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Abstract 

This thesis reports on an investigation of various system architectures and receiver structures for cellular 

communications systems which discriminate users by direct sequence code division multiple access (DS-

CDMA). Attention is focussed on the downlink of such a spread spectrum system and the influence of a 

number of design parameters is considered. The objective of the thesis is to investigate signal processing 

techniques which may be employed either at the receiver, or throughout the system to improve the overall 

capacity. The principles of spread spectrum communication are first outlined, including a discussion of 

the relative merits of spreading sequence sets, and a description of various signal processing techniques 

which are to be applied to the multi-user environment. The measure of system performance is introduced, 

and the conventional DS-CDMA system is analysed theoretically and through simulation to provide a 

reference performance level. 

Adaptive algorithms, which iteratively approximate the minimum mean square error (Wiener) receiver 

filter, are then investigated, both in stationary additive white Gaussian noise (AWGN) and in a more 

realistic radio channel. The inter-dependence of the system chip-rate, maximum Doppler offset induced 

by the motion of the receiver and the tuning parameters of the adaptive algorithm is demonstrated. 

Aspects of forward error correction (FEC) coding are then investigated, with convolutional coding on 

the data used both as an alternative to and as a supplement of direct sequence spreading. The most 

efficient use of the available expansion in bandwidth is shown to be dependent on a balance between 

FEC coding power and the capacity of the spreading sequence set chosen. 

Methods of combining mutiple access interference cancellation techniques with convolutional coding 

and Viterbi decoding are considered. New structures are proposed which incorporate FEC decoding at 

the intermediate stage of the canceller, and the performance of these receivers is analysed theoretically. 

Simulations confirm that significant capacity improvements may be achieved, at tolerable increases 

in computational complexity and processing delay. Receivers employing radial basis function (RBF) 

networks are shown to provide excellent capacity, but at the expense of exhorbitant computational 

demand. The architecture of these networks is investigated, with a comparison of the performance of 

networks constructed either at the chip or the bit level. Methods of reducing the complexity of such 

non-linear receivers are considered, and a new receiver, developed from the RBF network, but using the 

closest centre to estimate the data is described and shown to have similar performance to the conventional 

Gaussian kernel RBF network, but at considerably reduced complexity. 

Finally, conclusions are drawn, and suggestions for future extensions of the work presented are proposed. 
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Chapter 1 

Introduction 

Personal communication systems (PCS) aim to provide [1] "communication services in any 

form from any person to any other person in any place at any time through any medium and 

without any delay by using one pocket-sized unit at minimum cost with acceptable quality 

and security through the use of a single personal telecommunication reference number". The 

demand on communication services is now no longer limited to voice traffic, but encompasses a 

swathe of other media from electronic mail to fax data and even video. The increased quality and 

security of digital data is also becoming increasingly attractive to a seemingly ever expanding 

consumer market. Additionally, this heightened expectation is developing as the shift away 

from fixed telecommunication sites to truly portable mobile units appears relentless. Clearly, 

present-day PCS [2] fall some way short of this lofty goal in many if not all of the above criteria, 

and, although the rapid evolution thus far of digital wireless technology [3] indicates the pace 

of development, the fulfilment of all of these requirements is not yet attainable. 

This thesis is concerned with investigating the application of various signal processing techniques 

to improve future PCS. Specifically, the improvement sought is in increasing the capacity, which 

may be expressed in terms of the number of subscribers able to communicate at an acceptable 

error rate for a given bandwidth, of digital PCS which employ direct sequence code division 

multiple access (DS-CDMA). 

This chapter will first discuss the technical reasons for the adoption of a cellular structure for 

PCS, and indicate the scale of the international marketplace. The various techniques which 

allow multiple access to the system resources will then be briefly described in section 1.2, 

before the main objectives of the work are outlined in section 1.3. Finally, the layout of the 

subsequent chapters will be defined in section 1.4. 
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1.1 	Cellular communications background 

In this section, the cellular approach to wireless communication systems will be described. The 

reasons for adopting a cellular structure for the radio coverage areas will be outlined in section 

1.1 .1, which also describes some common terms often used in the cellular environment. An 

outline of the commercial aspects of PCS is then detailed in section 1.1.2, which also indicates 

the present status of some cellular systems. Conclusions are then drawn in section 1.1.3. 

1.1.1 Why cellular? 

The importance of available radio frequency (RF) bandwidth may be judged from the famous 

"Shannon equation" [4] 

W1092 (i + 	 (1.1) 

where C, is the capacity of a communications channel, measured in bits / s, W is the bandwidth 

in Hz and P/N is the signal to noise power ratio. This direct relationship between capacity and 

bandwidth has led to an increased demand, and hence an increased scarcity of this resource. 

The more efficient use of RF bandwidth [5], together with improved service capability and 

overall performance prompted the adoption of a cellular structure for wireless communication 

systems. The main advantage of this technique, outlined in Figure 1.1, is that a subset of the 

allocated frequency range may be used in each cell. A network of such cells may then be 

constructed over the total region of interest, allowing the frequency range in e.g. Cell I to 

be re-used in Cell A, thus more efficiently using the overall bandwidth assigned to the entire 

network for communications. 

The disadvantage in taking a cellular approach is that the frequency range employed in one cell 

(e.g. cell 1 in Figure 1.1) cannot be re-used in any of its neighbouring cells. In this example, 

the tessellation is shown via hexagons, so that each cell has six neighbours and therefore the 

frequency re-use factor is 1/7. In practice however, the cell coverage areas will be less regular, 

with the boundaries between cells being less well-defined, so that the precise re-use factor 

will vary depending on the exact network topology and required signal to noise ratio (SNR). 

The other important parameter for cellular systems is the minimum distance separating two 

base-stations broadcasting at the same frequency (shown as Cd in the figure) expressed as a 

ratio of some measure of the cell size (such as its radius r, as shown in the figure). 
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Mobile switching centre (MSC) 

Public telephone network (PTN) 

Figure 1.1: The cellular principle and some defining terms 

The base stations (BS) are normally located at the centre of each cell, using omni-directional 

antennas1  and the interface between the cellular network and the public telephone network 

(PTN) is via the mobile switching centre (MSC), which controls the individual base station 

currently in charge of the call. The process of changing the allocated base station is known 

as handover, which may be further categorised as soft, in which case a new BS is allocated 

before communication with the active BS is terminated, or hard, in which the communication 

is suspended completely before the new BS establishes contact 2  Recently, mobile assisted 

handover (MAHO) schemes have been proposed [6], in which the decision to change base 

stations is influenced by the mobile, thus placing less demand on the base station. 

MAHO schemes are more suited to schemes using very small (pico) cells, such as those in 

offices. The size of the cells used, which depends on the type of terrain and the number of users 

expected within each cell, is shown in Table 1.1, with typical applications. 

Increased capacity may be achieved by sectorizing the cell using antennae divided so that they cover equal 
sectors of the coverage area. Typically, sectors of angular width of 1200  are used, but problems may occur for 
mobiles at the boundary between sectors, leading to the "ping-pong" effect, in which control is rapidly alternated 
between adjacent sectors 

21n addition, inter-system handoff, or roaming, may occur when a mobile moves between cells controlled by 
different mobile switching centres 
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Application Average cell diameter Name 
Sub-urban 1 - 10 km macro-cell 

Urban 1 km mini-cell 
Street 100 in micro-cell 
Office <10 in pico-cell 

Table 1.1: Sizes of cells and associated uses 

The RF path from the base station to the mobile is termed the downlink, or forward channel, and 

is synchronous (all the users' individual signals are aligned), whilst the complementary path 

from the mobile to the base station is known as the up-link, or reverse channel, and consists 

of signals which are (in general) unaligned. Further complications on the uplink include the 

fact that the signals travel through different paths to reach the base station, so each signal will 

experience different fading and delay statistics, and the possibility of step changes in the signal 

as users either begin or cease transmission. In this study, only the downlink will be considered. 

The passage of mobiles between cells leads to another problem, since arriving/departing mobiles 

will invariably be located at the edge of a cell (or sector, if sectorisation is employed), whilst 

existing users may be closer to the base station. This situation is not specifically a problem in 

handover, but will occur in general when the mobiles are at different (RF) distances from the 

base station. This "near-far problem" requires careful power control throughout the system to 

avoid swamping of the signal received by the base station by one particular mobile close to the 

base station, or insufficient power being received by a mobile far from the base station to enable 

communication. 

1.1.2 Commercial exploitation: recent history and projections for the future 

The commercial exploitation of cellular wireless networks has seen dramatic growth in the past 

few decades [7]. Figure 1.2 presents the number of subscribers, and the revenue obtained, of 

wireless communications systems in the USA alone since the mid-1980's. 

The data was obtained from the World-Wide Web homepage of the Cellular Telecommunications 

Industry Authority (CTIA), (URL ht tp: / / www. wow-corn. corn/consumer /). Predictions 

for turn of the century subscriber numbers are in the region of 50 million in the USA and 200 

million world-wide, although recent reports from the CTIA suggest that there may already be 

more than 50 million users in the USA, and a recent prediction [8] places the total number of 
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Wireless market statistical profile 
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Figure 1.2: Number of subscribers of wireless phones and the revenue generated (US $) in the 
USA; (a) number of subscribers; (b) revenue 

subscribers by the end of the century close to 600 million. 

The application of CDMA technology (which will be described later) for cellular PCS has been 

pioneered by the North American company Qualcomm Inc., and digital cellular systems using 

CDMA are in competition with the European digital global system for mobiles (GSM) for the 

worldwide mobile communications marketplace. The following is a selection of the CDMA 

cellular PCS systems which are currently being, or are soon expected to be established (the 

information is courtesy of the CDMA Development Group World-Wide Web homepage, URL 

http://www.cdg.org/).  

In Africa, Telecel International in The Congo and in Zambia have recently announced the 

deployment of CDMA based systems for digital cellular telephone networks, with the Zambian 

system aiming to provide service to over 10 000 subscribers. In South America, a Peruvian 

company, Telefonica, has recently ordered 25 000 CDMA handsets for its digital cellular PCS 

network. Most of the other South American countries are also actively conducting trials of 

CDMA systems for cellular mobile telecommunications. Asia has also seen a huge growth in 

demand for personal mobile communication systems. In South Korea, there are presently over 

2 million subscribers to SK Telecom's CDMA mobile service, while five test areas have been 

designated in China. In Shanghai, a cellular network is planned to be operational in early 1998, 

with a capacity of 60 000 subscribers, while in Hong Kong, 150 000 subscribers to Hutchison 

Telecom's system are expected in the near future. With projections for the end of the century at 
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around 2 million mobile phone users in Shanghai alone, the opportunities for CDMA networks 

in Asia are clearly extensive. In Europe, much research effort has been concentrated on pursuing 

a universal mobile telecommunications system (UNITS), which may combine elements of the 

already established GSM and CDMA technologies [9].  Trials of the integration of CDMA 

systems with existing GSM digital networks have recently been announced in Germany and the 

United Kingdom, with the results expected to be unveiled in the near future. 

1.1.3 Conclusions 

The key point is that demand for mobile phone services of sufficient quality to provide additional 

services as well as simply voice data is expected to exceed the capability offered by present 

technologies. Consequently, there exists a requirement for improving the quality and capacity 

of existing and proposed digital cellular networks, through the use of more sophisticated signal 

processing techniques. Before proceeding to a description of the various signal processing 

techniques considered, the different methods of achieving a multiple access capability are first 

reviewed. 

1.2 Multiple access background 

The main task for the communication system designer is to make the best use of available system 

resources. In the past, the limitations have been mainly due to technology (e.g. the difficulty 

of construction of sufficiently fast or complex processors or the excessive power requirements 

which limit portability), however now the challenge is to make the most efficient use of the 

radio frequency bandwidth to maximise both the quality and quantity of possible calls. 

