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1. INTRODUCTION

Direct-sequence code-division multiple access (DS-CDMA)
is a common technique in mobile communications that com-
plements other preexisting access techniques such as TDMA
or FDMA [1-7]. In systems that use CDMA, users share the
same band of frequencies and the same time slots. So the sig-
nal that arrives at the receiver is a superposition (in time and
frequency) of contributions from different users. Since the
objective of the receiver is to extract the symbols sequence
of the desired user, the system needs some prior information
to achieve this aim. This information is the user’s code, also
called spreading sequence. Each user transmits with a differ-
ent cyclic code that multiplies its symbols. For different users,
codes are quasiorthogonal. In this way, the receiver can sepa-
rate the users’ contributions by means of the codes.

When there is multipath propagation, we have to sup-
press the channel effects. Supervised algorithms use training
sequences that provide the receiver with knowledge about the
channels. Blind detection of users can be performed to obtain
the symbol sequence of a desired user without knowledge of
the propagation channels. The use of blind techniques in-
creases the performance of the transmission system, avoiding
the overheads associated with the transmission of training
sequences, and providing increased robustness for channels
with severe fading [1, 3, 8].

In the literature, there are several blind criteria for the es-
timation of a specific user with knowledge only of its spread-
ing code. Some authors proposed the use of MMSE cri-
teria to exploit the signal subspace defined by the desired
user’s code [2, 8]. In [9], a blind detection scheme based
on the constant modulus algorithm (CMA) was addressed,
where initialization was the key for the detection of the de-
sired user. Other authors also consider the existence of mul-
tiple antennas [8, 10-12] in order to improve the perfor-
mance of the algorithms by exploiting the increased spa-
tial diversity of the resulting model. The inverse filter crite-
rion (IFC) for blind equalization has also received increas-
ing attention because of its capability for suppressing the
MAI (multiaccess interference) and ISI (intersymbol inter-
ference) in DS-CDMA systems [13]. In [1], a gradient im-
plementation of the IFC with code constraints was proposed
for asynchronous DS-CDMA systems with multipath chan-
nels.

Independent component analysis (ICA) can be used to
convert blind multiuser detection in DS-CDMA communi-
cations systems into a blind source separation (BSS) or blind
signal extraction (BSE) problem. Based on ICA, a receiver
was proposed in [14] for blind detection in the downlink,
thus assuming synchronism between users and the absence
of a near-far problem, that is, contributions of all users ar-
rive at the receiver with the same power.
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ICA-based criteria are able to blind detect the desired
transmitted signal. These criteria usually exploit the non-
Gaussianity of the sources together with the a priori infor-
mation of the spreading code of the desired user, but without
the knowledge of the spreading codes of the rest of the users.
BSE allows us to blindly obtain the symbols sequence of a
user and, in order to ensure that this user is the desired one,
we need to constrain the extraction system from the knowl-
edge of the user’s code.

In this paper, we pay special attention to the implemen-
tations of the inverse filter criterion with code constraint.
One of these implementations [1] maximizes the normalized
fourth-order cumulant of the output subject to a constraint
on the extraction system (similar to the one proposed in
[8]). Recently, some joint optimization approaches based on
higher-order cumulants have been proposed in the context
of ICA [15-17]. This paper, which presents an enhanced ex-
tension of the preliminary results given by us in [16], shows
how the extension of the criterion to consider the joint opti-
mization of fourth- and sixth-order cumulants leads to an
improvement in the MSE (mean square error) of the de-
tected user of about 10 dB, which is increasingly significant
for good signal-to-noise ratio and short data records. More-
over, a prewhitening of the observations results in a better
conditioning for the algorithms, which also reduces the MSE
by about 5 dB.

In order to corroborate the theoretical behavior of the al-
gorithms, we built a software radio platform at 5 GHz aimed
at the development of radio interfaces for the fourth gen-
eration of mobile communication systems. This platform
has been widely characterized [18]. Real measurements of a
WCDMA-3GPP signal transmitted at 3.84 Mchip/s have been
obtained for testing the analyzed blind detection algorithms.

