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Abstract - This paper considers the problem of blind 
demodulation of multiuser information symbols in a 
direct-sequence code-division multiple access (DS- 
CDMA) environment, Channel estimation and symbol 
detection in presence of both multiple access 
interference (MAI) and intersymbol interference (ISI) 
is carried out with second order statistics methods from 
the received data. This problem is similar to Direction 
Of Arrival (DOA) estimation, where many solutions 
like the MUSIC algorithm or “weighted” techniques (as 
Deterministic Maximum Likelihood or Weighted 
Subspace Fitting method) have been developed. In this 
proposal these techniques are extended to blind DS- 
CDMA channel identification problem in an unified 
framework known as Subspace Fitting. In this 
framework the estimated and the received data are 
“fitting” through the subspaces in a least square sense. 
Then, in order to achieve a better estimation of the 
channel, a modified Gauss-Newton type algorithm is 
suggested. Simulations are carried out comparing the 
proposed solutions with a classical signal subspace- 
based blind channel identification scheme. 

I. INTRODUCTION 

There is actually a growing interest in the design of 
high-rate DS-CDMA networks. This kind of digital 
communications are subjected to intersymbol 
interference (ISI) (due to channels with multipath 
phenomena) and multiple-access interference (MAI) 
(which is inherent to any nonorthogonal CDMA 
system). This problems can be so severe that correct 
reception of the transmitted symbols is not feasible 
anymore. It is necessary therefore to equalize the 
channel, suppressing jointly both MAI and ISI. 

This work is partially supported by the National 
Research Plan of Spain, CICYT, TIC96-0500-C10-01, 
TIC98-0412, TIC98-0703 and by the Generalitat of 
Catalonia, CIRIT, 1998SGR-0008 1. 

Since Tong, Xu and Kailath showed in [l] that it is 
possible to obtain an estimation of the channel from a 
second order statistic of the received signal, second 
order statistics have showed its useful in channel 
estimation. Subspace-based methods are based on the 
singular value decomposition (SVD) of a matrix 
constructed from the observed signal, which provides a 
robust discrimination between desired and disturbing 
signals in terms of signal and noise subspaces. In 
particular, several works (see [2] and references 
therein) have addressed the use of MUSIC-type 
methods for parameter estimation in CDMA systems. 

The general objective is to find a low-rank subspace 
with a shift structure that has minimal distance to the 
true signal space, or equivalently, that is as orthogonal 
to the noise subspace as possible. Viberg and Ottersten 
formulate in [4] different methods in a common 
subspace fitting based hmework, providing an 
overview of the DOA estimation problem and 
clarifying the algebraic relations between the 
algorithms. 

In this contribution we focus on MUSIC [3], WSF [4] 
and MDL [6] algorithms. These methods are 
summarized and adapted to blind channel identification 
in a subspace fitting approach. The paper is organized 
as follows. In Section II signal model of a DS/SS 
CDMA system and its subspace approach are 
formulated. Blind channel identification method for 
DS-CDMA proposed by [2] is also outlined. In Section 
UI we extend the subspace-fitting fiamework proposed 
by Viberg [4] to blind DS-CDMA channel 
identification. The cost hctions whose miniizationl 
maximization will allow estimating the channel are then 
formulated. After that, the Gauss-Newton algorithm for 
blind channel identification [8] is outlined. In section 
IV some simulation results are presented and discussed. 
Finally, we present some conclusions and outline future 
work in section V. 
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11. PROBLEM FORMULATION 

H w =  

Signal Model 

H(L) -.e H(0) 0 
i 
0 ... 