There are three principal methods of providing a multiple access capability within the cellular 

radio environment , which may be differentiated by the resource which is to be shared, or 

divided between the subscribing users. 

3Outwith cellular radio, PDMA, in which radio beam polarisation is the discriminant, SDMA, employing 
directional antennae to provide isolation in space and WDMA in optical communications, where individual users 
are assigned specific wavelengths are also used [10] 
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1.2.1 Frequency division multiple access (FDMA) 

This technique separates the active signals by assigning a different subrange of the cell's 

total allocated frequency range to each user. 4  This method is used in both the US advanced 

mobile phone system (AMPS) and the UK total access communications system (TACS). 

Both these systems are analogue and are often referred to as first generation systems. An 

obvious disadvantage of this technique is that it limits the total number of mobiles that may 

be simultaneously active. Further disadvantages include the fact that when a new site is to 

be added in to the network, problems can arise due to insufficient availability of bandwidth 

to accomodate the new base station. Additionally, hardware problems may arise, due to the 

demands of filtering the signal, and since this is a narrowband system, there is no inherent 

diversity to combat the effects of a multipath channel. Perhaps most importantly, since FDMA 

is an analogue system, it is potentially susceptible to interception, or jamming of a call. 

1.2.2 Time division multiple access (TDMA) 

In this technique, the time allowed for each user to communicate with the base station is 

restricted to be within one of a set of slots within one time frame. Suitably fast and powerful 

processing units have only in the past few decades been available to make this approach 

feasible. This multiple access method is used in the global system for mobiles (GSM) 

European system, which was the first digital cellular standard for voice communications and 

low-rate data transmission and is therefore termed a second generation system. GSM uses 

blocks of 200 kHz, split into 8 time slots and uses a bit rate of 270.8 kbit/s, which means that 

intersymbol interference (151) occurs. To combat this, a 26-bit training sequence is inserted into 

the data stream and an interleaver with a delay of 80ins is used to provide time diversity. This 

system also uses slow frequency hopping to improve the efficiency of the interleaver. TDMA 

systems, although they still require frequency re-use, have the advantage of being able to use 

the diversity from multipath channels to improve performance, and do not suffer from quite 

the same limitations on filtering as FDMA systems, although considerable resources must be 

expended in maintaining the timing and synchronisation of the signals. 

4 this simplification ignores the requirement for guard bands to prevent leakage or cross-talk between users [11] 

5 originally the groupe speciale mobile 
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1.2.3 Spread spectrum multiple access (SSMA) 

The third alternative is to allocate each user a specific signature, or spreading sequence and 

to use this sequence to expand the bandwidth, or "spread the spectrum" of the signal to be 

transmitted. At the receiver, estimation of the original data is performed by the inverse process, 

given knowledge of the required user's spreading sequence. While this may seem a needless 

increase in both complexity and bandwidth requirement, the key to the claimed increases in 

system-wide capacity [12] is that spread spectrum systems can tolerate a frequency re-use factor 

of one, i.e. the same frequency in adjoining cells, since the distinction between users is achieved 

via the spreading sequences. The allocation of different sequences, or codes, to different users 

has given rise to the term code division multiple access (CDMA). Although this is strictly a 

misnomer since any individual code is not a resource to be divided up and shared amongst the 

users, but rather distinct complete codes are allocated to each user, this term will also be used 

here. 

There are two  main strategies within spread spectrum; direct sequence (DS-CDMA) [13] in 

which the data bit modulates the spreading sequence to produce the signal to be transmitted, and 

frequency hopping (FH-CDMA) [14], in which the signature sequence defines the "hopping 

pattern" of the signal. This designates the instantaneous frequency at which the communication 

is to take place. FH-CDMA, with its roots in military applications, is principally concerned 

with evading eavesdropping of a signal, and interception of the original data. This technique 

is inherently resistant to jamming of the signal by a third party, since, without knowledge of 

the hopping pattern, such an approach would involve expending a finite jamming power over a 

wide range of possible frequencies. For the mobile environment however, which is the focus of 

this study, frequency hopping is less practical, since the hopping would have to be performed 

at a high rate to achieve a reasonable processing gain. 

The recent commercial implementation of DS-CDMA communications systems with the second 

generation cellular standard IS-95 [15], together with a large body of ongoing research work 

at both industrial and academic levels, has made this technique a strong candidate for third 

generation systems [16, 17] which will be required to supply high rate data communications 

as well as digital voice traffic, and will form the main subject of this study. Here, attention 

will be focussed on signal processing techniques to improve the downlink capacity of a system 

6Strictly, a further two strategies exist; time-hopping (TI-I), in which the spreading sequence controls the allocation 
of the timeslot of a data bit, potentially leading to increased security, and chirp systems, in which the frequency is 
continuously (usually linearly) either increased or decreased, and is mainly used in radar applications 
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employing direct sequence CDMA. 

1.2.4 Hybrid methods 

Additionally, there exist hybrid techniques, combining elements of some or all of the above 

multiple access methods. Most notable amongst these are the incorporation of DS-CDMA 

techniques into the GSM environment to produce code and time division (CTDMA) [18] 

as a potential candidate for UNITS [19].  Significant research effort has also been invested 

into systems employing orthogonal frequency division multiplexing (OFDM) [20], which 

is particularly suited to digital broadcasting of radio and television [21]. Although novel 

combinations of OFDM with CDMA [22,23] have been investigated, the European Tele-

communications Standards Institute (ETSI) recently decided [24] to adopt an approach based 

mainly on DS-CDMA, and so this will form the main area of study of this work. 

1.3 	Objectives of the work 

The objective of the work presented is to investigate signal processing methods which may 

be employed either throughout the DS-CDMA system, or only at the mobile receiver to either 

decrease the probability of error of a data estimate, or increase the capacity of the communication 

system as a whole. In addition, these improvements to system performance must not be at 

the expense of too great an increase in system complexity, or overall delay, since practical 

implementation of these methods is an important consideration. 

1.4 Thesis structure 

The layout of the thesis is as shown in Figure 1.3. 

A description of the various facets of a DS-CDMA signal is first given in Chapter 2, which 

also introduces some of the signal processing techniques to be used in later chapters. This is 

followed in Chapter 3 by an investigation into the applicability of adaptive algorithms at the 

mobile receiver, whether used in a stationary additive white Gaussian noise (AWGN) channel, 
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the COST207 channel 
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Figure 1.3: The subjects considered in the appropriate parts of this Thesis 

or in a time-varying channel, which more closely models the behaviour of a mobile radio 

environment. The application of forward error correction to the DS-CDMA signal is considered 

in Chapter 4, which considers convolutional coding both as a replacement for, and in conjunction 

with direct sequence spreading. Chapter 5 details the use of interference cancellation schemes 

when the data is both convolutionally encoded and modulated by a spreading sequence. The 

use of non-linear receivers, specifically employing radial basis functions, is outlined in Chapter 

6. Here, a new non-linear receiver structure, which employs the nearest neighbour algorithm 

to obtain its data estimate, is introduced and investigated. Finally, a summary of the main 

achievements of the work, together with an indication of possible future developments, is 

presented in Chapter 7. 
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Chapter 2 

D S - CDMA background 

In this chapter, the use of direct sequence spread spectrum techniques to provide a multiple 

access communications capability is reviewed. The principle of spread spectrum is first outlined 

in section 2. 1, and the application of this technique to produce a multiple access system is then 

described in section 2.2. Various aspects of the system design are then considered in section 

2.3, which also introduces some of the signal processing techniques which will be studied in 

the context of the DS-CDMA environment in later chapters. Finally, the main ideas discussed 

in the chapter are summarised in section 2.4. 

2.1 	Spread spectrum communication principles 

To illustrate the concept of spread spectrum communication more fully, it is useful to consider 

the profiles of the original and spread signals in both the time and frequency domains. As 

discussed in section 1.2.3, a simple expansion of bandwidth is not by itself sufficient for a 

system to be termed spread spectrum. Rather, the bandwidth expansion must be accomplished 

by means of a separate signature, or spreading sequence, which is known to both co-operating 

parties, and is independent of the data bits [25], which are themselves assumed to be both 

independent and randomly distributed. The spread signal is then formed by modulating this 

spreading sequence by the data bit to be communicated. The modulation scheme chosen here 

for the data is binary phase shift keying (BPSK), so that if the data bit of interest at time index 

ii is d(n) E A = {O, 1}, then this may be transformed to give x(n) E B = 11, —1}, via the 

isomorphism x where  x : A -f  B is chosen2  to be x = (d) = 1 - 2d, where, when required, 

'Time discrete data will be assumed in the following, so that a continuous analogue signal x(i); 0 < t < x will 
be represented by the corresponding sampled sequence, which will be denoted {z(n.) 0 < n < oo} 

2  t preserve the group structure 
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x may be written for x(n) and d for d(n) for brevity without ambiguity. Let this transformed 

sequence of data bits x (n) have period Tht, and let the spreading sequence of length M (whose 

elements are designated chips to distinguish them from the data bits) have frequency fchjp 

(normally >> (1 /Tb j) but shown shorter here for illustrative purposes) as depicted in the upper 

part of Figure 2. 1, which shows the case for M = 7. Note that in the lower part of the figure, it 

is assumed that f l,i p  > fbi t , or equivalently that 	< T. 

__-_--_---------- Original data points ------- 

Amplitude 	 t 	T1TI1 	i 
\ 	rr 	rime 

HH/HjIHH LLJ 
Spreading sequence 

Tb11  

Spectral density 

chip 	 -1 IT hit 	 I I 1it 	 + 

Figure 2.1: Spread spectrum concept in time and frequency domains 

With the above assumption that the data is random and independent, the power spectral density 

of the original (i.e. unspread) signal is then given by [26] 

SD(f)
sinfTbj2 	

(2.1) 
( 

 fT ) 

while, assuming the spreading sequence itself is long and pseudo-random, that of the spread 

signal (i.e. the modulation of the spreading sequence by the data) is 

I (sinf/fh\ 2  
Sss(f) 

= 	 7Ff/fhp ) 	
(2.2) 

The relationship between these spectral densities is sketched in the lower part of Figure 2.1. It 

may be seen that the effects of any tone-like noise (e.g. as a result of single, or discrete multiple 

frequency jamming [27]), narrow-band interference (e.g. from other existing communication 
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systems [28-30]) or white noise (finite power over a wide range of frequencies e.g. thermal 

noise) which then interferes with the signal between transmission and reception may be reduced 

at the receiver when the inverse despreading and filtering operation is performed. 

The enhancement in performance due to the bandwidth expansion and contraction process is 

termed the processing gain gp, and defining W98 to be the bandwidth associated with the 

spread signal and WD to be that for the data signal, the processing gain may 3  be taken to be 

Wsg _ Tbjt 
gp 	 (2.3) 

WD 1chip 

Thus in the simplified scenario outlined above, the processing gain is simply M, the length of 

the spreading sequence. The processing gain is normally quoted in its decibel form as 

Gp = 101og10 (gp) 	 (2.4) 

While this processing gain affords the spread spectrum system some degree of immunity 

to external interference from other communication systems, it is clear that, as the power of 

interference increases in the entire frequency range of operation, the system will begin to 

degrade. Thus, while the spread spectrum system is largely tolerant of external interfering 

factors, there will be a degradation in performance as the number of spread spectrum signals 

in the same cell increases. 4  The sources of this interference are the other users in the cell of 

interest (inter-cell) and leakage from adjoining cells (intra-cell). The work presented here will 

focus solely on inter-cell interference, with intra-cell interference being modelled generally by 

encompasing its effects into the overall background noise level. 

To enable a fair comparison of systems, the background noise will be expressed in terms 

of a modified form of the signal to noise ratio, which takes into account the processing gain 

described above. As a convention, this will be termed the signal to Gaussian noise ratio, denoted 

by Lb/NO in the following. The decibel form of this processing-gain compensated noise ratio 

is given by Equation 2.5, which is derived in Appendix B, in which the linear processing gain 

gp is given by N5 . 

Lb 	 gP = 10log10(—) 	 (2.5) 

The quantity a2  is the variance of the Gaussian noise. 

3Strictly, the processing gain is defined in terms of the improvement in performance at a certain probability of 
error between the original and spread signals, but the definition adopted here is consistent with many other texts, 
e.g. 31] 

4The use of orthogonal spreading sequences avoids this degradation until capacity is reached at which point the 
system collapses. However, the presence of a dispersive channel will destroy this orthogonality. 
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2.2 	Basic principles of DS-CDMA systems 

As outlined in the previous section, the spread spectrum signal is obtained from the current data 

bit and the spreading sequence. The transition from this single user system to one affording 

multiple access is then achieved by allocating each user a unique spreading sequence. In addition 

to direct sequence spreading the general baseband description of a DS-CDMA communications 

system consists of many elements, a selection of which are shown in Figure 2.2. 

re-processing 

Source coding' 
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rsreader 	De-interleaver 	FEC decoder -H Source decoder H signal /  

Figure 2.2: Block diagram for general DS-CDMA communications system 

The input signal is first pre-processed by incorporating source coding and forward error 

correction (FEC), before the interleaver stage is applied to separate adjacent bits in an effort 

to afford some protection from a fading channel producing a block of errors. Modulation (in 

this case binary phase shift keying, or BPSK) is then performed before bandwidth expansion 

by the user-specific spreading sequence. The other users' encoded and spread signals are then 

combined to form the transmitted signal. At the mobile, the received signal must be synchronised 

(for instance by estimating the channel) before the despreading and demodulation operations 

are performed. The required data may then be estimated by decoding the resultant signal. 

The allocation of resources to each of these elements to maximise either the quality of calls, 

or the number of simultaneous calls which may be handled by the network is an important 

consideration for the system designer, and some of these elements will be discussed more fully 
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in later Chapters. 

The principal measure of performance of a system will be the number of data bits which are 

estimated incorrectly, as a fraction of the total number of unknown data bits sent, in a statistically 

significant number of trials. This will then form the main performance statistic denoted Pe  The 

independent variable in these Monte Carlo simulations will be either the signal to Gaussian 

noise ratio (Eb/NO) for a fixed number of users, or the number of users (loading) for a fixed 

background noise level. Thus, in the following, the important quantities that must be assessed 

are the capacity of a system to cope with more users for a given background noise level, and the 

susceptibility of a system to data errors for various noise levels with a given number of users. 

The next section details the construction of a simplified form of the baseband signal to be 

transmitted, while section 2.2.2 considers the influence of a multipath channel on this signal. 

Then, in section 2.2.3, various processing techniques which may be applied at the receiver are 

described. An example system, showing the performance in additive white Gaussian noise is 

considered in section 2.2.4, which demonstrates how the performance of a DS-CDMA system 

degrades as the interference is increased. This section concludes with a discussion of the 

principles described. 

2.2.1 Transmitter principles 

A simplified form of the transmitter for the downlink of a DS-CDMA system is shown in Figure 

2.3. The transmitted signal, s(n), at time t = nTb j  is constructed by coherently summing the 

modulation of the spreading sequence of each user, c, by that user's BPSK data bit x (n.) over 

all active users, to give 
u=U 

s(n)= 	cu xu(n) 	 (2.6) 

In the uplink, the process is essentially the same, with the important difference that the users 

are no longer synchronised, which may be modelled by inserting user-specific time-delays on 

the resulting spread signal. These delays are normally uniformly distributed on the semi-open 

interval [0, Tb t  ). The principal effect of this is to destroy any specially constructed correlation 

properties of the spreading sequences, so that it may be equivalently modelled using random 

sequences. 

IN 
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Data 
x 1(n) 

Figure 2.3: Simplified synchronous DS-CDMA downlink transmitter for U active users 

2.2.2 The communication channel 

In this section, the communications channel is described and some of the terms often encountered 

in this area are defined. Then, in section 2.2.2.3, the modelling of a specific channel model, 

which will be used later, is outlined. 

2.2.2.1 Multipath channel background 

The received signal does not, in general, consist solely of the direct line of sight (LOS) signal 

transmitted from the base station. Rather, in addition to general background noise, the received 

signal comprises a combination of individual signals which have been reflected off obstacles, 

such as buildings, between the base station and mobile receiver, and thus arrive at various 

delays, corresponding to the length of each of the associated RF paths [32]. This situation, 

termed a multipath channel, is illustrated in Figure 2.4, and is also, in general time-varying, due 

to motion of the receiver, or of the intervening obstructions. 

If the number of scatterers is large and evenly distributed with no dominant signal path, the 

received signal is said to be subject to Rayleigh fading, while if one path (usually the direct 

one) dominates, the fading is termed Rician [32]. In general, the up and downlink frequencies 

are different, so that the channel effects, which are frequency-specific, are not the same. If the 

same frequency is to be used on the up and downlink, then time division duplexing (TDD) must 
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Figure 2.4: Principle of inultipath: the received signal consists of many reflections and/or 
diffractions of delayed versions of the transmitted signal 

be incorporated in the system to ensure sufficient separation. This RF round trip delay time 

limits the size of cells, which may be an important consideration in large rural areas, with a 

small widely distributed population. 

The presence of a dispersive channel (whether time-varying or not) means that individual chips 

in the transmitted signal affect, and are affected by, a number of their immediate neighbours. 

This inter-chip interference (ICI) also effectively destroys any special correlation properties of 

the spreading sequences, so that, even on the downlink, where individual users' spread signals 

are synchronously aligned, any special properties of the spreading sequence set will be lost. A 

RAKE receiver could be employed to attempt to counter this effect, but in the work discussed 

here, other means of processing the received signal will be considered. 

2.2.2.2 Channel effects 

There are two main parameters of a channel which are of interest; namely the range of 

frequencies for which the channel effects are essentially the same, termed the coherence 

bandwidth and denoted fo,  and the time duration over which the channel response is essentially 

invariant, which is termed the coherence time and denoted To. These may be calculated [32] 

from the two dual functions S (r), the multipath intensity profile, and S (v), the Doppler power 

spectral density, which are measures of the received signal power as functions of delay time 

r and Doppler shift v respectively, for a transmitted impulse in the appropriate domain. The 

functions have characteristic shapes, which are sketched in Figure 2.5. 

From 5(T), the largest time delay T, equal to the maximum delay for which a significant 
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Figure 2.5: Received power as a function of two independent variables: (a) multipath intensity 
profile S (T); (b) Doppler power spectral density S (11) 

power is received could be used to define the channel coherence bandwidth. However, it is 

more useful to measure the distribution of the delays, and a valuable parameter is the standard 

deviation, or root mean squared (RMS) value, which is termed the delay spread ag-, 

01, = 	2) - (f) 2 	 (2.7) 

The coherence bandwith fo  is then inversely proportional to this quantity, with the exact constant 

of proportionality varying depending on the correlation value required (0.5 is commonly used). 

This sets an upper limit on the transmission rate that may be used without causing inteference 

beteween adjacent chips, and may also be obtained from the frequency correlation function, 

which is the Fourier transform of the multipath intensity profile S(r). 

Similarly, the channel coherence time TO  may be obtained from the Doppler power spectral 

density S(v), by defining the spectral broadening, or Doppler spread Id,  as indicated on the 

figure. The maximum of this quantity occurs for motions directly to and from the base station, 

and is then given by 

fdrnax = 
	

(2.8) 

where v is the mobile speed, c is the electro-magnetic propagation speed and f is the carrier 
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frequency. The channel coherence time To is then inversely proportional to this value, with the 

constant of proportionality popularly given by 0.423, which arises from the geometric mean of 

two different characterisations [32]. The coherence time may also be obtained from the time 

correlation function, which is the Fourier transform of the Doppler power spectrum, and is 

therefore the dual of the frequency correlation function. 

2.2.2.3 Modelling of the COST 207 radio channel 

The effects of a multipath channel may be modelled by forming the convolution of the 

transmitted signal s(n) with the impulse response H(z), of the channel, which may be 

characterised by 
J= h 

H(z;t) = 	h(t)z 	 (2.9) 
7=0 

where nh  is the number of chips spanned by the multipath delay. In the analyses considered 

here, nh will be a fixed (small) number, although this parameter could also be time-varying. 

The individual tap weights h (t), which may also be time varying, are usually obtained by 

sounding the channel using a pilot signal of known amplitude and phase, and must be estimated 

with sufficient accuracy to counter the effects produced by the channel. The calculation of these 

channel tap weights is now discussed. 

Studies by the European co-operation in the field of scientific and technical research (COST) 

on the characteristics of mobile radio channels at 900 MHz 5  resulted in the adoption of many 

standard RF channel models, which are distinguished by the situation to which they are to be 

applied and the number of taps in the representative impulse response. The channel chosen here 

is the typical urban (TU) 6-tap channel model, which must be acknowledged as one of the least 

dispersive of the various scenarios. More dispersive channel models include the bad urban (BU) 

and hilly terrain (HT) situations. The calculation of the channel impulse response tap weights 

are performed by the C routines generously provided by D. Laurenson of the Department of 

Electronics and Electrical Engineering, and are described in more detail in [33]. Figure 2.6, 

which is adapted from that paper, shows the calculation in detail for the coefficient of one delay 

tap, h1. 

The Gaussian noise sample, which may be obtained by the process described in [34] is fed into 

5This program was COST-207, whose successor, COST-231 has recently been superseded by COST-259. The 
latter programs are concerned with channel models near 2GHz, which is expected to be the frequency for the next 
generation of personal communication systems. 
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Figure 2.6: Construction and use of the channel impulse response coefficients in the COST 207 
model 

the two Doppler filters, corresponding to the real and imaginary components of the complex 

channel tap weight. These filters may be characterised as either classical, type I or type 2, 

depending on the desired filter characteristics, and are described more fully in [35]. The outputs 

from these are then used to construct a complex phasor and summed to give the final impulse 

response coefficient for the suitably delayed incoming signal. This process is then repeated over 

all the delay taps (6 in the case considered here) to give the final output as the convolution of 

the instantaneous impulse response, H (z), of the channel with the shaped and delayed version 

of the transmitted signal s. A more exact description of the channel modelling calculations 

employed in this study will be given in section 3.4. 

2.2.3 Receiver principles 

The task of the receiver is to recover the intended data x (n) by collapsing the spectrum of 

the received signal vector y(n). This is performed by integrating the product of the received 

signal with a locally held replica of the required user's spreading sequence. Practically, this is 

achieved by the correlator receiver, shown in Figure 2.7. The received signal, consisting of N, 

chips is passed to the block of delay elements, where z represents a delay of one chip, until 
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the complete N, -chipsignal has been read in 6,  These values are then passed in parallel to the 

multiplier block, which forms the scalar product of y(n) and the tap weight vector w E 

where Nr is the number of tap weights, which is set to 8 in the figure. 

y(n) 

Output 

Figure 2.7: DS-CDMA correlator receiver with 8 tap weights 

This finite impulse response (FIR) filter block [36] produces a soft output, 15(n), which is then 

passed to the sign-decision block to give a hard estimate, & (n), of the original data bit, x(n) 

for the user of interest. The conceptually simplest receiver, the matched filter (ME) receiver, is 

simply the correlator receiver with M tap weights, {w : 1 < j < M}, matched to the complex 

conjugate time-reverse 7  of the original spreading sequence of the required user which, without 

loss of generality, we may take to be user I. In practice, the acquisition and synchronisation 

of the chip-level signal is a highly non-trivial task [25]. Techniques to achieve synchronisation 

involve the use of a pilot signal, which may be modelled by one additional user, whose data is 

constant. Perfect timing will be assumed in the following, except where stated. 