The paper is structured as follows. Section 2 presents
a model of the observations vector in DS-CDMA systems,
while Section 3 shows how the code of the desired user
can be used to constrain the extraction vector. Section 4.1
summarizes the criterion and extraction algorithm intro-
duced in [1]. In Section 4.2, we present the incorporation
of prewhitening and the extension of the criterion to con-
sider the joint optimization of several cumulant orders. In
Section 5, we use simulations to corroborate the theoretical
behavior of the algorithms that optimize the criteria. An-
other simulation, with real measurements from the software
radio platform we have built, is presented in Section 6. Fi-
nally, Section 7 presents the conclusions.

2. SYSTEM MODEL

Our objective is the blind detection of a user in a communi-
cations system that uses DS-CDMA. In our case, blind detec-
tion consists in the blind extraction of the symbols sequence
of the desired user. The proposed receiver is a BSE algorithm
modified by a constraint which enforces the extraction of the
desired user.

In the blind signal extraction problem for linear and in-
stantaneous mixtures, one typically considers the existence
of N independent source signals s(k) = [s;(k),...,sn(k)]".

In the presence of white additive Gaussian noise n(k) of zero
mean and variance o2, these signals are combined by a linear
memoryless system characterized by the M x N full column
rank matrix A with M > N being the vector of M observa-
tions

x(k) = As(k) +n(k). (1)

The BSE problem consists in recovering a subset of K €
{1,...,N} sources from this observations vector without
knowledge of the mixture system. The recovery of the desired
sources can be split into two steps. The first step prewhitens
the observations, and the second extracts the desired source.
The prewhitened observations are

z(k) = Wx(k), (2)

where W is the M x M matrix which enforces the prewhiten-
ing or spatial decorrelation of the signal component of the
observations.

Multiplying z(k) by a separation or extraction K X M ma-
trix U, one can obtain the vector of K output signals or esti-
mated sources

y(k) = Uz(k) = Gs(k) + UWn(k), (3)

where the K X N matrix G := UWA is the global transfer
matrix from the sources to the outputs.

Next, we will describe the steps that convert the problem
of blind detection of a user in a DS-CDMA system into a
linear and memoryless BSE problem. In similarity with pre-
vious works (see [1-3, 5, 8, 19, 20]), we will rearrange the
observed data (the received signal) into a sequence of vectors
in order to obtain an instantaneous MIMO model.

We consider a system with N, users and a process gain
of N, chips per symbol. The chips’ sequence (or spreading
sequence) of the jth user can therefore be grouped into the
vector

cj = [Cj(O),..-,Cj(Nc - 1)]T' 4)

Since the spreading sequence has exactly one symbol of dura-
tion, we are dealing with a short-code DS-CDMA system. In
future high-capacity systems, short codes will become more
useful than long codes. The reason is that the MAI in one
symbol has identical statistics to the MAI in the next symbol,
which allows the multiuser receiver to know adaptively the
interference structure [3, 14].

The symbol sequence transmitted by the jth user is de-
noted by {b;(k)}. The symbols of each sequence are complex
(the modulation can have quadrature components), zero-
mean, independent and identically distributed (i.i.d.). For
different values of j, the {b;(k)} terms are also mutually in-
dependent.

To construct the transmitted signal, we cyclically send the
chip sequence multiplied at each period by a symbol. The
discrete signal transmitted by the jth user is therefore

Rik)= S bi(m)cj(k—nN), j=1,2...,N. (5)

n=—oo
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In the case of the uplink, each user has his own linear
and dispersive propagation channel. The impulse response
of this channel sampled at the chip interval T; is g;(n) for
the jth user. For the uplink, g;(n)’s are different for different
j’s, whereas for the downlink, they are identical. The discrete
impulse response includes the effects of chip-matched filter-
ing at the receiver (see [3]) but not the transmission delay
(modulus N.) of the jth user, d;, that we assume to satisfy
0 < dj < N — 1. Thus, we are assuming asynchronism be-
tween users.