Consider a K-user binary communication system 
through a Gaussian channel. Let sk(n) denote the kth 
user transmitted symbol at time nT (where T is the 
symbol duration) and { C k o ) }  be the signature sequence 
of M f l  's assigned to the user. The transmitted signal 
due to the kth user is: 

Ns-l M 

Xk (0 = 4 * C S k  ( n ) C C k  (A .  P(t - nT - jTc  - 5k) 
n=O j=1 

O l t l T  (1) 
Where Ns is the number of transmitted symbols, M is 
the processing gain, p(t) is a normalized chip waveform 
of duration T, = TIM and Ak and Tk denote, respectively, 
the amplitude and delay of kth user. The resulting signal 
thorough a time-invariant channel hk(0 is: 

Ns-1 M 
~ k ( t )  = A, * C S ~  (~)CC, ( j ) -Zk( t  - nT - jT,) 

n=O j 4  

O l t l T  (2) 
With & ( t ) = p ( t - 7 k ) * h k ( t ) ;  zL(t)sO t / t E I O , L k  .TI. 
The signal is filtered with the chip-matched filter and 
sampled at the chip rate T,. The resulting discrete-time 
signal component due to the kth user at the ith chip 
period of the nth symbol interval will be: 

Lh 

~ , + ( n ) = C s , ( n - ~ ) . h , , ( ~ )  i = z . .M;~= Z..K (3) 
I=O 

With 

f L  (m) = s," E++ (t + m ~ ,  1. p(t)dt 

O l m l ( L ,  + l ) . M - l  (4) 
M 

( j )  = h, (IM + i> ; h k ( m )  = ' c c k ( j ) * f k  ( m - j )  
J=1 

O l m l ( L , + l ) . M  ( 5 )  
The received discrete-time signal at the ith chip period 
of the nth symbol interval is then: 

r, (n) = Y ,  (n) + v, (n) 
K 

Y ,  (n)  = C Y , k  (n) (6) 

With i;(n) the filtered AWGN noise. Defining the 
following matrix and vectors [2]: 

k=l 

r(n) = ; y(n) = ; v(n) = 

H(n) = ; s ( n ) =  (7) 

By stacking W successive samples of the received data 
we have the MWxZ vectors: 

Subspace Approach 

The additive noise c ( n )  is modeled as a Gaussian, 
stationary, white and zero mean random process. The 
covariance matrix of the received signal is: 

(13) C, = E b w  .RF]=Hw . H i  +021M, 
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Where the function E[*L denotes mathematical 
expectation and superscript is the hermitic operator. 
We assume that each user's information symbols are 
independently identically distributed and the symbol 
streams of different users are independent: .Ew .s;]= I, with r = K(w+L). 
The signal subspace is defined as the space spanned by 
columns of Hw, and the noise subspace is its orthogonal 
complement. Both subspaces can be obtained from the 
SVD of covariance matrix: 

CRR = UAU" = [U, U,]. p *)Js uor (14) 

With A, = diag(il1 ... &), A i d  for i=l,  ..., r (signal 
eigenvalues) and A, =diag(&+I ... ,IMw), A+=d for 
i=r+l, ..., MW (noise eigenvalues). The MW x Y matrix 
U, and the MW x MW-r matrix U, are: 
U, =[ul e . .  U,]; U, =b,+, urn] (15) 

Since columns of U, span the signal subspace and 
columns of U, the noise subspace, orthogonality 
between subspaces provides: 

U: .Hw = O  for i=Z,..,MW-(W+L) (16) 

Blind channel estimation in DS-CDMA 

The following subspace algorithm is an extension of the 
method developed in [3] to multiple input signals. Let 
U," ... U;], where U: is the ith (MW-r)xA4 
partition of U," , we define the M(L+Z)xK matrix H and 
the (MW-r)(W+L) xM(L+l) matrix G as: 

Then (1 6) can be rewitten as: 

If G has more rows than columns, then its right null 
subspace specifies H up to a nonsingular ambiguity 
XXK matrix factor, Le: H = H . D  . To further solve this 
ambiguity, the finite alphabet property of the input data 
has to be exploited, which is prohibitively expensive. In 
order to overcome this problem, Wang incorporated in 
[2] the spreading signatures. 
Let denote the M(L+Z) x mf matrix of the composite 
signature of the kth user Ck as: 

U,H*HIY=O e G * H = O  (18) 

(19) 
. .  