2.2.4 Example downlink system 

Consider the reduced form of Figure 2.2, shown in Figure 2.8, in which x(n) = (xi (nj) x2 (n) 

X U ( n))T represents the data vector of all users at time t = nTb t , s(n) (of length M) is the 

resultant spread signal and z(n) represents the M -dimensional vector of Gaussian noise samples 

which, for the downlink, are iid and have a variance of a2 . 

(,alternatively, it is possible to read successive chip samples in to the receiver at each clock count in a serial 
manner, or to use a hybrid serial-parallel correlator (SPC), by employing a number of sub-blocks, each corresponding 
to a specific portion of the spreading sequence which has the advantage of requiring less hardware 

7since the received signal will be the time-reverse of the transmitted signal 
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Figure 2.8: Communication principle in the additive white Gaussian noise channel 

Under the assumptions of long randomly selected spreading sequences with no special cross-

correlation properties, the theoretical analysis of this system [37] leads to the predicted 

probability of error for the matched filter (P"'(U, qp)) to be given by 

(I 	gp pMFgp) 
= Q 	a_2+  (U_I)) 	

(2.10) 

where U is the number of users, a2 is the variance of the noise and gp is the linear processing 

gain, which is simply M in this case. The function Q(() is the standard Gaussian upper 

cumulative distribution function as defined in [38] by 

Q(c) = J"~ e— ~2 dz 
	

(2.11) 

It is also possible, as shown in Appendix B, to express equation 2.10 in terms of the complementary 

error function, using the identity 

Q(C)=erfc (=) 

	
(2.12) 

The predictions of equation 2.10 may be compared against the results from Monte Carlo 

simulations of a system employing 31-chip random spreading sequences, shown in Figure 

2.9. The perfomance statistic is the probability of error, P6 , as described in section 2.2, and is 

simulated for increasing numbers of users for a typical noise level of 7 dB [39], as well as a more 

noisy environment of 4 dB, and the limit as the background noise tends to zero (Eb/NO -+ oo). 

The spreading sequences are periodically shuffled (using the efficient shuffling algorithm 

described in [40]) to avoid biasing of the results by particular cross-correlations due to individual 

pairs of sequences, and it may be seen that this technique results in simulations which are in 

close agreement with theoretical predictions. Importance sampling (IS, or variance reduction) 

techniques [41] have recently been applied to the DS-CDMA environment [42] to reduce the 

computation time required for probabilities of error below around 10 4 by biasing the noise 

samples to produce an artificially large number of errors. This technique is not employed here, 

since care must be taken to ensure that the results obtained by this process are statistically 
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Performance for 31 chip random spreading sequences 
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Figure 2.9: Theoretical and simulated probability of error in the AWGN channel for the matched 
filter receiver with 31-chip random spreading sequences: (a) theoretical, Eb / N0 = 
4 dB; (b) simulation results, Eb/NO = 4 dB; (c) theoretical, Eb/NO = 7 dB; (d) 
simulation results, Eh/NO = 7 dB; (e) theoretical, Eb/N() - 	; (F) simulation 
results, E,/No - 00 

significant. As may be seen, the performance degrades smoothly as the number of active 

users increases. The performance also varies smoothly with background noise, so that each 

of these phenomena may be taken to constitute the interference in the system. The results 

for Eb/NO -+ 00 are also in very close agreement with those of [43], which are for an 

asynchronous system using Gold sequences, thus demonstrating that random sequences may be 

used to accurately model the effects of a loss of timing information on a specially constructed 

spreading sequence set. 

2.2.5 Discussion 

This section has demonstrated that the capacity of a DS-CDMA system is interference (whether 

from MAT or noise) limited. The performance (in terms of the probability of error P) has been 

shown to degrade gracefully as the number of simultaneous users increases. This means that 

improving the capacity of such spread spectrum systems may be achieved either by reducing 

the total interference by enhancing single user detection methods or by making use of the 

structured nature of the multiple access interference through improved interference cancellation 

(IC), joint detection (JD) or multi-user detection (MUD) techniques. Before considering the 
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relative benefits and costs of these approaches, some aspects of the system design will first be 

described. 

2.3 	Aspects of DS-CDMA system design 

In this section, various aspects of DS-CDMA system design, the application of which will 

be discussed in greater detail in subsequent chapters, are introduced. In section 2.3.1, the use 

of various spreading sequences is discussed, while some alternatives to the simple matched 

filter receiver are described in section 2.3.2. Techniques of encoding the data to protect against 

errors are briefly outlined in section 2.3.3, with interference cancellation techniques described 

in section 2.3.4. Multi-user detectors, which make efficient use of the interference on all the 

users' signals simultaneously are introduced in section 2.3.5. Finally, an indication of some 

non-linear receiver structures is given in section 2.3.6. 

2.3.1 Choice of spreading sequences 

The choice of spreading, or signature sequences, is an important one for the system designer. 

Historically, this choice was motivated by the requirement for a low probability of inference 

of the spreading sequence, and hence interception of the transmitted data, since the over-riding 

requirement was security [44]. This prompted the desire for very long sequences which could be 

generated easily by co-operating parties but which at the same time, were difficult for interfering, 

or eavesdropping parties to infer. However, the advent of the implementation of spread spectrum 

techniques for multiple access communications has shifted the emphasis somewhat away from 

such security issues to maximising the number of subscribers who are able to access a system 

simultaneously [13], while maintaining a reasonable error performance. Because the spread 

signal is correlated against a target sequence in the receiver, the main characteristics of a set 

of sequences which determines its suitability for DS-CDMA, are its even and odd8  auto- and 

cross-correlation properties. 

5even correlation is when bits of the same sign are used with a spreading sequence, while odd correlation is 
when oppositely signed bits are used 
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2.3.1.1 Randomly selected sequences 

Spreading sequences chosen purely at random would theoretically be ideal for single-user 

DS-SS communications systems, since the probability of inference of the sequence, and hence 

eavesdropping of the data signal is low. The disadvantage in using completely randomly-chosen 

sequences for multiple access systems is that spreading sequences selected at random have poor 

cross-correlation properties, since they must be reasonably short for a practical system and by 

definition, no attempt has been made to optimise their cross-correlation values9. 

2.3.1.2 Pseudo-random sequences: rn-sequences 

The earliest attempts [45-47] to produce long sequences, suitable for spread spectrum communi-

cations, made use of linear feedback shift registers (LFSR), an example of which is shown in 

Figure 2.10 for 5 taps. 

Tap I 	Tap 2 	Tap 3 	Tap 4 	Tap 5 	
Output 

 

Figure 2.10: Example linear feedback shift register with 5 taps 

The specific tap connections which are included in the feedback loop may either be specified 

directly as [5, 2] 10,  or expressed via the characteristic polynomial as x5  + x3  + 1, or in octal 

format [48] as 510. The longest sequence which may be generated by such an arrangement is 

the maximal [49] or m.-sequence, and has a length of 2"  - 1 where nt is the number of taps. 

Thus, in the example case shown here, the in-sequence has length 31. The autocorrelation of an 

rn-sequence is two valued, with a peak when the phase offset is zero, while the cross-correlation 

between rn-sequences is also well-defined. However, the total number of rn-sequences which 

may be generated by an appropriate series of connections [50] of an nt-stage  register is limited 

to Nm  (n) = (1/nt ) (2t - 1) where 7 is the Euler totient function", so that in the system 

considered here, there are only 6 rn-sequences. Thus, although the correlation properties of rn-

sequences are more favourable for DS-CDMA than sequences selected at random, the relatively 

9although it must be acknowledged that very long randomly selected sequences would have zero cross-correlation 
on average 

'°connections from tap 0 and tap 5 are assumed, so only the length of the register and the intermediate tap 
connection(s) are required 

I r(n) is given by the number of integers less than n which are relatively prime ton, e.g. r(31) = 30 
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small number of rn-sequences compared to their length means that they are of only limited use 

for a multiple access spread spectrum system. 

2.3.1.3 Pseudo-random sequences: Gold sequences 

To gain increased capacity (at the expense of altering the correlation properties slightly), a pair 

of rn-sequences may be used to construct a set of Gold sequences [51], which have the property 

that the cross-correlation is always -I when the phase offset is zero. Non-zero phase offsets 

produce a correlation value from one of three possible values. The choice of preferred pairs of 

m.-sequences is described in [48], while preferrentially phased Gold sequences (PPGS), which 

expand the region of low cross-correlation to include points closer to the zero phase offset, 

have also been proposed for a DS-CDMA system [52]. Since their synchronised correlation 

characteristics are good, while their unsynchronised characteristics are not excessive, Gold 

sequences offer a reasonable choice of spreading sequences for DS-CDMA systems, and will 

therefore be used in later chapters. 

2.3.1.4 Orthogonal sequences: Walsh sequences 

For multiple access, it is obviously optimum if the cross-correlation between spreading sequences 

is zero. This may be achieved by using Walsh sequences 12  [53], which, since they are mutually 

orthogonal, offer maximum capacity if synchronised, but, because of high cross-correlations for 

non-zero phase offsets, induce a greater amount of MAT than simply using random sequences 

if timing is not maintained. 

In the investigations reported here, Gold sequences and random sequences will be used as 

the two main spreading sequences, since Gold sequences demonstrate situations which are 

synchronised and near orthogonal, while random sequences are able to mimic the use of other 

sequences when timing impairments are present or when the properties of the sequences have 

been corrupted due to inter-chip interference arising from the presence of a dispersive channel. 

12 sometimes denoted Rademacher-Walsh sequences 
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2.3.2 Linear and adaptive receiver structures 

The matched filter receiver described in section 2.2.3 may be replaced by alternative structures, 

which are distinguished by the values of the receiver tap weights w, with the intention of better 

estimating the required data. The architectures considered here are all FIR filters, while adaptive 

filters, described in section 2.3.2.3, may be made hR by employing decision-direction, in which 

one or more of the previously estimated values are assumed correct, and then used as training 

data to update the tap weights. This can lead to stability problems if the initial decision proves 

to be incorrect, forcing the tap weights away from ideal values. In the following, it will be useful 

to define a penalty or cost function, fp,., (.), of the difference e between the original data bit of 

the desired user x (n) and its estimated value (n). Requirements on the nature of this function 

will be described in section 2.3.2.3. 

2.3.2.1 The zero-forcing filter 

The zero-forcing filter [54] is an FIR filter, whose tap weights are given by inverting the auto-

correlation matrix, discussed in the next section, of the received signal. This filter completely 

removes the deterministic MAT, but suffers from the disadvantage that the non-deterministic 

background noise is amplified, and so will not be considered further here. 

2.3.2.2 The Wiener filter 

The Wiener [55], or minimum mean square error (MMSE [56]) filter is given by minimising 

the expectation of the square error penalty function 

2 	 2 (x 	(n)) 	(e (n)) 	(x (n) - x(n)) 	 (2.13) 

For the DS-CDMA receiver, the tap weights are given by [57] 

!Wiener = yy _y 	 (2.14) 

where iJ,  is the autocorrelation matrix of the signal vector and ç 	is the cross-correlation 

vector between y  and the original data symbol x(n). The inversion of the matrix is the main 

drawback to this approach since the dimension of the square matrix is equal to the receiver 

filter length N. Even with specialised techniques such as Choleski decomposition, inversion 
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of the positive definite autocorrelation matrix requires O(N,) operations, where N is the 

number of receiver tap weights, which in this application is at least'3  the length of the spreading 

sequence, and so for long spreading sequences, this represents a significant overhead, reducing 

the practicality of this approach. Hpwever, it must be acknowledged that for shorter spreading 

sequences, such as considered in the next chapter, direct matrix inversion (DM1) may be 

computationally feasible, and could represent an alternative to the adaptive techniques which 

will now be considered. Here, the inversion is achieved using routines from [34]. As will be 

shown, the Wiener filter represents the target tap weights of an adaptive filter with Equation 2.13 

as penalty function, and so will be used as a reference for the performance of such receievers. 