The transmitted signal will pass through the correspond-
ing channel. We can group the effect of the chip sequence and
the channel into the effective channel

N.~1

hi(k) == > ci(n)gj(k — n). (6)

n=0

Therefore, we can express the contribution of the jth user
at the receiver after being sampled at T, as

%(k) = S bj(Dhj(k —d; —IN,). (7)

|=—o00

The total received signal X(k) is the superposition of the
contributions of the N, users in the presence of additive
white Gaussian noise,

N,
(k) = > %(k) + n(k). 8)
j=1

This is a locally cyclostationary process. Since we aim
to work with a locally stationary process, we will define a
convolutional MIMO model (multiple inputs and multiple
outputs) and then convert this model into an instantaneous
MIMO model.

To construct the convolutional MIMO model, we group
N, consecutive samples of X(k) in the vector X(k), so that
X(k) = [X(kN; + N, — 1),...,%(kN.)]". By similarly defin-
ing hj(l) = [hj(IN: —d; + N. — 1),...,h;(IN. — d;)]" and
n(k) = [n(kN. + N, — 1),...,n(kN,)]", the convolutional

MIMO model is
N, Lj
x(k) = z Zhj(l)bj(k — 1) +n(k). 9)
j=11=0

If we assume that multipath delays have a duration of at
most one symbol (gj(/) = 0for/ < 0and [ > N.) and recalling
that 0 < d; < N, we have h;(I) = 0 for / < 0 and [ > 3. Thus
Lj=2forj=1,...,N,.

By defining the vector (k) = [b;(k),..., by, (k)]T and the
matrix H(I) = [hy(I),...,hy, ()] of N: X N, order, we have

3(k)
iw)=[Hm)}un H@ﬂ Sk-1)]. (10)
3k - 2)

The following step will convert the convolutional MIMO
model into an instantaneous MIMO model. In order to do

this, we define the vector x(k), the observations vector in the
BSE model,

x(k) = [%(0T,.. %k~ Lo+1)"] (11)

In the same, way we define noise vector n(k). By defining the
vector of sources

stk) = [300T,. . 3k-L-1)T], (2
and the linear and instantaneous mixing matrix
H(0) H(1) H(2) 0 0 e 0
0 H() H(1) H2) 0 --- 0
A=l . ) b
0 s H(0) H(1) H(2)
(13)

we have obtained the linear and memoryless BSE model of
(1).

Now, the defined vector of sources consists of delayed
versions of the symbol sequences of all users. Since these
sequences are i.i.d. and mutually independent, we can af-
firm that the vector s(k) actually consists of indepen-
dent sources. If we define the elements of s(k) as s(k) =
[sl(k),sz(k),...,sNu(Le+2)(k)]T, the source sjn,a(k) is the
symbol sequence of the jth user with a delay d, that is,
bj(k —d),with0 <d < L, + 1.

The vector x(k) is of dimension N.L, X 1, the matrix A
is of dimension N.L, X N,(L, + 2), and s is of dimension
Nyu(L, + 2) x 1. Following the notation for BSE, M = N.L,
is the number of observations and N = N,(L, + 2) is the
number of independent sources. The minimum number of
delays L, we have to introduce into the model is that which
allows us to obtain at least as many observations as sources,
that is, L, must satisfy

2N,
N.— N,

L, > (14)

3. CODE-CONSTRAINED CRITERION

In the previous section, we showed how to transform the
DS-CDMA system model into a linear, instantaneous mix-
ing model. Once this is done, one can apply an extraction
algorithm to the observations vector and extract the symbol
sequence of a user. However, in general, this does not ensure
that the resulting symbol sequence corresponds to that of the
desired user. To achieve this, we need to incorporate an addi-
tional constraint into the extraction algorithm.