With mf the channel response length of &(m) in (4); 
having that H=[hl ht ... h,], we cm rewrite ( 5 )  as: 

h, =A,C,f, With f,, = [ fk? ] (20) 

fk ("J - 1) m,x, 

Then, from (1 8) we have that: 

And therefore, the right null vector of G . C,  is fk up to 
an ambiguity scalar factor. 

G.H=O*G*hk = A k * G * c k * f k  = o  (21) 

111. WEIGTED SUBSPACE FITTING 

Cost functions 

Since covariance matrix Cm is in practice estimated 
from a limited amount of received data, only an 
approximation of Cm is available. Then, (21) has to be 
solved in a least square sense. Adapting to blind 
channel identification the basic subspace fitting 
problem in DOA estimation proposed by Viberg & 
Ottersen [4], we have that, given some representation of 
the data M, we should to find an estimation of H and T 
such that 

H,T = arg 2 ~ 1 1 ~  -H, (H).TII: (22) 

Where [diis the quadratic Froebius norm. This is a 
separable problem, and substituting the solution of the 
first part, T = Hw+.M into (22) (the superscript 
denotes the pseudoinverse operator), this gives the 
generic subspace fitting cost function: 

H = arg m$V(H) with 

V(H)=/(I-P,,).MII: =T&.M.M") (23) 

Where P"=Hw-Hw+ is the LS projector onto the column 
space of Hw, P; = I - P,, is the orthogonal LS projector 
and Tr(*) denotes the trace operator. As M is a 
representation of the data, different choices of M will 
provide different cost functions (criterions). 

MUSIC criterion. 
The MUSIC criterion is based on orthogonality between 
signal and noise subspaces. The cost function derived 
from ( 16) can be written as: 
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This is the MUSIC cost function. Since in DOA 
problem (24) does not give accurate results when the 
signals are highly correlated, Schmidt Error! 
Unknown switch argument. introduced a 
normalization matrix (HF .Hw)-' into (24), resulting 
the Multi-Dimensional (MO) MUSIC algorithm: 

H = arg minV, (H) 

v , ( H )  = T r b ;  -H,)I.Hg .UiT,-Uf .H,}= 

= TrkH .U,. U:)= Tr(p, -b  - Us -U:)} (25) 
As the trace of a projection operator is equal to the 
dimension of the subspace onto which it projects, 
minimizing VI@) gives the same result that maximizing 
V ( H )  = Tr$ -6, .U:)= Tr[I - Pi)-Us .U:}, and the 

cost function of MD-MUSIC algorithm will be: 

H = arg minVM,_,,, (H) m 

Thus, the MD-MUSIC algorithm is a subspace fitting 
method where the representation of data is directly 
given by the signal subspace, M =Us . 

Deterministic ML criterion. 

Described by Biihme [6], this method try to maximize 
the log likelihood of the received data Y with respect to 
Hw and S (the columns of the MW x Ne matrix Y are 
the Ne snapshots y(n) with n=I..Ne, and the columns of 
the (W+L) x Ne matrix S are the Ne transmitted symbol 
vectors s(n)). This is equivalent to minimize the cost 
function VMDL ( H )  = 11 Y -H, .S 11: . The solution of the 

first part is S = Hk - Y  and the cost function becomes: 

fi = WgmZvMDL(H) with vMDL(H)= Tv(& -c,} (27) 

Connection with subspace fitting can be made using 
asymptotic arguments (see [4]). For large Ne, we have 
A, + 0 2 1 ,  C, -+ U, .i*Ur +02 . I  and A = A, -0' . I .  

As the trace of ozPi is a constant, the cost function is 
asymptotically (large Ne) equivalent to: 

Therefore, the deterministic ML method is a subspace 
fitting technique where the data are represented by its 
weighted signal subspace M = U, W,& ; wMDL = A. 

WSF criterion. 

The deterministic ML method allows to us to introduce 
the weighted subspace-fitting concept. This is: 

H = arg m,fnv.ssF (H) 

with V,,(H)= Tr{PkUsWwsFU:} (29) 

Where Wmp is a positive definite Weighting matrix. 
The question is to find a weighting matrix Wmp that 
makes the estimation statistically (for large Ne) 
efficient, i. e., that makes the WSF estimates 
asymptotically achieve the Cramer-Rao lower bound on 
the variance of the estimator error. Viberg and Ottersten 
[4] have shown that the optimal choice for WmF is 
W,,, =x2A;'. Thus, the WSF criterion can be 
expressed in (23) when the representation of the data is 
M = U, WzF.  

