66 research outputs found

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    Independent component analysis applications in CDMA systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 56)Text in English; Abstract: Turkish and Englishxi, 96 leavesBlind source separation (BSS) methods, independent component analysis (ICA) and independent factor analysis (IFA) are used for detecting the signal coming to a mobile user which is subject to multiple access interference in a CDMA downlink communication. When CDMA models are studied for different channel characteristics, it is seen that they are similar with BSS/ICA models. It is also showed that if ICA is applied to these CDMA models, desired user.s signal can be estimated successfully without channel information and other users. code sequences. ICA detector is compared with matched filter detector and other conventional detectors using simulation results and it is seen that ICA has some advantages over the other methods.The other BSS method, IFA is applied to basic CDMA downlink model. Since IFA has some convergence and speed problems when the number of sources is large, firstly basic CDMA model with ideal channel assumption is used in IFA application.With simulation of ideal CDMA channel, IFA is compared with ICA and matched filter.Furthermore, Pearson System-based ICA (PS-ICA) method is used forestimating non-Gaussian multipath fading channel coefficients. Considering some fading channel measurements showing that the fading channel coefficients may have an impulsive nature, these coefficients are modeled with an -stable distribution whose shape parameter takes values close to 2 which makes the distributions slightly impulsive. Simulation results are obtained to compare PS-ICA with classical ICA.Also IFA is applied to the single path CDMA downlink model to estimate fading channel by using the advantage of IFA which is the capability to estimate sources with wide class of distributions

    A gradient-based optimum block adaptation ICA technique for interference suppression in highly dynamic communication channels

    Get PDF
    The fast fixed-point independent component analysis (ICA) algorithm has been widely used in various applications because of its fast convergence and superior performance. However, in a highly dynamic environment, real-time adaptation is necessary to track the variations of the mixing matrix. In this scenario, the gradient-based online learning algorithm performs better, but its convergence is slow, and depends on a proper choice of convergence factor. This paper develops a gradient-based optimum block adaptive ICA algorithm (OBA/ICA) that combines the advantages of the two algorithms. Simulation results for telecommunication applications indicate that the resulting performance is superior under time-varying conditions, which is particularly useful in mobile communications. Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe

    A new blind signal separation algorithm for instantaneous MIMO system

    Full text link
    We address the problem of adaptive blind source separation (BSS) from instantaneous multi-input multi-output (MIMO) channels. In this paper, we propose a new constant modulus (CM)-based algorithm which employ nonlinear function as the de-correlation term. Moreover, it is shown by theoretical analysis that the proposed algorithm has less mean square error (MSE), i.e., better separation performance, in steady state than the cross-correlation and constant modulus algorithm (CC-CMA). Numerical simulations show the effectiveness of the proposed result.<br /

    Blind Channel Estimation for DS-CDMA

    Get PDF
    The problem of channel estimation in code-division multiple-access systems is considered. Using only the spreading code of the user of interest, a technique is proposed to identify the impulse response of the multipath channel from the received data sequence. While existing blind methods suffer from high computational complexity (due to large SVDs) and sensitivity to accurate knowledge of the noise subspace rank, the proposed method overcomes both problems. By employing a computationally simple matrix power that requires no a-priori knowledge of the noise subspace rank, we obtain efficient estimates of the noise subspace. The impulse response is then directly identified through a small sized (order of the channel) SVD or a least squares optimization. Both approaches (SVD and least squares) are also extended to accommodate for synchronization with respect to the user of interest. Extensive simulations demonstrate robustness of the proposed scheme and performance comparable to existing SVD techniques but at a lower computational cost

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore