317 research outputs found

    Turbo multiuser detection with integrated channel estimation for differentially coded CDMA systems.

    Get PDF

    Blind multiuser deconvolution in fading and dispersive channels

    Get PDF
    An adaptive near-far resistant technique for the blind joint multiuser identification and detection in asynchronous CDMA systems is analyzed in fading and dispersive GSM channels.Peer ReviewedPostprint (published version

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Cdma blind channel equalization: a weighted subsface a proach

    Get PDF
    This paper considers the problem of blind demodulation of multiuser information symbols in a direct-sequence code-division multiple access (DS-CDMA) environment. Channel estimation and symbol detection in the presence of both multiple access interference (MAI) and intersymbol interference (ISI) is carried out with second order statistics methods from the received data. This problem is similar to direction of arrival (DOA) estimation, where many solutions like the MUSIC algorithm orPeer ReviewedPostprint (published version

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    A Joint Optimization Criterion for Blind DS-CDMA Detection

    Get PDF
    This paper addresses the problem of the blind detection of a desired user in an asynchronous DS-CDMA communications system with multipath propagation channels. Starting from the inverse filter criterion introduced by Tugnait and Li in 2001, we propose to tackle the problem in the context of the blind signal extraction methods for ICA. In order to improve the performance of the detector, we present a criterion based on the joint optimization of several higher-order statistics of the outputs. An algorithm that optimizes the proposed criterion is described, and its improved performance and robustness with respect to the near-far problem are corroborated through simulations. Additionally, a simulation using measurements on a real software-radio platform at 5 GHz has also been performed.Ministerio de Ciencia y tecnología TEC2004-06451-C05-0

    Noncircularity exploitation in signal processing overview and application to radar

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications
    corecore