Modified Variable Projection Algorithm 

The proposed technique in [8] is the Modified Variable 
Projection (MVP) method (see [7] and references 
therein) applied to (one user) blind channel 
identification. The criterion function in (23) must be 
minimized over the vector h (for one emitter, matrix H 
is a column vector). Consider the nonlinear least square 
problem given by (23); in the damped Newton scheme, 
h is iteratively estimated with: 

hk+' =hk-,Uk.G-'.V' (30) 

With ,uk the step length, G the Hessian matrix of the 
cost function and v' the gradient. Every iteration the 
Hessian and the gradient are evaluated in hk. If h is well 
initialized, the Newton method guarantees an ultimate 
quadratic convergence to h . 
Consider fast the gradient of the cost function. The ith 
element of the gradient yields: 

Consider now the Hessian matrix, the 0th component of 
the approximate (a Kaufmanns's modification is 
applied to the algorithm, see [7]) Hessian matrix is: 

G ,  =2Tr{[(HLT .Hf .Pi .HY .H&].M-M"} (32) 

Then, (30), (31) and (32) give the MVP algorithm 
(derivation of (31) and (32) can be found in [7] and 
[SI). In order to obtain a good initialization of the 
estimates, we can use the MUSIC algorithm, which will 
allow to achieve a global minimum. The step length 
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factor should be chosen in order to guarantee global 
convergence. It is known that quadratic convergence of 
Newton-type algorithms is only achieved if the step 
length factor converges to unity. 

IV. SIMULATION RESULTS 

A 50 Monte Carlo simulation is carried out in order to 
evaluate the performance of the weighted subspace 
algorithms in a digital DS-CDMA communication 
system. The K=5 users emit a burst of Ns=128 BPSK 
symbols. The Gold signature sequence has M=25 rtl ‘s 
(i.e. Tc=T/15). The highest order of the channels (ISI) is 
set to L=2 and the width of the temporal window is 
W=4. Each user has A t = l ( O  dB MAI) and we consider 
the asynchronous CDMA channel. The performance 
measure plotted here is the mean of the probability of 
bit error computed for each user in a given signal-to- 
noise ratio (SNR) defined as A: /oz. 

Preliminary results can be seen in Fig. 1. WSF and 
MDL methods give virtually the same results, slightly 
worst than the MUSIC method. Since 50 Monte Carlo 
simulations do not provide a sufficient statistics, we can 
expect the same result than in case of one emitter, 
where the three methods proposed here give the same 
performance. 

Bit E m  Rata 

J 
1 2 3 4 5 6 

SNR 

Figure 1. Bit error rate. 

V. CONCLUSIONS 

A Monte Carlo simulation is carried out in order to 
evaluate the different weighted subspace algorithms. As 
it is shown in the figures, weighted subspace methods 
provide the same accurate results than the MUSIC 
method developed by Moulines et al. in [3] and 
extended to DS-CDMA by Wang in [2]. As was shown 
in [8], the Mod$ed Variable Projection algorithm 
developed and applied in a blind channel identification 

context can improve the MUSIC results in a single user 
context when weighted subspace methods are involved. 
It can be expected that this algorithm can be applied to 
DS-CDMA systems with same results. On the other 
hand, the weighting matrices in MDL and WSF methods 
were defined for DOA problem; as channel estimation 
is not the same problem another weighting matrix can 
be derived for this specific situation. Another 
simulations have been carried out in order to test the 
behavior of weighted algorithms with. larger bursts. 
Results have shown that at larger sample size, less 
difference in Mean Square Error (MSE) exists between 
MUSIC and the proposed algorithms. Therefore we can 
conclude that the weighting matrices defined in MDL 
and WSF criterions are usefbl in low sample sizes. 
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