2.3.2.3 The adaptive filter 

An example adaptive filter is shown in Figure 2.11, in which the number of receiver tap weights 

Nr  is set to 8. 

(n) 

x(n) 
2 

 Q Output 

) 	+ 
-x(n) 

e(n) -------------------- 

Decision-directed mode 

Figure 2.11: Example adaptive receiver filter with 8 tap weights 

The motivation for the use of adaptive algorithms lies in the desire to change the individual 

taps of the receiver filter to respond to changes in the communication channel. The traditional 

implementation of adaptive receivers is that a sequence of a priori known training data is 

incorporated into the data stream at pre-arranged times. It is important to acknowledge that 

13 Nr could be set greater than N to capture energy from a dispersive channel 
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this effectively reduces the overall data rate of the system, which is the main drawback of this 

approach. 

Algorithms for adapting the receiver without using training bits are termed blind and proceed 

by adapting the tap weights to optimise some function of the resulting soft decision. Examples 

include attempting to ensure that the intermediate soft decision has a constant modulus (CM), 

which for BPSK modulation would be unity, or maximisation of energy (MOE) of the soft 

decision. The disadvantages in using blind adaptation for the DS-CDMA radio environment are 

firstly the great length of time required to achieve practical results and secondly, that the receiver 

may lock on to the data stream of an interfering user, rather than the desired user. Recently, [58] 

a linearly constrained CM algorithm has been proposed for single user detection in DS-CDMA 

in which the constraints imposed essentially force the tap weights to have components aligned 

with and orthogonal to the desired user's signal. The work presented here will, however, focus 

only on trained algorithms, which are also termed reference directed. 

The goal of any adaptive algorithm [59] is to use this training data to force the receiver tap 

weights to minimise some cost or penalty function, fen (.), of the difference metric between the 

original data bit and its estimated value. The only requirement for this penalty function [60] is 

that it be a monotonic increasing function of the absolute value of its argument, with a global 14 

minimum at zero. Here, the number of training bits is given by Nirain, and the sequence of 

training data by {x(n) : I < fl < Ntrain }. 

In the following sections, we shall again consider the square error penalty function, given by 

equation 2.13 With this penalty function, the resulting target tap weights have been shown to 

be given by the Wiener filter, of Section 2.3.2.2 [57], so that these algorithms may be viewed 

as an iterative approximation to the Wiener filter. Two adaptive methods which employ this 

least square error penalty function are the least mean square (LMS) [61] and the more complex 

recursive least squares (RLS) [62] algorithms. These algorithms are depicted schematically in 

Figure 2.12, with an idea of the complexity of each method given in Table 2.1. 

As may be seen, the order of operations of the algorithms are broadly similar, each performing 

a correlation with an FIR filter to obtain a (soft) estimate, (n) of the training data bit x (n), as 

in the correlator receiver. The error e(n) in this estimate is then used to update the tap weights 

of the FIR receiver filter. 

14 the presence of local minima in the penalty function is essentially why blind adaption via the constant modulus 
algorithm is prone to error 
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Figure 2.12: Comparison between LMS and RLS algorithms 

Algorithm Multiplications Divisions Additions/Subtractions 
LMS 2N.r +1 0 2NT  
RLS 2Nr2+7Nr+5 Nr 2+4Nr+3 2Nr2+6Nr+4 

Table 2.1: Complexity of LMS and RLS algorithms 

kul 
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In the LMS algorithm, this is performed by a simple weighting of the error by the step size , 

while in the RLS algorithm, the error is used to update the current estimate of the inverse of 

the autocorrelation matrix p(n), and the tap weights are updated using the Kalman gain vector 

g. The additional input to the RLS algorithm is the forgetting factor ., which controls how 

influential previous received signals are in forming the current estimate of the optimal filter. 

Thus, strictly, the RLS algorithm does not minimise 2.13, but rather the modified form given 

by equation 2.15. 

71 

(2.15) 
7=' 

The exponential weighting factor ,A  means that the effective memory of the algorithm is given 

by I / (1 - .) data bits. This parameter may be tuned to neglect the influence of older data bits 

which may lead the receiver to adapt the tap weights to incorrect values, as may for example 

be the case in a time-varying channel. 

The application of these two adaptive algorithms to a DS-CDMA system in AWGN and of 

the RLS algorithm in a time-varying channel is discussed in more detail in Chapter 3, but the 

main criteria by which an adaptive algorithm may be judged are [62] the complexity of the 

algorithm, the speed of convergence, and the residual error, or misadjustment present once the 

algorithm has converged. As may be seen from Table 2.1, the LMS requires O(Nr ) flops15, 

while the RLS requires Off 2), making the latter a more complicated algorithm as the filter 

length is increased. The convergence properties of these algorithms will be investigated in 

the next chapter. Additional properties which may also be important are the robustness of the 

algorithm to cope with degenerate or ill-conditioned input values, the numerical properties of 

the algorithm in the presence of quantisation errors and the structure of the algorithm, which 

may affect its implementation in hardware. 

2.3.3 Forward error correction 

Forward error correction (FEC) [60] is frequently employed in communication systems where 

it is important that a message be received with as few errors as possible. Examples include space 

communications [63] and audio compact disc players [31]. FEC coding sacrifices resources, 

'5  floating point operations 
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in terms of the data rate, to provide some extra information about a particular data bit. This 

information is then used to estimate the original data bit, with greater integrity than if the 

original data rate had been used. 

FEC codes fall into two main categories; linear block codes, which append one or more code 

digits to the original data bit, and non-linear'6  convolutional codes, which use a number of 

input digits to calculate the code word, as shown schematically in Figure 2.13. 

---------------------------------- 

Original bits -------------------- 

TA 

- - -  

DC 13 A 	Blockencoder 	X X X D X X X C X X X B XXA 

Input data bits 	 Output encoded data bits 

Convolutional encoder 

H 	H 

X = function of the encoder and Current input bit 	
Code digits generated by A 

Figure 2.13: Forward error correction using block and convolutional encoders 

In the following, only convolutional coding, and variants thereof, will be considered, since there 

exists a commonly agreed standard for their decoding which is readily available in hardware, 

and because block codes are less suited to the mobile wireless communications environment. 

The specifics of convolutional coding are described in section 2.3.3.1, followed by an example 

in section 2.3.3.2. The error-correcting performance of this particular configuration is analysed 

in section 2.3.3.3, and the method adopted here to decode the received data stream is described 

in section 2.3.3.4. 

2.3.3.1 Convolutional encoding 

Convolutional encoding maps each original data bit onto a coded sequence of digits,a process 

which may alternatively be considered as a transition of a Markov process [36]. Because only 

certain coded sequences may precede and follow any given coded sequence, corresponding to 

allowable transitions, the receiver is able to detect when less than a given number of errors 

occur, and, depending on the coder configuration, correct one or more individual data bit errors. 

16 in the sense that the output is not simply a function of the current input, and they do not obey the superposition 
principle 
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There are a number of parameters which describe the specific implementation of convolutional 

coding; these are the rate of the encoder and the constraint length. The rate R of the encoder is 

defined as the ratio of input data bits (b) to the number of output digits (C), while the constraint 

length I.T is the number of input bits which the encoder uses to form this output. Convolutional 

codes may be generated by a set of shift registers, whose output is the result of modulo 2 

addition17  of up to K original data bits. The designation of the encoder is given by the octal 

form of the tap connections to the modulo-2 adder. The C-dimensional convolutionally encoded 

sequence for user u at time T, obtained from data bit x,, (n) will be designated q(n) E 	to 

distinguish this from the DS-CDMA spreading sequence c(n). 

2.3.3.2 Example of convolutional encoder 

To illustrate the above principles, Figure 2.14 shows a constraint length 3, rate 1/2 encoder 

defined by (7, 5)8,  where the octal subscript will be assumed in future. The time delay z 

in the shift register arrangement represents a delay of one data bit, in contrast to the z 

used previously, which represents a delay of one chip. Knowledge of the encoder permits the 

lit 

Figure 2.14: Rate 1/2, constraint length 3 (7, 5)8  convolutional encoder 

construction of a transition table, as shown in Table 2.2, in which there are four distinct states, 

corresponding to the values of the previous two 18  data bits. 

An alternative representation of the transition table is the state diagram, shown in Figure 2.15, 

in which the nodes are labelled as in the transition table and the output code sequences are 

shown circled for the appropriate combination of current state and input data bit. 

In the figure, the transitions produced by an input of 0 are shown as solid lines, while those 

corresponding to a I are shown as dashed lines. Thus, the state diagram may be used to calculate 

17 for input bits in the set  
"'in general, there are 2I_1  states, corresponding to the previous K - 1 data bits 
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Previous two data bits Current state Input data bit Output code word New state 
00 a 0 00 a 

1 11 b 
01 b 0 10 c 

1 01 d 
10 c 0 11 a 

1 00 b 
11 d 0 01 c 

1 10 d 

Table 2.2: Transition table showing output code words for each input data bit at each state for 
the (7,5) convolutional encoder 

00 

O\'\ 
oc 	01 

Figure 2.15: The state diagram for the (7, 5) convolutional encoder 

the output of the coder for a given stream of input data bits. It may also be employed to derive 

the theoretical performance, as described below. 

2.3.3.3 Theoretical analysis of convolutional codes 

The error correcting power of a particular code configuration depends on the ability to identify 

and correct individual bit errors. To analyse the theoretical performance of a convolutional 

coding structure, the distance (in terms of the Hamming metric) between code words will be 

considered. In this analysis, attention will be fixed on the all-zeros codeword (00 in this case 

where the rate R = 1/2). 

From the state diagram in Figure 2.15, it is possible to calculate the transfer function T(d), 

which provides the distance (or weight) spectrum of the code, denoted { ak} df , where 

df ree  is the free distance of the code [31], which represents the minimum possible run of ones 

before the all-zeros codeword may again be output for an input of zero. Splitting node a into 
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two and denoting the new node (representing the output) as e, the transfer function is given by 

T(d) = 

	

	 (2.16) 
Xa  

where Xi represents the distance measure in arriving at node i. 

In this case, the transfer function is given by 

T(d) (12 ( -d ) (d2(l_d)) = 
	

adk 	 (2.17) 

so that d ree  = 5 and the elements of the weight spectrum are given by aj, = 2k-5 

This then provides a mechanism for calculating an upper bound on the error performance of 

the convolutional code, since if the probability of error in choosing between any two particular 

code-words [31] is given by 

Eb 
= Q

V
2 Rd (2.18) 

'\N0 ) 

where R is the rate of the code and d is the distance, then the total error probability is bounded 

by 

00 

Fe  adP2(d) 	 (2.19) 
d=diree  

00 

adQ (\/2 	Rd) 	 (2.20) 
cl=d ree 

d=dppe r 

'dQ (\/2 	Rd) (2.21) 
d= c/f 

where dupper  is chosen so that sufficiently accurate results may be obtained. Optimum connections 

for various rate and constraint length convolutional codes may be found in e.g. [64]. Catastrophic 

codes, for which there exists at least one path of zero Hamming distance from a non-zero state 

to itself, are rarely used due to instability problems, and will not be considered here. 

