117 research outputs found

    Blind channel identification based on second-order statistics: a frequency-domain approach

    Get PDF
    In this communication, necessary and sufficient conditions are presented for the unique blind identification of possibly nonminimum phase channels driven by cyclostationary processes. Using a frequency domain formulation, it is first shown that a channel can be identified by the second-order statistics of the observation if and only if the channel transfer function does not have special uniformly spaced zeros. This condition leads to several necessary and sufficient conditions on the observation spectra and the channel impulse response. Based on the frequency-domain formulation, a new identification algorithm is proposed

    A system identification approach to non-invasive central cardiovascular monitoring

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 180-187).This thesis presents a new system identification approach to non-invasive central cardiovascular monitoring problem. For this objective, this thesis will develop and analyze blind system identification and input signal reconstruction algorithms for a class of 2-channel IIR and Wiener systems. In particular, this thesis will present blind identifiability conditions for a class of 2-channel IIR and Wiener wave propagation systems and develop the associated blind identification algorithms. It will be shown that the blind identifiability conditions can be achieved in many real-world applications by appropriate selection of channel lengths, sensor locations, and sampling frequency which are the specifications that the system design can exploit for blind identifiability In addition, this thesis will develop a novel input signal reconstruction algorithm that is applicable to general class of multi-channel IIR and Wiener systems. Furthermore, this thesis will rigorously analyze and evaluate three analytic measures for determining the system order and other key parameters of the black-box dynamics as well as for quantifying the quality of the identified gray-box dynamics, without any direct use of unknown input signal: persistent excitation, model identifiability and asymptotic variance. The blind identification and input signal reconstruction algorithms will first be applied to 2-sensor central cardiovascular monitoring problem using two distinct peripheral blood pressure measurements, where the cardiovascular wave propagation dynamics is blindly identified and the aortic blood pressure and flow signals are reconstructed by exploiting black-box and physics-based gray-box model structures of the cardiovascular system.(cont.) The validity of the 2-sensor central cardiovascular monitoring methodology will be illustrated by experimental data from swine subjects and simulation data from a full-scale human cardiovascular simulator across diverse physiologic conditions. The 2-sensor central cardiovascular monitoring methodology will then be extended to address noninvasive, 1-sensor cardiovascular monitoring problem, where the specific challenges involved are 1) identifying the cardiovascular wave propagation dynamics and reconstructing the aortic blood pressure signal by exploiting the measurement from a single peripheral sensor, and 2) identifying the scale for calibrating the blood pressure signal. In order to address these challenges, this thesis will propose a heuristics-based system order estimation algorithm and a model-based blood pressure calibration algorithm, which will be combined with the blind identification of the cardiovascular wave propagation dynamics to realize the non-invasive 1-sensor central cardiovascular monitoring. The non-invasive 1-sensor central cardiovascular monitoring methodology will be illustrated by experimental data from swine subjects, simulation data from a full-scale human cardiovascular simulator, and experimental data from human subjects across diverse physiologic conditions.by Jin-Oh Hahn.Ph.D

    Interference suppression and parameter estimation in wireless communication systems over time-varing multipath fading channels

    Get PDF
    This dissertation focuses on providing solutions to two of the most important problems in wireless communication systems design, namely, 1) the interference suppression, and 2) the channel parameter estimation in wireless communication systems over time-varying multipath fading channels. We first study the interference suppression problem in various communication systems under a unified multirate transmultiplexer model. A state-space approach that achieves the optimal realizable equalization (suppression of inter-symbol interference) is proposed, where the Kalman filter is applied to obtain the minimum mean squared error estimate of the transmitted symbols. The properties of the optimal realizable equalizer are analyzed. Its relations with the conventional equalization methods are studied. We show that, although in general a Kalman filter has an infinite impulse response, the Kalman filter based decision-feedback equalizer (Kalman DFE) is a finite length filter. We also propose a novel successive interference cancellation (SIC) scheme to suppress the inter-channel interference encountered in multi-input multi-output systems. Based on spatial filtering theory, the SIC scheme is again converted to a Kalman filtering problem. Combining the Kalman DFE and the SIC scheme in series, the resultant two-stage receiver achieves optimal realizable interference suppression. Our results are the most general ever obtained, and can be applied to any linear channels that have a state-space realization, including time-invariant, time-varying, finite impulse response, and infinite impulse response channels. The second half of the dissertation devotes to the parameter estimation and tracking of single-input single-output time-varying multipath channels. We propose a novel method that can blindly estimate the channel second order statistics (SOS). We establish the channel SOS identifiability condition and propose novel precoder structures that guarantee the blind estimation of the channel SOS and achieve diversities. The estimated channel SOS can then be fit into a low order autoregressive (AR) model characterizing the time evolution of the channel impulse response. Based on this AR model, a new approach to time-varying multipath channel tracking is proposed

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    Identification of linear periodically time-varying (LPTV) systems

    Get PDF
    A linear periodically time-varying (LPTV) system is a linear time-varying system with the coefficients changing periodically, which is widely used in control, communications, signal processing, and even circuit modeling. This thesis concentrates on identification of LPTV systems. To this end, the representations of LPTV systems are thoroughly reviewed. Identification methods are developed accordingly. The usefulness of the proposed identification methods is verified by the simulation results. A periodic input signal is applied to a finite impulse response (FIR)-LPTV system and measure the noise-contaminated output. Using such periodic inputs, we show that we can formulate the problem of identification of LPTV systems in the frequency domain. With the help of the discrete Fourier transform (DFT), the identification method reduces to finding the least-squares (LS) solution of a set of linear equations. A sufficient condition for the identifiability of LPTV systems is given, which can be used to find appropriate inputs for the purpose of identification. In the frequency domain, we show that the input and the output can be related by using the discrete Fourier transform (DFT) and a least-squares method can be used to identify the alias components. A lower bound on the mean square error (MSE) of the estimated alias components is given for FIR-LPTV systems. The optimal training signal achieving this lower MSE bound is designed subsequently. The algorithm is extended to the identification of infinite impulse response (IIR)-LPTV systems as well. Simulation results show the accuracy of the estimation and the efficiency of the optimal training signal design

    Generalized identifiability conditions for blind convolutive MIMO separation

    No full text
    International audienceThis paper deals with the problem of source separation in the case where the output of a multivariate convolutive mixture is observed: we propose novel and generalized conditions for the blind identifiability of a separating system. The results are based on higher-order statistics and are valid in the case of stationary but not necessarily i.i.d. signals. In particular, we extend recent results based on second-order statistics only. The approach relies on the use of so called reference signals. Our new results also show that only weak conditions are required on the reference signals: this is illustrated by simulations and opens up the possibility of developing new methods

    Reference based contrast functions in a semi-blind context

    No full text
    International audienceWe deal with blind signal extraction in the framework of a convolutive mixture of independent sources. Considering so-called reference signals, we generalize former identifiability conditions. Based on this result, we propose to incorporate some a priori information in the references. We show the validity of reference based contrast functions in two semi-blind situations. The results are confirmed by computer simulation

    Blind Identification via Lifting

    Full text link
    Blind system identification is known to be an ill-posed problem and without further assumptions, no unique solution is at hand. In this contribution, we are concerned with the task of identifying an ARX model from only output measurements. We phrase this as a constrained rank minimization problem and present a relaxed convex formulation to approximate its solution. To make the problem well posed we assume that the sought input lies in some known linear subspace.Comment: Submitted to the IFAC World Congress 2014. arXiv admin note: text overlap with arXiv:1303.671
    • 

    corecore