136 research outputs found

    Blind Deconvolution of Anisoplanatic Images Collected by a Partially Coherent Imaging System

    Get PDF
    Coherent imaging systems offer unique benefits to system operators in terms of resolving power, range gating, selective illumination and utility for applications where passively illuminated targets have limited emissivity or reflectivity. This research proposes a novel blind deconvolution algorithm that is based on a maximum a posteriori Bayesian estimator constructed upon a physically based statistical model for the intensity of the partially coherent light at the imaging detector. The estimator is initially constructed using a shift-invariant system model, and is later extended to the case of a shift-variant optical system by the addition of a transfer function term that quantifies optical blur for wide fields-of-view and atmospheric conditions. The estimators are evaluated using both synthetically generated imagery, as well as experimentally collected image data from an outdoor optical range. The research is extended to consider the effects of weighted frame averaging for the individual short-exposure frames collected by the imaging system. It was found that binary weighting of ensemble frames significantly increases spatial resolution

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Integration of magnetic resonance spectroscopic imaging into the radiotherapy treatment planning

    Get PDF
    L'objectif de cette thèse est de proposer de nouveaux algorithmes pour surmonter les limitations actuelles et de relever les défis ouverts dans le traitement de l'imagerie spectroscopique par résonance magnétique (ISRM). L'ISRM est une modalité non invasive capable de fournir la distribution spatiale des composés biochimiques (métabolites) utilisés comme biomarqueurs de la maladie. Les informations fournies par l'ISRM peuvent être utilisées pour le diagnostic, le traitement et le suivi de plusieurs maladies telles que le cancer ou des troubles neurologiques. Cette modalité se montre utile en routine clinique notamment lorsqu'il est possible d'en extraire des informations précises et fiables. Malgré les nombreuses publications sur le sujet, l'interprétation des données d'ISRM est toujours un problème difficile en raison de différents facteurs tels que le faible rapport signal sur bruit des signaux, le chevauchement des raies spectrales ou la présence de signaux de nuisance. Cette thèse aborde le problème de l'interprétation des données d'ISRM et la caractérisation de la rechute des patients souffrant de tumeurs cérébrales. Ces objectifs sont abordés à travers une approche méthodologique intégrant des connaissances a priori sur les données d'ISRM avec une régularisation spatio-spectrale. Concernant le cadre applicatif, cette thèse contribue à l'intégration de l'ISRM dans le workflow de traitement en radiothérapie dans le cadre du projet européen SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) financé par la Commission européenne (FP7-PEOPLE-ITN).The aim of this thesis is to propose new algorithms to overcome the current limitations and to address the open challenges in the processing of magnetic resonance spectroscopic imaging (MRSI) data. MRSI is a non-invasive modality able to provide the spatial distribution of relevant biochemical compounds (metabolites) commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate and reliable information from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique. Despite the numerous publications on the topic, the interpretation of MRSI data is still a challenging problem due to different factors such as the low signal-to-noise ratio (SNR) of the signals, the overlap of spectral lines or the presence of nuisance components. This thesis addresses the problem of interpreting MRSI data and characterizing recurrence in tumor brain patients. These objectives are addressed through a methodological approach based on novel processing methods that incorporate prior knowledge on the MRSI data using a spatio-spectral regularization. As an application, the thesis addresses the integration of MRSI into the radiotherapy treatment workflow within the context of the European project SUMMER (Software for the Use of Multi-Modality images in External Radiotherapy) founded by the European Commission (FP7-PEOPLE-ITN framework)

    Superresolution Reconstruction for Magnetic Resonance Spectroscopic Imaging Exploiting Low-Rank Spatio-Spectral Structure

    Get PDF
    Magnetic resonance spectroscopic imaging (MRSI) is a rapidly developing medical imaging modality, capable of conferring both spatial and spectral information content, and has become a powerful clinical tool. The ability to non-invasively observe spatial maps of metabolite concentrations, for instance, in the human brain, can offer functional, as well as pathological insights, perhaps even before structural aberrations or behavioral symptoms are evinced. Despite its lofty clinical prospects, MRSI has traditionally remained encumbered by a number of practical limitations. Of primary concern are the vastly reduced concentrations of tissue metabolites when compared to that of water, which forms the basis for conventional MR imaging. Moreover, the protracted exam durations required by MRSI routinely approach the limits for patient compliance. Taken in conjunction, the above considerations effectively circumscribe the data collection process, ultimately translating to coarse image resolutions that are of diminished clinical utility. Such shortcomings are compounded by spectral contamination artifacts due to the system pointspread function, which arise as a natural consequence when reconstructing non-band-limited data by the inverse Fourier transform. These artifacts are especially pronounced near regions characterized by substantial discrepancies in signal intensity, for example, the interface between normal brain and adipose tissue, whereby the metabolite signals are inundated by the dominant lipid resonances. In recent years, concerted efforts have been made to develop alternative, non-Fourier MRSI reconstruction strategies that aim to surmount the aforementioned limitations. In this dissertation, we build upon the burgeoning medley of innovative and promising techniques, proffering a novel superresolution reconstruction framework predicated on the recent interest in low-rank signal modeling, along with state-of-the-art regularization methods. The proposed framework is founded upon a number of key tenets. Firstly, we proclaim that the underlying spatio-spectral distribution of the investigated object admits a bilinear representation, whereby spatial and spectral signal components can be effectively segregated. We further maintain that the dimensionality of the subspace spanned by the components is, in principle, bounded by a modest number of observable metabolites. Secondly, we assume that local susceptibility effects represent the primary sources of signal corruption that tend to disallow such representations. Finally, we assert that the spatial components belong to a class of real-valued, non-negative, and piecewise linear functions, compelled in part through the use of a total variation regularization penalty. After demonstrating superior spatial and spectral localization properties in both numerical and physical phantom data when compared against standard Fourier methods, we proceed to evaluate reconstruction performance in typical in vivo settings, whereby the method is extended in order to promote the recovery of signal variations throughout the MRSI slice thickness. Aside from the various technical obstacles, one of the cardinal prospective challenges for high-resolution MRSI reconstruction is the shortfall of reliable ground truth data prudent for validation, thereby prompting reservations surrounding the resulting experimental outcomes. [...

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Index to 1983 NASA Tech Briefs, volume 8, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1983 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    • …
    corecore