2.3.3.4 Forward error correction decoding: The Viterbi algorithm 

The exact details of how the receiver operates to decode the data stream, while maintaining 

a balance between performance, complexity and storage requirements is non-trivial [65], 

and algorithms to estimate the original data fall into two categories. The commonest is 
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maximum likelihood sequence estimation (MLSE), most popularly implemented using the 

Viterbi algorithm [66], while alternative approaches include sequential decoding, which is most 

commonly implemented using either the Fano algorithm [65] or the more storage-intensive [31] 

stack algorithm, or variants thereof, e.g. [67]. The latter non-optimal techniques essentially 

involve keeping track of a non-fixed number of possible values, and making a retrograde step 

if the initial tentative decisions are found to be in error. The decoding algorithm used here will 

be the Viterbi algorithm (VA) [68], implemented as described in [69]. This technique proceeds 

by using the state diagram of the encoder to construct a trellis, the surviving branches of which 

at each time step are determined by a comparison between the received signal and all possible 

transmitted signals19. 

If the Hamming metric is used in this comparison, the process is termed hard decision, while if 

the Euclidean metric is used, the decoder is operating in soft decision mode. The latter improves 

performance by around 2 dB for most values of Lb/No  [70], and is the scheme adopted here. 

After an appropriate amount (corresponding to the survivor path length, L) of data has been 

received and analysed, the algorithm makes a decision on the optimal path back through the 

trellis and hence deduces the initial data bit. Thus, a decision is only made on a particular data 

bit after encoded digits arising from L data bits have been received, as shown in Figure 2.16, in 

which C, the number of output digits is set to 3 and L is set to 4, for illustrative purposes. 

L blocks 

C digits C digits C digits C digits 

Input signal 

CL encoded digits 	 - 	CL encoded digits 

lxlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxI 

Output decoded signal 

Figure 2.16: The parts of the received signal involved in the decoding operation with C = 3 
and L = 4 

This represents an additional processing delay which must be tolerated by the system as a 

whole. It has been shown [70] that provided the survivor path length, L, is greater than 4 or 

19 which is a subset of all possible data symbols by virtue of the encoding process 
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5 times the constraint length, K, then the performance is not greatly reduced from a much 

larger trellis. In many scenarios, a sequence of zeros of length K - 1 is periodically inserted 

into the data stream to drive the trellis to a known state. This technique perhaps artificially 

improves the performance, since an error made in this block of flushing data, leading to an 

incorrect trellis state is then overridden when the next block of data is read in, because the 

decoder assumes a known starting state for each new block of data. However, it has been 

shown [70] that the performance is similar whether the data stream is flushed in this way or 

not. In this implementation, flushing zeros are used and the trellis is re-calculated for each data 

bit, beginning from the point corresponding to the previous L bits of data. This increases the 

computation time, but is equivalent to having an infinitely long trellis, which is periodically 

sampled. Thus the output decoded data bit always depends on all the next L data bit's worth of 

information, which is termed the memory of the algorithm. 

The disadvantages in using FEC in any communication system are the sacrifice of resources (in 

terms of the data-rate) to accommodate the extra coding, the delay imposed by processing the 

signal at the receiver before data may be output, and the storage requirements of any decoding 

algorithm. With convolutional coding and Viterbi decoding, the delay is a linear function of K, 

while the storage is exponential in K. While a processing delay is tolerable in many situations, 

excessive delays (e.g. greater than 5ms for speech data) may not be appropriate in the wireless 

communications environment, in which the properties of the transmission channel may change 

rapidly overtime, or for which the demands of the system require near real-time communication. 

The application of convolutional coding to the DS-CDMA environment is considered in more 

depth in Chapter 4, which also discusses the efficient allocation of resources to FEC coding and 

direct sequence spreading. 

2.3.4 Interference cancellation 

Single-user communications systems are typically mainly affected by unstructured background 

noise and structured interference from 1ST arising from multipath channels. On the other hand, 

DS-CDMA systems are also affected by structured multiple access interference (MAT) from 

the encoded signals of other users. Of the many ways to combat this interference (e.g. [71]), the 

two which are considered in this work are interference cancellation, described in this section, 

and joint detection, or multi-user detection (MUD), described later. Interference cancellation 

(IC) [72] exploits knowledge of the other users' spreading sequences to attempt to remove 
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their contributions from the received signal. 20  This technique was successfully deployed for 

the DS-CDMA environment in [43], using a matched filter for the initial estimate, in an 

asynchronous system employing Gold spreading sequences. The theoretical analysis of the 

synchronous system with random spreading sequences has been developed in [37], in which a 

Wiener filter was used for the intermediate data estimate. In [73], a Wiener filter was employed 

both for the initial estimate and for the final data extraction, and it was demonstrated there that 

the performance afforded by this arrangement surpassed any other single-stage cancellation 

structure. 

The successive [74], or serial interference cancellation principle [75] is shown in Figure 2.17, 

while that for parallel cancellation is shown in Figure 2.18 

y 

-2 	
C 

2 	 - J 	 - 

X . 
 2 	 3 

user 4, user 5,.., user (U-1) ---------------------------------------------------------------------- 

Figure 2.17: Successive interference cancellation technique for U active users 

The delay incurred by interference cancellation is fixed for the parallel implementation, but 

variable for the serial approach, since this depends on the number of users whose contributions 

have to be estimated and cancelled. On the uplink, it may be beneficial to use the serial 

approach, and only cancel users whose data may be estimated with a reasonable degree of 

accuracy, since, as will be shown, incorrect estimation and cancellation reduces the final 

performance. This approach may also be useful if no power control is available, since the 

strongest contributions may be estimated and cancelled first, before a decision is made whether 

to proceed with cancelling the contributions from the remaining users. Serial cancellation 

20 The security implications of allowing users access to other users' signals may also bean important consideration. 
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X 3  

user 4, user 5.., uscr(U-I) 

Figure 2.18: Parallel interference cancellation technique for U active users 

suffers poor performance when all users have the same power, which is the case considered 

here, so the cancellation schemes proposed here will all be implemented in a parallel fashion. 

The application of interference cancellation to the DS-CDMA system will be considered in 

more depth in Chapter 5, which investigates the combination of forward error correction using 

convolutional coding with parallel interference cancellation. 

2.3.5 Multi-user detection techniques 

Rather than attempting to cancel the interference from the other users in the system, the principle 

of multi-user detection (MUD, or joint detection) [76] operates by treating the multiple access 

interference as additional information, which may be used to obtain a better estimate of the 

intended data. An overview of MUD techniques is given in [77], but the general principle, 

illustrated in Figure 2.19 is to calculate a set of soft decisions (obtained here using a bank of 

matched filters) which, taken together, form a sufficient statistic for xj(n), even though the 

individual soft decision i(n) may not be. MUD detectors are near-far resistant [78], however 

the disadvantage of using an MUD approach is that the complexity of the receiver increases in 

a non-linear (usually exponential [79]) manner, so that the most useful place to carry out this 

operation is at the base station [80], where sufficient resources are likely to be more readily 

available. 
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Figure 2.19: Principle of multi-user detection (MUD) 

2.3.6 Non-linear receiver structures 

Effects due to the communication channel, together with undesired cross-correlations if non-

orthogonal spreading sequences are used, can cause the problem of estimating the original data 

from the received signal to be non-linear21. If this occurs, the performance of conventional linear 

receivers can become severly limited, so that the only way to correctly infer the required data 

is by non-linear methods. Such an approach, involving the multilayer perceptron (MLP), has 

been shown to provide a promising structure for an equaliser for a single user communications 

system subject to a dispersive channel and is described in [81], while an approach involving 

Volterra series polynomials for CDMA was successfully taken in [82]. 

The optimal non-linear symbol-based decision equaliser is the Bayesian receiver, which was 

shown in [83] and [84] to be realisable by a radial basis function (RBF) network. This 

network defines a mapping fRBF : IRD # R, where D is the dimension of the input vector. 

The technique, which is a limited-time maximum likelihood sequence estimator, proceeds 

by evaluating the distance 22  of the input test point from a set of known points, or centres 

R, E 7) c R' and then calculating a series of non-linear functions of these distances. The 

output from the network is then given by a weighted sum of these values, as illustrated in Figure 

2.20 for a simple case of a network with 3 centres whose input is formed by taking succesively 

21 i.e. the decision surface may not be separated by a hyperplane 
22 undera suitable metric defined on 
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delayed samples of the signal y. 

Figure 2.20: Radial basis function network with 3 centres 

In general, with Nc  centres in the network, the output is given by 

fRBFL 	wj [dL,p)] 	 (2.22) 

where wi is the weight associated with the centre p., the distance d(.,.) from each centre to 

the input test point is usually evaluated using the Euclidean 12 metric and b(.) is a radially 

symmetric function, which is monotonic in the sign of its argument. Although recent results 

suggest that it may be of merit in some circumstances to use different radial functions, or 

kernels, for each centre [85], the approach adopted here is to use the same kernel shape for each 

centre. Of the many available [86], the most commonly used is the Gaussian kernel, defined by 

(_ 

2 \ 

G(C) exp 	 (2.23) 

where a controls the width of the individual RBF kernels. This is similar to a neural network, 

with the hidden layer represented by the non-linear basis functions. The incorporation of an RBF 

network into a DS-CDMA receiver for a system exhibiting non-linearities will be considered in 

more detail in Chapter 6. This chapter will also illustrate the performance advantage gained by 

this approach, which implements the optimal Bayesian receiver, compared to a simple matched 

filter and investigate some methods for reducing the complexity of these receiver structures, to 

make their practical implementation more attractive. 
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2.3.7 Discussion 

This section has outlined various facets of the system design of a DS-CDMA system. The 

various sequences which may be used to spread the data, and the resulting error performance, 

have been described. Alternatives to straightforward matched filtering of the received signal 

have been outlined, and various adaptive strategies to enhance the desired part of the received 

signal, whilst reducing the multiple access interference, have been outlined. The use of forward 

error correction has been investigated with regard to a single user communication system. 

Two methods of cancelling the multiple access interference have been indicated, along with the 

principles of multi-user detection. Finally the application of non-linear techniques incorporating 

radial basis functions at the receiver has been introduced. 

2.4 Summary 

This chapter has reviewed the basic principles of spread spectrum communications and described 

the implementation of direct sequence code division multiple access. The transmitter structure 

has been defined, the model for the communication channel introduced and various receiver 

structures have been described. The performance of a simple benchmark system, using only 

direct sequence spreading in Gaussian noise, has been detailed, and shown by analysis and 

simulation to be interference-limited. Various signal processing techniques which may be 

incorporated into the system have been described. The next chapters will explore these topics in 

more detail, emphasising the compromises which must be made to achieve increases in overall 

system capacity, and will investigate whether this performance increase may be achieved at 

tolerable increased demands on the receiver complexity. 
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Adaptive algorithms 

In this chapter, the adaptive approximation of the minimum mean square error receiver for the 

downlink of a DS-CDMA system is investigated. The scenario considered here is first outlined 

in section 3. 1, which also discusses the influence of the tuning parameters of two of the more 

popular adaptive algorithms; the LMS and RLS algorithms. This section also briefly discusses 

the effects of MAI on the LMS algorithm, demonstrating the data-dependence of this algorithm. 

The convergence in Gaussian noise only of these two algorithms is considered in section 3.2, 

while the performance after convergence is described in section 3.3. The details of the time-

varying multipath channel considered are then described in section 3.4. Section 3.5 focusses 

on the RLS algorithm when used in this channel and considers the factors which influence 

convergence. The corresponding error performance for the 7-chip random spreading sequence 

set is then discussed in section 3.6. Some alternative strategies are outlined in section 3.7, and 

this chapter concludes with a summary in section 3.8 of the main results obtained and their 

implications for future work. 

