.A. V. Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 2, 517--541.A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. 2007. Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in HYPRE and PETSc. SIAM J. Sci. Comput. 29, 5, 2224--2239.J. Kopal, M. Rozložník, M. Tuma, and A. Smoktunowicz. 2012. Rounding error analysis of orthogonalization with a non-standard inner product. Numer. Math. 52, 4, 1035--1058.D. Kressner. 2006. Block algorithms for reordering standard and generalized Schur forms. ACM Trans. Math. Softw. 32, 4, 521--532.R. B. Lehoucq, D. C. Sorensen, and C. Yang. 1998. ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.Z. Li, Y. Saad, and M. Sosonkina. 2003. pARMS: a parallel version of the algebraic recursive multilevel solver. Numer. Linear Algebra Appl. 10, 5--6, 485--509.J. R. McCombs and A. Stathopoulos. 2006. Iterative validation of eigensolvers: a scheme for improving the reliability of Hermitian eigenvalue solvers. SIAM J. Sci. Comput. 28, 6, 2337--2358.F. Merz, C. Kowitz, E. Romero, J. E. Roman, and F. Jenko. 2012. Multi-dimensional gyrokinetic parameter studies based on eigenvalues computations. Comput. Phys. Commun. 183, 4, 922--930.R. B. Morgan. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comput. Phys. 89, 241--245.R. B. Morgan. 1991. Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154--156, 289--309.R. B. Morgan and D. S. Scott. 1986. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Statist. Comput. 7, 3, 817--825.R. Natarajan and D. Vanderbilt. 1989. A new iterative scheme for obtaining eigenvectors of large, real-symmetric matrices. J. Comput. Phys. 82, 1, 218--228.M. Nool and A. van der Ploeg. 2000. A parallel Jacobi--Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput. 22, 1, 95--112.J. Olsen, P. Jørgensen, and J. Simons. 1990. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169, 6, 463--472.C. C. Paige, B. N. Parlett, and H. A. van der Vorst. 1995. Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 2, 115--133.E. Romero and J. E. Roman. 2011. Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi--Davidson eigensolver. Concur. Comput.: Pract. Exp. 23, 17, 2179--2191.Y. Saad. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 2, 461--469.G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst. 1996. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 3, 595--633.G. L. G. Sleijpen and H. A. van der Vorst. 1996. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 2, 401--425.G. L. G. Sleijpen and H. A. van der Vorst. 2000. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 2, 267--293.G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink. 1998. Efficient expansion of subspaces in the Jacobi--Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75--89.A. Stathopoulos. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM J. Sci. Comput. 29, 2, 481--514.A. Stathopoulos and J. R. McCombs. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM J. Sci. Comput. 29, 5, 2162--2188.A. Stathopoulos and J. R. McCombs. 2010. PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description. ACM Trans. Math. Softw. 37, 2, 21:1--21:30.A. Stathopoulos and Y. Saad. 1998. Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods. Electron. Trans. Numer. Anal. 7, 163--181.A. Stathopoulos, Y. Saad, and C. F. Fischer. 1995. Robust preconditioning of large, sparse, symmetric eigenvalue problems. J. Comput. Appl. Math. 64, 3, 197--215.A. Stathopoulos, Y. Saad, and K. Wu. 1998. Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 1, 227--245.G. W. Stewart. 2001. Matrix Algorithms. Volume II: Eigensystems. SIAM, Philadelphia, PA.H. A. van der Vorst. 2002. Computational methods for large eigenvalue problems. In Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., Vol. VIII, Elsevier, 3--179.H. A. van der Vorst. 2004. Modern methods for the iterative computation of eigenpairs of matrices of high dimension. Z. Angew. Math. Mech. 84, 7, 444--451.T. van Noorden and J. Rommes 2007. Computing a partial generalized real Schur form using the Jacobi--Davidson method. Numer. Linear Algebra Appl. 14, 3, 197--215.T. D. Young, E. Romero, and J. E. Roman. 2013. Parallel finite element density functional computations exploiting grid refinement and subspace recycling. Comput. Phys. Commun. 184, 1, 66--72

    Computation of the von Neumann entropy of large matrices via trace estimators and rational Krylov methods

    Full text link
    We consider the problem of approximating the von Neumann entropy of a large, sparse, symmetric positive semidefinite matrix AA, defined as tr(f(A))\operatorname{tr}(f(A)) where f(x)=xlogxf(x)=-x\log x. After establishing some useful properties of this matrix function, we consider the use of both polynomial and rational Krylov subspace algorithms within two types of approximations methods, namely, randomized trace estimators and probing techniques based on graph colorings. We develop error bounds and heuristics which are employed in the implementation of the algorithms. Numerical experiments on density matrices of different types of networks illustrate the performance of the methods.Comment: 32 pages, 10 figure

    Parallel eigenvalue reordering in real Schur forms

    Get PDF
    A parallel algorithm for reordering the eigenvalues in the real Schur form of a matrix is presented and discussed. Our novel approach adopts computational windows and delays multiple outside-window updates until each window has been completely reordered locally. By using multiple concurrent windows the parallel algorithm has a high level of concurrency, and most work is level 3 BLAS operations. The presented algorithm is also extended to the generalized real Schur form. Experimental results for ScaLAPACK-style Fortran 77 implementations on a Linux cluster confirm the efficiency and scalability of our algorithms in terms of more than 16 times of parallel speedup using 64 processors for large-scale problems. Even on a single processor our implementation is demonstrated to perform significantly better compared with the state-of-the-art serial implementation. Copyright (C) 2009 John Wiley & Sons, Ltd

    A Novel Parallel QR Algorithm For Hybrid Distributed Memory HPC Systems

    Get PDF
    A novel variant of the parallel QR algorithm for solving dense nonsymmetric eigenvalue problems on hybrid distributed high performance computing systems is presented. For this purpose, we introduce the concept of multiwindow bulge chain chasing and parallelize aggressive early deflation. The multiwindow approach ensures that most computations when chasing chains of bulges are performed in level 3 BLAS operations, while the aim of aggressive early deflation is to speed up the convergence of the QR algorithm. Mixed MPI-OpenMP coding techniques are utilized for porting the codes to distributed memory platforms with multithreaded nodes, such as multicore processors. Numerous numerical experiments confirm the superior performance of our parallel QR algorithm in comparison with the existing ScaLAPACK code, leading to an implementation that is one to two orders of magnitude faster for sufficiently large problems, including a number of examples from applications

    Multishift variants of the QZ algorithm with aggressive early deflation

    Get PDF
    New variants of the QZ algorithm for solving the generalized eigenvalue problem are proposed. An extension of the small-bulge multishift QR algorithm is developed, which chases chains of many small bulges instead of only one bulge in each QZ iteration. This allows the effective use of level 3 BLAS operations, which in turn can provide efficient utilization of high performance computing systems with deep memory hierarchies. Moreover, an extension of the aggressive early deflation strategy is proposed, which can identify and de. ate converged eigenvalues long before classic deflation strategies would. Consequently, the number of overall QZ iterations needed until convergence is considerably reduced. As a third ingredient, we reconsider the deflation of infinite eigenvalues and present a new deflation algorithm, which is particularly effective in the presence of a large number of infinite eigenvalues. Combining all these developments, our implementation significantly improves existing implementations of the QZ algorithm. This is demonstrated by numerical experiments with random matrix pairs as well as with matrix pairs arising from various applications
    corecore