17 research outputs found

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Multi-user receiver structures for direct sequence code division multiple access

    Get PDF

    Near maximum likelihood multiuser receivers for direct sequence code division multiple access

    Get PDF
    Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest here is to retain the advantages of multiuser detection and simplify its implementation. The objective of the thesis is to investigate the optimum multiuser receiver, regarded on a chip level sampling basis. The aim is to reduce the complexity of the optimum receiver to a practical and implementable level while retaining its good performance. The thesis first reviews various existing multiuser receivers. The chip-based maximum likelihood sequence estimation (CBMLSE) detector is formulated and implemented. However, the number of states in the state-transition trellis is still exponential in the number of users. Complexity cannot be reduced substantially without changing the structure of the trellis. A new detector is proposed which folds up the original state-transition trellis such that the number of states involved is greatly reduced. The performance is close to that of the CBMLSE. The folded trellis detector (FTD) can also be used as a preselection stage for the CBMLSE. The FTD selects with high accuracy the few symbol vectors that are more likely to be transmitted. The CBMLSE is then used to determine the most likely symbol vector out of the small subset of vectors. The performance of this scheme is as good as the CBMLSE. The FTD is also applied in an iterative multiuser receiver that exploits the powerful iterative algorithm of Turbo codes

    Soft detection and decoding in wideband CDMA systems

    Get PDF
    A major shift is taking place in the world of telecommunications towards a communications environment where a range of new data services will be available for mobile users. This shift is already visible in several areas of wireless communications, including cellular systems, wireless LANs, and satellite systems. The provision of flexible high-quality wireless data services requires a new approach on both the radio interface specification and the design and the implementation of the various transceiver algorithms. On the other hand, when the processing power available in the receivers increases, more complex receiver algorithms become feasible. The general problem addressed in this thesis is the application of soft detection and decoding algorithms in the wideband code division multiple access (WCDMA) receivers, both in the base stations and in the mobile terminals, so that good performance is achieved but that the computational complexity remains acceptable. In particular, two applications of soft detection and soft decoding are studied: coded multiuser detection in the CDMA base station and improved RAKE-based reception employing soft detection in the mobile terminal. For coded multiuser detection, we propose a novel receiver structure that utilizes the decoding information for multiuser detection. We analyze the performance and derive lower bounds for the capacity of interference cancellation CDMA receivers when using channel coding to improve the reliability of tentative decisions. For soft decision and decoding techniques in the CDMA downlink, we propose a modified maximal ratio combining (MRC) scheme that is more suitable for RAKE receivers in WCDMA mobile terminals than the conventional MRC scheme. We also introduce an improved soft-output RAKE detector that is especially suitable for low spreading gains and high-order modulation schemes. Finally we analyze the gain obtained through the use of Brennan's MRC scheme and our modified MRC scheme. Throughout this thesis Bayesian networks are utilized to develop algorithms for soft detection and decoding problems. This approach originates from the initial stages of this research, where Bayesian networks and algorithms using such graphical models (e.g. the so-called sum-product algorithm) were used to identify new receiver algorithms. In the end, this viewpoint may not be easily noticeable in the final form of the algorithms, mainly because the practical efficiency considerations forced us to select simplified variants of the algorithms. However, this viewpoint is important to emphasize the underlying connection between the apparently different soft detection and decision algorithms described in this thesis.reviewe

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF
    corecore