3.1 Scenario considered 

The aim of the work presented here is to adaptively approximate receiver tap weights which 

will enhance the signal from the desired user, whilst reducing the effects of the multiple access 

interference. The simulations discussed in this chapter are all performed with respect to the 

scenario indicated in Figure 3.1, with the proviso that the channel effects may be bypassed 

if required, to investigate convergence and performance measures in stationary AWGN alone. 

Additionally, the Gaussian noise may also be bypassed to gauge the convergence performance 

of the algorithms in MAT alone. 

43 



Chapter 3 : Adaptive algorithms 

I 

Data 

Gaussian noise 

Channel 

------------------------------------- 

Output 

- - - Adaptive algorithm - 

Training data 

Figure 3.1: Block diagram showing data flow 
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The adaptive FIR receiver filter, discussed in section 2.3.2.3 is chosen to have the same number 

of tap weights as the length of the spreading sequence, so that no extra allowance is made for 

the dispersion effects of the channel. To incorporate these effects, the receiver filter could be 

extended by a number of chips to capture all the energy from one transmitted data bit. In the 

stationary AWGN case, N train  training data bits are transmitted, after which the tap weights 

are held fixed and the Ndata test data are then used to calculate the simulated probability of 

error, Pr. In the case of the time-varying channel, a number of data cycles are employed, each 

consisting of a block of Nirain training data, followed by Ndata  test data bits. The tap weights 

in the receiver are then reset and a fresh cycle of training followed by testing is performed. 

The performance statistic is then calculated based on the total number of test data bits. The 

number of active users is held fixed throughout the simulations, so that effects due to the birth 

and death of new signals are not modelled. In practice, this could be achieved by constraining 

users to only begin or cease transmission at the beginning of a new data cycle, since the target 

tap weights will be shown to depend on the number of simultaneous users. 

The channel considered is the reduced typical urban 6-tap channel model as defined in the 

COST 207 study [35]. The time-varying impulse response of the channel is calculated using the 

method originally developed in [33], and previously discussed in section 2.2.2.3. The shaping 

function used is the raised cosine model with 100 % excess bandwidth [31], given by 

sin( 	
(1r3t) 

f (t) 	Tt  	
1 )] [cos -T;:- 	

(3.1) 
T 

[ 	
1_42()j 

where /3, the roll-off factor, is set to I. This pulse is shown in Figure 3.2 (a), and has a spectrum 

of 

{ 	

, 	0IfHL - 2T 

= 	l + cos [, (i fI 	
i-11 	

'— <fI < 	 ( 3.2) 21 	 . 	 2T— 	— 2T 

0 

which is also depicted in Figure 3.2 (b). This shaping function avoids interchip interference 

if the delays imposed on the signal are integer multiples of the chip period. Although it must 

be acknowledged that exact chip delays are unlikely to occur in practice, the advantage of this 

pulse shape is that the ICI is zero if the channel is not dispersive. 

The transmitted signal is first convolved with the chip-sampled instantaneous impulse response 
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Figure 3.2: The profile of the raised cosine pulse with 100 % excess bandwidth: (a) frc (t); (b) 
F, (f) 

of the channel H(z; t), given by 

3=h 

H(z;t) 
	

(3.3) 
3=0 

where nh is the number of taps in the channel, which is 6 in the case considered here. The 

calculation of the individual complex tap weights of the channel model is described in more 

detail in section 2.2.2.3. The samples of the noise are taken to be iid Gaussian random variables 

with variance a2, which is related to the signal to Gaussian noise ratio by equation 2.5, and the 

spreading sequences are of length M. 

The receiver employs either the LMS or RLS algorithm, both of which are described briefly 

in section 2.3.2.3 and derived more fully in e.g. [62] or [60]. There are a number of details 

relating to these algorithms which are now discussed to aid clarity. The version of the LMS 

algorithm chosen is the one derived in [62], i.e. the weighting factor is given by t, rather than 

2i, as in [60]. There are a number of parameters which are important with regard to the RLS 

algorithm, namely 

The forgetting factor \, or equivalently the memory of the algorithm, given approximately 

[62] by 1/(l - 

The small positive constant in the RLS algorithm , used in the initialisation of the 

estimate of the inverse of the autocorrelation matrix p_i  (0) = (1/5)I, where I is the 

identity matrix 

The version of the RLS algorithm used, as defined in [62]. Throughout, version II will be 

employed, which does not make the assumption that p 1  is Hermitian (i.e. *_T 

b is an estimate of the final mean square error, but its exact value is irrelevant to the convergence characteristics 

of the algorithm [87] 
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Before proceeding to the results in Gaussian noise only, it is useful to briefly consider the effect 

of the step size parameter IL and the number of active users on the convergence of an adaptive 

algorithm in the presence only of MAT. For this investigation, the LMS algorithm will be used 

for illustrative purposes. 

3.1.1 LMS convergence in the absence of Gaussian noise 

To judge the convergence capabilities of an adaptive algorithm, it is sufficient to consider the 

mean square error (MSE) between training data bit x(n) and its approximation ã(n), produced 

after each training data bit. Here, the MSE of equation 2.13 is ensemble averaged over 100 

independent trials using equation 3.4. 

MSE(n) = (ensemble - 1)MSE0Id (n) + e(n) 

ensemble 	
(3.4) 

For illustration, convergence graphs for the LMS algorithm are presented in Figure 3.3 for a DS-

CDMA system using 31-chip Gold spreading sequences, with 7 active users. The simulations 

are performed for values of [t = 0.0003, 0.0007, 0.007 and 0.009, where p is the step-size. 

Convergence of LMS algorithm, 31 chip Gold sequences, 7 users 
1.2 

0.8 

0.6 

0.4 

0.2 

0 	I 	 I 	 I 	 III 

0 10 20 30 40 50 60 70 80 90 100 
Training data bit 

Figure 3.3: Convergence of the LMS algorithm averaged over 100 ensembles for 31-chip Gold 
sequences without Gaussian noise: (a) /i = 0.0003;(b)u = 0.0007;(c) y = 0.007; 
(d) it = 0.009 
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The results indicate the general idea that smaller values of p require a longer training time to 

converge to the noise floor. This time may be decreased by increasing P, but if this parameter is 

increased beyond a certain value, the algorithm diverges. The dependence of LMS convergence 

on the number of active users may be judged from Figure 3.4, which shows the final value of 

the MSE again averaged over 100 ensembles, after 200 training data bits, for various values of 

p. for the full range of active users. 
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Final converged error of LMS algorithm, 31 chip Gold sequences 
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Figure 3.4: Final converged error (100 ensembles) after 200 training data of the LMS algorithm 
for 31-chip Gold spreading sequences without Gaussian noise: (a) It = 0.0007; (b) 

0.0014; (c) p = 0.007 

It is obvious that the step-size which appeared optimal for 7 users causes the algorithm to 

diverge beyond 9 users, and also that there is a trade-off between the speed of adaption and 

the value of the final error. As a compromise, the value of JL will be set to 0.0014 for the 

systems using 31-chip Gold spreading sequences to ensure convergence (at least in the absence 

of Gaussian noise) for all users. 

In conclusion, even without Gaussian noise, the convergence of the LMS algorithm is strongly 

dependent on the number of users, so that the value of the step-size must be chosen to suit 

the worst-case scenario (which in this case means the maximum number of possible users since 

the system is interference-limited). This requirement could lead to inefficient use of resources 

if individual users abruptly begin or cease transmission. 
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3.2 LMS and RLS convergence in Gaussian noise 

The effects of adding Gaussian noise into the system are now considered. Here, the signal to 

Gaussian noise ratio, E5  /No, is set at values of 3, 10 and 25 dB, and 100 ensembles of mean 

square error against iteration are averaged for a system with 31 users. The LMS is implemented 

with i = 0.00 14, as discussed above. The results, shown in Figure 3.5 indicate that the LMS 

algorithm fails to converge when the noise is significant, performs poorly in moderate noise 

situations since it reaches an irreducible MSE, and only converges slowly under low noise 

conditions. 

Convergence of LMS algorithm, 31 chip Gold sequences, 31 users 
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 + 

n 

50 100 150 200 250 300 350 400 450 500 
Training data bit 

Figure 3.5: Convergence of the LMS algorithm over 100 ensembles with i = 0.0014 for 31 
users in a 31-chip Gold sequence system in Gaussian noise: (a) 3 dB; (b) 10 dB; 
(c) 25 dB 

Turning now to the RLS algorithm, Figure 3.6 shows convergence curves for both LMS and 

RLS algorithms for 31 users in a 31-chip Gold sequence system where Eb / No  = 25 dB, while 

Figure 3.7 shows the equivalent results for 7 users using 7-chip spreading sequences. In these 

cases, 1000 ensembles have been averaged to obtain significant estimates for the convergence 

profiles, and the initial value 6 in the RLS algorithm is set to 0.001. The forgetting factor, ), is 

set to 0.99. 

As may be seen, the RLS algorithm converges much more rapidly, (theoretically, within 2M 

iterations [62]) and to a lower mean square error than even the fastest converging value 

of the LMS adaptation parameter. Figure 3.6 also demonstrates another facet of the LMS 
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Comparison of LMS and RLS convergence for 31-chip Gold sequences, 31 users 
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Figure 3.6: LMS and RLS convergence curves averaged over 1000 ensembles for 31 users in 
a 31-chip Gold sequence system with Lb/No = 25 dB: (a) LMS, 	0.0007; (b) 
LMS, ,u = 0.0014; (c) RLS, A = 0.99 

Comparison of LMS and RLS convergence for 7-chip Gold sequence system 
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Figure 3.7: LMS and RLS convergence curves averaged over 1000 ensembles for 7 users in 
a 7-chip Gold sequence system with Lb/NO = 25 dB: (a) LMS, p = 0.014; (b) 
LMS, it = 0.0014; (c) RLS, A = 0.99 
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algorithm; namely that the value for 1u which provides faster convergence also leads to a higher 

misadjustment, or converged error, so that some compromise must be made between speed 

and accuracy if this algorithm is employed. The initial divergence of the RLS algorithm is 

characteristic of this method [62], with a peak in the MSE at exactly M iterations. 

3.3 LMS and RLS error performance in Gaussian noise 

To reduce the computation time, and also to enable comparison with [57], the error performance 

simulations are carried out using the 7-chip Gold spreading sequence system only. The 

performance in terms of probability of error (Fe ) for given Eb/No values for this case may be 

simulated by considering the ratio of data bit errors to number of test data sent. The results 

are shown in Figure 3.8, together with the theoretical BPSK performance curve, obtained from 

Equation B.13, and the simulated performance of a matched filter receiver. 

LMS and RLS performance in Gaussian noise 
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Figure 3.8: LMS and RLS algorithm performance in Gaussian noise using 7-chip Gold 
sequences for 7 equal power users: (a) theoretical BPSK; (b) matched filter, 7 
users; (c) LMS, u = 0.014; (d)LMS, i = 0.0014; (e) RLS A - 0.99 

Because the channel is stationary, the receiver filter is trained for 1000 data bits, and then the 

tap weights are held fixed, while the test data is sent. Thus, decision-directed training [88] is 

not employed. In practical terms, this is an unrealistic amount of training data, but the principle 

is clear; the LMS with the smaller value of it has almost as good performance as the RLS, but 

requires a significantly larger amount of training data to achieve this. The LMS with the larger 
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0.014, which converges more rapidly as has been demonstrated in section 3.2 is more 

susceptible to data errors than the RLS algorithm. As the noise decreases, the advantage of 

using adaptive algorithms over straightforward matched filtering becomes greater. This result 

is consistent with previous studies [57] of these adaptive algorithms. 