In this section, we present a constraint based on the code
constraint introduced in [1], and related to the subspace pro-
jection used in [8], for enforcing the detection of the de-
sired user. In [1], a blind equalization algorithm without
prewhitening was considered. Since we use prewhitening as
preprocessing, the constraint is slightly different. We will now
show that to impose the constraint, we only have to project
the extraction vector onto a certain subspace related to the
desired user’s code.
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Let us assume that we want to obtain the symbol se-
quence of the user jj with a delay d. In the absence of noise,
after prewhitening the observations, the true extraction vec-
tor uy is a row vector (a 1 X N.L, matrix) that satisfies

u, WA = oce}T,, (15)
where e, is the unit-norm coordinate vector whose single
nonzero element is at position p = jo + N,d, and « is a com-
plex constant. Note that the minimum norm solution for u,
is

u = oce}T,AHWH. (16)
From the model, one can observe that

ae, A" = alh¥}(d),...,h}(0), 0,...,0]. (17)

By defining h{" := [h}'(d),...,h}(1)h!(0)]%, and recalling
that g;() is 0 for I > N, and for [ < 0,and 0 < d; < N, we
have

h® =cl’g, (18)
with
[0 0 0 ]
¢j(N: - 1) 0
¢i(N. =2) ¢j(N.—1)
Cﬁd) =1 ¢(0) cj(1) ,

0 Cj(())

0 0 ¢j(Ne—1)
|0 0 ¢;(0)

g (—di+1),g(-d)]".

(19)

g =[G (2N~ 1-d)),...

The Toeplitz matrix C'@ of dimensions [(d + 1)N.] x
[2N,] is similar to the one given in [1, 5, 8].
From (16), (17), and (18), we can state that

u, = (xgﬁ(i’;f)HWH, (20)
where
(d)
@ _ | C;
Cj, = [ (1)0 } (21)

isan N.L, X 2N, matrix.

By defining P := WG](-:Z ), one can rewrite (20) as
Uy = (xg%PH, (22)

which is the extracting vector at the solution. Since P is an
N.L, X 2N, matrix and L, > 2, the channel vector can be
expressed as

ocg% = u, P(PHP) . (23)

Let the row vector u'” be the estimated extraction vec-
tor obtained after the ith iteration of the BSE algorithm. In
contrast with the true extraction vector uy, in general, the
estimated vector does not belong to the subspace spanned by
the rows of PH. The least-squares solution to the inequation
ul £ (xgEPH gives the estimated channel vector

ag) = uP(PP) ", (24)

and, in analogy with (22), from this last result one obtains
the new composite extracting vector as

ulIL, = ag; P", (25)
where
II. = P(PHP) 'PH (26)

denotes the projection matrix onto the subspace spanned by
the columns of P. Thus, in order to favor the detection of the
desired user, one can automatically incorporate the projec-
tion into the preprocessing by simply redefining the observa-
tions vector as

z(k) = TI.Wx(k). (27)

4. EXTRACTION ALGORITHMS

In this section, we will first present the existing implemen-
tation of the inverse filter criterion. Later on, we consider an
algorithm that implements the joint optimization of several
higher-order cumulants.

4.1. Algorithm derived from the inverse filter criterion

In [1], Tugnait and Li propose to solve the deconvolution
problem by passing the observations X(k) through an inverse
filter or equalizer. Let lN)(i) denote the row inverse filter of L,
taps, and whose elements have dimension 1 X N.. The output
of this filter is

L.—1

y(k) =bx(k) = Z g(i))N((k — 1), (28)
i=0

whereb = [l;(O),l;(l),. .. ,lN)(Le —1)] can be considered as an
extraction vector.

The inverse filter maximizes the contrast function pro-
posed by Shalvi and Weinstein (see [21]),

| cumy (y (k)|

Jin(b) = .
2O = s ()

(29)
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The rth-order cumulants involved (r = 2,4) are real, since
they have half of the arguments equal and the other half equal
to their conjugates, that is, they have the following structure:

cum,(y) = cum (y*,...,y*, y,..., ). (30)
—

Xr/2 Xr/2

The computation of these cumulants in terms of moments,
for low orders, is detailed in the appendix.

