281 research outputs found

    Eigenvalue-based Cyclostationary Spectrum Sensing Using Multiple Antennas

    Full text link
    In this paper, we propose a signal-selective spectrum sensing method for cognitive radio networks and specifically targeted for receivers with multiple-antenna capability. This method is used for detecting the presence or absence of primary users based on the eigenvalues of the cyclic covariance matrix of received signals. In particular, the cyclic correlation significance test is used to detect a specific signal-of-interest by exploiting knowledge of its cyclic frequencies. The analytical threshold for achieving constant false alarm rate using this detection method is presented, verified through simulations, and shown to be independent of both the number of samples used and the noise variance, effectively eliminating the dependence on accurate noise estimation. The proposed method is also shown, through numerical simulations, to outperform existing multiple-antenna cyclostationary-based spectrum sensing algorithms under a quasi-static Rayleigh fading channel, in both spatially correlated and uncorrelated noise environments. The algorithm also has significantly lower computational complexity than these other approaches.Comment: 6 pages, 6 figures, accepted to IEEE GLOBECOM 201

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    An OFDM Signal Identification Method for Wireless Communications Systems

    Full text link
    Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques

    Spectral Correlation of Multicarrier Modulated Signals and its Application for Signal Detection

    Get PDF
    Spectral correlation theory for cyclostationary time-series signals has been studied for decades. Explicit formulas of spectral correlation function for various types of analog-modulated and digital-modulated signals are already derived. In this paper, we investigate and exploit the cyclostationarity characteristics for two kinds of multicarrier modulated (MCM) signals: conventional OFDM and filter bank based multicarrier (FBMC) signals. The spectral correlation characterization of MCM signal can be described by a special linear periodic time-variant (LPTV) system. Using this LPTV description, we have derived the explicit theoretical formulas of nonconjugate and conjugate cyclic autocorrelation function (CAF) and spectral correlation function (SCF) for OFDM and FBMC signals. According to theoretical spectral analysis, Cyclostationary Signatures (CS) are artificially embedded into MCM signal and a low-complexity signature detector is, therefore, presented for detecting MCM signal. Theoretical analysis and simulation results demonstrate the efficiency and robustness of this CS detector compared to traditionary energy detector

    Spectrum Awareness in Cognitive Radio Systems

    Get PDF
    The paper addresses the issue of the Electromagnetic Environment Situational Awareness techniques. The main focus is put on sensing and the Radio Environment Map. These two dynamic techniques are described in detail. The Radio Environment Map is considered the essential part of the spectrum management system. It is described how the density and deployment of sensors affect the quality of maps and it is analysed which methods are the most suitable for map construction. Additionally, the paper characterizes several sensing methods

    Chapter UWB Cognitive Radios

    Get PDF
    Management & management technique

    Multi-stage Wireless Signal Identification for Blind Interception Receiver Design

    Get PDF
    Protection of critical wireless infrastructure from malicious attacks has become increasingly important in recent years, with the widespread deployment of various wireless technologies and dramatic growth in user populations. This brings substantial technical challenges to the interception receiver design to sense and identify various wireless signals using different transmission technologies. The key requirements for the receiver design include estimation of the signal parameters/features and classification of the modulation scheme. With the proper identification results, corresponding signal interception techniques can be developed, which can be further employed to enhance the network behaviour analysis and intrusion detection. In detail, the initial stage of the blind interception receiver design is to identify the signal parameters. In the thesis, two low-complexity approaches are provided to realize the parameter estimation, which are based on iterative cyclostationary analysis and envelope spectrum estimation, respectively. With the estimated signal parameters, automatic modulation classification (AMC) is performed to automatically identify the modulation schemes of the transmitted signals. A novel approach is presented based on Gaussian Mixture Models (GMM) in Chapter 4. The approach is capable of mitigating the negative effect from multipath fading channel. To validate the proposed design, the performance is evaluated under an experimental propagation environment. The results show that the proposed design is capable of adapting blind parameter estimation, realize timing and frequency synchronization and classifying the modulation schemes with improved performances

    A Low-memory Spectral-correlation Analyzer For Digital Qam-srrc Waveforms

    Get PDF
    Cyclostationary signal processing (CSP) provides the ability to estimate received waveforms’ statistical features blindly. Quadrature amplitude modulated (QAM) waveforms, when filtered by the square-root-raised cosine (SRRC) pulse shape function, have cyclic features that CSP can exploit to detect waveform parameters such as symbol rate (SR) and center frequency (CF). The estimation of these SR-CF pairs enables a cognitive radio (CR) to perform spectrum sensing techniques such as spectrum sharing and interference mitigation. Here, we investigate a field-programmable gate array (FPGA) application of a blind symbol rate-center frequency estimator. First, this study provides a background on the theory behind the cyclic spectral density function (CSD), spectral correlation analyzers (SCA), and spectrum sensing. Following this is a discussion on the motivation for CubeSat spectrum sensing. An SCA implementation for low-memory devices, such as FPGA-based CubeSat, is then describes. The paper concludes by reporting the performance characteristics of the newly developed streaming-based SCA
    • …
    corecore