In the absence of noise, the recovery at the output of the
desired joth user is achieved blindly through the maximiza-
tion of (29) with respect to the row vector b, up to a complex
constant & # 0, and an arbitrary delay 0 < d < L, — 1+ L;,,
that is,

y(k) = abj,(k - d). (31)

The algorithm proposed in [1] does not consider
prewhitening and adapts the equalizer by means of a gradi-
ent algorithm, followed by the projection of the extraction

vector onto the subspace spanned by the rows of (R} G](-f M)H,

4.2. Algorithm derived from a joint
optimization criterion

We have seen that the inverse filter criterion solves the prob-
lem of blind source extraction by using a contrast function
which is based on the second- and fourth-order cumulants of
the output y(k). Recently, the importance of combining the
information from several higher-order statistics as a means
of improving the accuracy of the results has been highlighted
in [15-17]. In the same line of work, we propose here an al-
gorithm which is able to optimize a contrast function that
combines information from several higher-order cumulants
of the output. As will be shown in the next section, the pro-
posed algorithm yields improved results in the detection of
the desired user.

Let us recall that with the prewhitening of the obser-
vations, and the projection that favors the detection of the
desired user, the preprocessed observations z(k) can be ob-
tained from (27) while the output is computed as y(k) =
uz(k), where u is a unit-norm row vector.

We propose to estimate the desired independent compo-
nent by maximizing a weighted square sum of a combination
of cumulants of the output with orders r € Q. A contrast
function that achieves this objective is given by

va(y) = > a, | cum, (y(k)) |2 subject to [lull, = 1,
reQ)
(32)

where «, are positive weighting terms. Let us define ¢ =
max{r € Q}, in our case, we choose to optimize the set of
cumulant orders Q = {4,6}. Our choice is motivated be-
cause the low-order cumulants are those which can be esti-
mated with greater accuracy, but the second-order cumulant
is already used in the prewhitening step and the odd-order
cumulants are zero for symmetric distributions, which pre-
cludes them from being used by the criterion.

The only problem with this approach is the difficulty of
the optimization of (32), which is highly nonlinear with re-
spect to u. We can circumvent this difficulty by proposing
a similar contrast function to (32) but whose dependence
with respect to each of the extracting system candidates is
quadratic, and thus, much easier to optimize using algebraic
methods.

Consider a set of g candidates for the extracting sys-
tem {ulll,...,ul?} each of unit 2-norm. The correspond-
ing set of their respective outputs is denoted by ¥y =
{yl(k),..., y9/(k)}. We define a multivariate function

NED % > | cum ((y["‘](k)) . (y[ar/z](k))
reQ) ( )

UEF?

* *
I >

r

2

>

yloal ,ym(k)>

(33)

where a, > 0 and I'? is the set of all the possible combinations
(01,...,0,) of the elements in {1,...,q} taken r at a time.

Theorem 1. The function yo(¥), which is invariant with re-
spect to the permutation of its arguments, is maximized at the
extraction of one of the users. At this extreme point, all the out-
puts coincide with one of the transmitted signals y!'(k)e/% =
coe = ylal(k)el = abj,(k — d), up to some constant scaling
and phase terms 01,..., 0.

There is an interpretation of this theorem in terms of a
low-rank approximation of a set of cumulant tensors [22]. A
sketch for the proof of this theorem is presented in [23].

The invariant property of yo(7) with respect to permu-
tations in its arguments allows us to describe the dependence
of the function with respect to ul”! in the following expres-
sion:

m) = % G
ga(u™) = 3 (%)

reQ \,

x > *,...,

-1
peli)

cum ((y[m] (k))*, (y[m(k))

2

>

<y[Pr/271](k)) *’y[Pr/Z]’ . ’y[/’rfl] (k))
(34)

where 1“?:11 is the set of all the possible combinations
(p1>...>pr—1) of the elements in {1,...,m — 1,m+1,...,q}
taken r — 1 at a time.

Observe that now the dependence of the contrast func-
tion with respect to each of the extracting system candidates
is quadratic. Thus, yq(¥) can be cyclically maximized with
respect to each one of the elements u”, m = 1,...,q, while
the others remain fixed. Then, at iteration i, one optimizes
ul™ with m = (i mod q)+1. This guarantees a monotonous
ascent through iterations, and since the function is upper-
bounded by its value at the extraction of one of the users,
the monotonous ascent also guarantees convergence to a lo-
cal maximum, except for the possible (although extremely
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unlikely) convergence to saddle points. In any case, in com-
munications, the cumulants of the transmitted signals are
known in advance, so one can evaluate a priori the global
maximum of the contrast function in order to check, later,
after the convergence, whether a valid solution has been ob-
tained.

The previous approach works quite well. However, the
speed of convergence of the algorithm could be accelerated
if, after each iteration, one projects the candidates onto the
symmetric subspace that contains the solutions, that is, one
enforces yl!l(k) = - - - = ylal(k). This projection still guar-
antees the monotonous ascent when the contrast function
Ya(y) is shown to be a convex function in the convex do-
main 4 = {u: [lull, < 1}, see [24]. An additional advantage
of this projection is that it improves the accuracy in the es-
timation of the statistics involved, because, for constellations
like QPSK, the symmetry in the arguments of the cumulants
usually reduces the variance of their sample estimates.

After this projection step, one no longer needs to main-
tain the notation for all the extraction candidates, since they
will be equal, and one only has to distinguish between the
value of the extraction candidate that one is optimizing at the
ith iteration u” and its value at the previous iteration u'-1,
One can observe that the cyclic maximization of the contrast
function with respect to ul”™ with m = (i mod q) + 1, is
now equivalent to the sequential maximization through iter-
ations, with respect to the extraction vector u®, of the func-
tion

g (u”)

*
yeees

,
2, o

reQ)

cum ((y(i)(k)>*, (y(i—l)(k))

2

(00) )

_ (u(i)>*M(i’1)u(i)T
(35)
which results from the simplification of (34). Note that

MU is a matrix which does not depend on u'” and that
it is given by

H
5

MY = 3 Lacl () (V) (36)
reQ) q
where C;iy_l) (r) is defined as
. . *
() = cum (250, (00)
(37)

(y(iﬂ)(k))*’y(,q),m)y(ifl)(k))

At each iteration, the maximization (/SQ(u(i)) is obtained by
finding the eigenvector associated to the dominant eigen-
value of MU~V Starting from the previous solution, if one
considers using L iterations of the power method to ap-
proximate the dominant eigenvector (in practice L = 1 or

u® = gD
FOR I=1:1L .
o Sreatad (e ()
| S catraradt o) (&5 0)|
END ’
u® = u®),

ArcoriTHM 1: The extraction algorithm.

2 works well), Algorithm 1 is obtained, where d}H)(r) =
@Dy ().

5. SIMULATIONS

In order to test the performance of the criteria, we performed
extensive simulations of the corresponding algorithms in dif-
ferent situations. They were compared in terms of the MSE
between the output and the symbol sequence of the desired
user and in terms of the probability of symbol error.

We considered three users and we performed two differ-
ent simulations: one in which all users were received with the
same power, and another in a near-far situation where the
power of an interfering user was 10 dB greater than that of
the desired user. Each user transmitted 200 symbols with a
QPSK modulation. The processing gain or spreading factor
was set to 8 chips/symbol where the chips take values in +1.
Each of the channels consists of four multipaths with com-
plex Gaussian random amplitudes and uniform random de-
lays. The observations were arranged as in (11) to obtain an
observations vector x(k) of length 24, that is, we set L, = 3.

As it is usual, the algorithms are run in two stages pre-
ceded by an initialization. This initialization was chosen sim-
ilar to the one detailed in [1]. In the first stage, the maxi-
mization of the contrast function is achieved by using the
projected and prewhitened observations. This leads to the
extraction of the desired user. In the second stage, the ex-
traction vector obtained at the end of the first stage is used as
the initialization for the unconstrained maximization of the
contrast function. In this second stage, we do not impose the
projection of the observations. This leads to an improvement
of the results, since, in practice, the data-based constraint is
not fully accurate due to the small number of samples and
the noise.

In Figure 1, we present the MSE versus the SNR which
resulted from the simulations. We compared the results of
the algorithm of [1] with and without prewhitening, and
the algorithm of combined cumulants with Q = {4,6} and
as = as = 0.5. In the figure, one can see that the prewhiten-
ing reduces the MSE between the output and the desired user.
When we use the proposed algorithm, the reduction in MSE
is more evident, and this improvement increases with the
SNR. Additionally, by comparing Figures 1(a) and 1(b), one
can observe that the proposed algorithm is more resistant to
the near-far problem.

Figure 2 shows the probability of symbol error versus the
SNR for the proposed algorithm and for the one proposed
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near-far situation (MAI = 10dB).
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F1GURE 2: The probability of symbol error for (a) normal (equal power) situation (MAI = 0dB) and (b) near-far situation (MAI = 10dB).
Parameters of simulation are the same as in Figure 1.
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FIGURE 3: Constelations obtained when the extraction algorithms are applied with (b) or without (a) prewhitening for an SNR of 30 dB and
an MAI of 0 dB. The x- and y-axes of the figures refer to the in-phase (real) and quadrature (imaginary) components of the received QPSK

constelation.

in [1]. The parameters for this simulation were the same as
those used in Figure 1. One can again see better behavior for
the proposed algorithm in normal and near-far situations.
The robustness against the near-far problem is corroborated
from the comparison between Figures 2(a) and 2(b).

We should note that occasionally, for very low SNR, the
algorithms fail to converge. These cases can be detected be-
cause they are characterized by an output whose kurtosis is
positive or close to zero. When this happens, the algorithm
is automatically reinitialized, and the extraction is repeated
until a correct solution is found.

Figure 3 illustrates the difference between the use or not
of the prewhitening preprocessing in a simulation with 1000
samples. In the figure, one can see the improvement due to
prewhitening in reduction of the MSE as a smaller radius for
the clouds of points centered at the symbols of the constella-
tion.

In all these simulations, we used a QPSK constellation.
In principle, the proposed criterion and algorithm work with
all kinds of signals, real or complex, continuous or discrete.
However, the performance of the algorithm will depend on
the statistics of the signals considered and on the length of
the available data set, since both factors influence the vari-
ance of the sample cumulant estimates. For constellations
with certain symmetries (like the QPSK), the sample esti-
mates of the high-order cumulants and cross-cumulants have
a higher precision in absence of noise. Note, however, that
the advantage of using QPSK signals quickly disappears for
moderate/low signal-to-noise ratios. The QPSK constella-
tion is widely used in CDMA, but we also proved the al-
gorithm with a 16-QAM constellation and we found good

detection results when increasing the number of symbols to
800 (about four times more than with the QPSK constela-
tion).

6. THE SOFTWARE RADIO PLATFORM
OPERATING AT 5 GHZ

In order also to test the algorithms with real signals, we built
a software radio platform operating at 5 GHz. The fourth
generation of mobile communications systems will take ad-
vantage of software radio concepts combining different ac-
cess technologies into a common hardware platform. More-
over, the trend towards increasing the frequency of opera-
tion is arousing great interest in the 5 GHz band, both at the
research and commercial levels, which justifies our choice.
This section will outline the characteristics of a software ra-
dio platform for the transmission of wideband communica-
tions signals modulated at 5.25 GHz.

The platform has been widely characterized [18], yield-
ing the following relevant figures: nominal RF frequency,
5.25 GHz; intermediate frequency, 140 MHz; FI bandwidth,
30 MHz; transmitter 1dB compression level, 0 dBm; re-
ceiver sensibility, —62 dBm; receiver 1 dB compression level,
+6 dBm; and power consumption, below 115mA at 15V.
Furthermore, to analyze the detection capabilities of the
platform, transmissions of a WCDMA-3GPP signal at
3.84 Mchip/s have been carried out. The baseband signal is
generated in a PC by using Matlab. The IQWIZARD and
WinIQSIM software send this signal to the SMIQ02B genera-
tor that gives the signal at IF to the up converter which trans-
mits it at 5.25 GHz. The down converter recovers this signal
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FIGURE 4: (a) The received signal for real measurement and (b) the resulting signal after applying the algorithm of blind detection. For the
received signal, the continuous signal is represented in grey and the sampling points are represented in black. Received SNR was 8.2 dB. The
x-and y-axes of the figures refer to the in-phase (real) and quadrature (imaginary) components of the received QPSK constelation.

and converts it at IF. This IF signal is sent to the E4407B spec-
trum analyzer which demodulates it and gives the recovered
I1Q signal to the PC. The evaluation of the different modules
of both the transmitter and the receiver has been performed
from in-fixture measurements, using a universal test fixture.

Measurements were made with the aid of the platform.
Because of the limitations in the number of transmitters that
we have at this moment (only one) and storage capability,
the simulation of the CDMA system was partially real. We
had to transmit a user and then superpose the received signal
with the one of an interfering user. The resulting sum was
transmitted and received once again. Then, the algorithm of
blind detection was applied to the received data. The number
of symbols was 200, with 4 chips/symbol and 3.84 Mchip/s.
The MAI was set to 5dB. The separation between antennas
was 1 m. In Figure 4, we show the results of the simulations
with real measurements.

7. CONCLUSIONS

In this paper, we have addressed the problem of the blind
detection of a desired user in a DS-CDMA communications
system from prior knowledge only of its spreading code. We
have shown how to extend the code-constrained inverse fil-
ter criterion presented in [1], by considering a more gen-
eral criterion based on joint optimization of several higher-
order statistics. The combination of different reliable statis-
tics of the output led to an improvement in the performance
of the detector in terms of mean square error and prob-
ability of symbol error. The performance of the algorithm
and its robustness with respect to the near-far problem was

corroborated by the results of the simulations, which also
revealed that the improvement increases with the signal-to-
noise ratio.

APPENDIX

EVALUATION OF CUMULANTS
AND CROSS-CUMULANTS

In this appendix, we show how to evaluate the cumulants of
the outputs, which is necessary for the implementation of the
algorithm. An easy way is to rewrite them in terms of the
moments of the outputs by using the following formula (see
(25)):

cum (y1, ¥z y0) = >, (=)™ H(m—1)!
(PI,-..)P"I)
)l
i€p i€ps i€pm
(A.1)

where the sum is extended to all the possible partitions
(p1>.-->pm), m = 1,...,n, of the set of natural numbers
(1,...,n).

This calculus results in simple complexity for lower or-
ders but it quickly increases for higher-orders. In our case,
the fact that the signals are of zero mean and that the argu-
ments of the cumulants share some symmetries considerably
simplifies this task, because many partitions disappear or give
rise to the same kind of sets. Below, we present the cumulants
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for r € {2,4,6}, in terms of the moments:
cumy(y) = cum (y*, ) = E[|yI?],
cumy(y) = cum (y*, y*, y,y)
= E[lyl*] - 2(E[1y])* - E*1E[ (%)),
cumg(y) = cum (y*, y*, y*, , , )
= E[IyI°] - 9E[IyI*]E[1yI?] + 12(E[1y1*])’
=3E[y*y*1E[ (y*)*] - 3E[y(»*)’|E[y*]
— 9E[y*y* |E[ y(y*)’]
+18E[y*|E[ (y*)* |EL1y17].
(A.2)

When taking into account the specific symmetries of the
QPSK constellation of the transmitted symbols, one can fur-
ther simplify this result. Some of the final terms in the previ-
ous expressions vanish, resulting in the simplified formulae

cumy(y) = E[IyI*],
cumy(y) = E[Iy*] - 2(E[1y*])%,

cume(y) = E[1yI°] = 9E[IyI*]E[1y1*] + 12(E[1y*])’,
(A.3)
whose complex gradients
r
2

are proportional to the following cross-cumulant vectors:

Van cum,(y) = ~¢gy(r) (A.4)
¢y(2) = cum (2%, y) = E[z"y],
Csy(4) = cum (z*, y*, y, )

E[z*ylyl*] - 2E[z*y]E[IyI?],
Czy(6) = cum (2%, y*, y*, », 5, y)

E[z*yly|*] — 6E[z* y|yI*|E[Iy|*]

— 3E[z* y]E[Iy|*] + 12E[z* y] (E[IyI?])"

(A.5)
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