Thus it is clear that to adaptively approximate the Wiener filter in a reasonably short training 

time, the RLS algorithm offers a better method than the LMS. The disadvantage in using the RLS 

is its greater computational requirement. The next development is to consider this algorithm 

in a time-varying channel, which has also recently been investigated in [89]. This evaluation 

is once again split into two parts; the convergence of the algorithm, and its subsequent error 

performance. Before discussing the results, the details of the evaluation of the time-varying 

multipath channel are first outlined. 

3.4 Channel details 

The system chip-rate selected is 1 228 800 chip/s, as used in the IS-95 standard [15]. As described 

in section 3.1, the channel used in this study is the typical urban (TU) model, with 6 channel 

taps in the impulse response. Since the largest delay of this model is 5 its, an approximation for 

foT,hip is therefore 0. 16, so that inter-chip interference will occur. The maximum Doppler shift 

present is arbitrarily chosen to be 30 Hz, which is equivalent to a vehicle speed of 36 km/hr 

at a transmission rate of 900 MHz. The Doppler spread, which has the characteristic profile 

as sketched in Figure 2.5 (b) is then determined by the type of filter for the relevant tap, as 

described in [35]. Given this Doppler spread, the channel may be described as slow fading, so 

that the channel tap weights may be approximated by linear interpolation between samples of 

the channel impulse response which are calculated as in section 2.2.2.3. 

The software used to generate the channel impulse response coefficients is described in [33] 

and, because of the preceding remarks, the computation time may be reduced by periodically 

generating samples of the impulse response, and then linearly interpolating between these to 

obtain the instantaneous values. In the case considered, where the maximum Doppler shift is 30 

Hz, a sampling rate of around 1000 Hz is used, so that there are around 30 sampled points per 

cycle, corresponding to obtaining a new channel impulse response approximately every 1000 

chips. 
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An important difference between the model used here and conventional fading channel models 

(e.g. [32]) is that since the main interest here is in the effect of inter-chip interference, the 

individual tap powers are normalised by the overall power of the channel filter taps, so that the 

signal power before and after the channel effects are incorporated is the same. This effectively 

ignores any flat fading effects, and so the noise variable labelled Lb/No  may be interpreted as 

the instantaneous signal to Gaussian noise ratio. 

3.5 	RLS convergence in time-varying multipath 

This section investigates the convergence of the RLS algorithm in the channel described 

above. The convergence properties of the algorithm for systems with various length spreading 

sequences are first described in section 3.5.1. The misadjustment, or final converged error, with 

respect to background noise is then considered in section 3.5.2. 

3.5.1 Channel equalisation: effect of code length 

To investigate the effect of code length on the convergence properties of the algorithm, the MSE, 

again averaged over 1000 ensembles, is calculated for systems employing 7, 31 and 63-chip 

Gold spreading sequences for both the stationary AWGN channel and for the time-varying 

multipath channel. Convergence curves are presented in Figure 3.9 for the respective systems 

for one active user with Lb/NO - 7 dB. 

The RLS algorithm is implemented for the stationary case with ,\ = 1, so that it has infinite 

memory, while for the time-varying case, .\ = 0.99, so that the effective memory, given 

approximately [62] by I / (1 - /\) bits, is 100 data bits. It may be seen that the overall behaviour 

for the AWGN channel and for the multipath channel is similar, with the same characteristic 

peak in the error at the Mth training data bit, and convergence being achieved at around the 

2Mth training data bit2, so that training may be stopped at this point to send the (unknown) test 

data and form the performance statistic. The increase in final MSE with increasing spreading 

code length is also evident, and is accentuated with the extra influence of the time-varying 

channel. 

2 this is a feature of the RLS algorithm, since the tap weights are only adapted after information corresponding 
to one data bit is gathered 
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Convergence of RLS algorithm in AWGN and COST-207 TU-6 channel 
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Figure 3.9: Convergence of RLS algorithm in COST-207 6-tap TU channel, 1 active user, 
Eb/NO = 7 dB: (a) 7-chip, AWGN; (b) 7-chip, TU; (c) 31-chip, AWGN; (d) 
31-chip, TU; (e) 63-chip, AWGN; (I) 63-chip, TU 

This final MSE is due to two effects; firstly the misadjustment, M, present in the stationary 

environment, and given approximately [62,90] as 

(1+ NM )a2+M() 	 (3.5) 

where Ntra jn  is 200 in this case. The second effect is the additional corruption of the received 

signal by ICI, as a result of the multipath channel, as described in section 2.2.2.2. This could be 

compensated for by making an estimate of the channel impulse response, and using an equaliser 

to attempt to combat the effects of the channel, as described in [91]. 

These results also indicate another trade-off which must be made between lower MAI interference, 

which may be achieved by using longer spreading sequences, and the performance restrictions 

which this imposes. The drawback to using longer sequences, aside from the obvious increase 

in computation time, is that the channel is more likely to change over the period required to 

transmit sufficient data to train the receiver tap weights completely. The impact of this on the 

IS-95 system [15], which uses 64 chip Walsh spreading sequences [53], is likely to make an 

adaptive approach less practical. 

U 
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3.5.2 Channel equalisation: effect of background noise 

The effect of signal to Gaussian noise ratio (Lb/NO) on the convergence of the RLS algorithm 

is now investigated. Here, both 7-chip and 31-chip spreading sequence systems are considered, 

and the final value of the MSE after 200 bits of training data, ensemble averaged over 1000 

independent trials, is calculated for one active user. The results are shown in Figure 3.10 for 

both the stationary Gaussian noise channel, in which case infinite memory is employed, and the 

6-tap typical urban channel model, for which the value of the forgetting factor, A is set to 0.99. 

The figure also presents the theoretical values for the stationary case obtained from equation 

3.5 with A set to 1. 

Final MSE of RLS algorithm, 7-chip and 31 -chip Gold sequences, 1 user 
II 	I 	I 	 I 

0.01 
0 	2 	4 	6 	8 	10 	12 	14 

Eb/No 

Figure 3.10: Effect of channel on final mean square error for various values of Lb/NO: (a) 
Equation 3.5 (A = 1.0, M = 7); (b) AWGN (7-chip); (c) COST 207 TU channel 
(A = 0.99, M = 7); (d) Equation 3.5(A 1.0, M = 31); (e)AWGN (31-chip); 
(t) COST 2O7TUchannel (A = 0.99, M = 31) 

The results show an asymptotic tendency toward the theoretical predictions for larger Lb/NO 

values in the stationary cases. As expected, there is a deviation in the final MSE when the 

channel is included, due to the additional corruption of the signal by ICI. The minor fluctuations 

in the results for the multipath case are likely due to insufficient averaging of the full range of 

fading induced by the model. However, the results are encouraging, although longer spreading 

sequences will not be able to produce as low a final MSE for the reasons cited in section 3.5.1. 
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3.6 	RLS performance in time-varying multipath 

The MSE produced by the RLS algorithm, while a reasonable pointer to its capability, offers 

only a limited indication of its ability to separate the spreading sequences and thus recover the 

original data correctly. To investigate this, the error performance, again measured as simulated 

probability of error (Fe), estimated over a suitably large number of independent trials, is now 

investigated. To reduce the computation time, the simulations are only performed for the 7-chip 

sequence set. Since section 3.5.1 demonstrated that convergence is broadly achieved after 2M 

training data bits, and it is important to utilise the full memory of the algorithm, which with 

0.99, is around 100 data bits, Ntra j7, is set to 14 (2M) and Ndata  is set to 77 (11 M), so 

that each data cycle lasts 91 bits. The receiver tap weights are then reset, and a new data cycle 

is transmitted. The performance as the number of simultaneous users and the background noise 

level is varied, is shown in Figure 3.11. 

Performance of RLS algorithm in TU-6 channel: 7 chip Gold sequences 
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Figure 3.11: Probability of error against Eb/J\/O and number of active users for the RLS 
algorithm (A = 0.99) in the TU channel for 7-chip Gold sequences 

Although this configuration clearly suffers reduced performance for more than about 5 users, 

the equivalent system, when used in the stationary Gaussian noise channel, experiences similar 

degradation in performance. An alternative view of the same information is presented in Figure 

3.12, which shows the number of users which may be supported against the required Eb/NO 

for a given probability of error. The results have been obtained from linearly interpolating the 

previous results, and show the characteristic increase in required Eb/No as the target probability 

of error is reduced. 
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Figure 3.12: Number of users which may be supported against required Eb/NO for a given 
probability of error for the RLS algorithm (A - 0.99) in the TU channel for 
7-chip Gold sequences: (a) P, =0.01; (b) P, =0.05; (c) Pe 0.l 

Thus, the RLS algorithm appears to be able to compensate for the effects of the channel without 

introducing significant further degradation, and so could be employed as an alternative to a 

RAKE receiver [92]; the traditional method for combatting unknown multipath interference. 

The RAKE operates by combining soft decisions arising from filtering a number of delayed 

replicas of the received signal by a number of copies of the required de-spreading sequence 

(termed fingers). While this could be used to combine non-adjacent parts of the received signal, 

the MMSE receiver combines any time or space diversity present in an optimal way, and 

therefore would be expected to have the best performance. 

In the stationary case, reduced interference may be obtained by employing longer spreading 

sequences, with relatively lower cross-correlation values [50]. However, as has already been 

shown, the channel effects become more detrimental for longer sequences, so that some 

compromise must be reached between system capacity and performance. 

3.7 	Various adaption strategies 

In this section, various alternative strategies to the system used previously are analysed. The 

first, in section 3.7.1 considers the effects of other data chip rates. The second alternative is to 
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modify the cycles of training, testing and resetting so that the tap weight values from the old 

configuration are retained as the starting point for the next update period. Thirdly, the effect of 

the value of the forgetting factor, A is considered in section 3.7.3. 

3.7.1 Alternative chip rates 

Although the chip rate prescribed by the IS-95 standard [151 is 1228800 chip/s, other systems 

have different chip rates, and so it is of interest to investigate the effects previously discussed 

when different chip rates are used. The chip rate selected here is 1 x 105  chip/s, again with 

the single user case. An immediate problem with using a lower chip rate is that the effects of 

the channel will be more pronounced, unless the value of A is reduced to prevent the algorithm 

from remembering outdated channel estimates. For the lower chip rate, A is set to 0.95 so that 

the effective memory is reduced to around 20 data bits. This is chosen to ensure that the 7-chip 

Gold sequence system has sufficient time to converge, although other (larger) values of A would 

have to be used for systems employing longer spreading sequences, since they would require 

longer training times. 

The results are shown in Figure 3.13, which also shows the equivalent performance statistics 

for the IS-95 system and the theoretical BPSK performance curve from equation B.13. 

RLS performance in COST207 TU-6 channel, 7 chip Gold sequences, I active user 
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Figure 3.13: RLS performance against Eb/NO for 7-chip Gold sequences, 1 active user: (a) 
theoretical BPSK in AWGN, (b) IS-95 chip rate, (c) I x I chip/s. A = 0.95 
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As may be seen, the slower chip-rate system has significantly poorer performance, likely to be 

due to the channel changing after the algorithm has converged. The consequences for longer 

chip spreading sequences, and higher values of Doppler shift are even more acute, so that future 

systems will require high chip rates to remain feasible. This places further increased demands 

on the resolution and capability of the hardware deployed. 

3.7.2 Tap weight resetting 

The fact that the channel is time-varying may lead one to attempt to use "old" information in 

the form of the previous receiver tap weights, rather than resetting them after the end of each 

data cycle. To investigate this, the IS-95 chip rate is again employed, and the performance with 

and without resetting is considered. The results are presented in Figure 3.14 for two values of 

the forgetting factor A equal to 0.95 and 0.99. 

RLS Performance in TU-6 channel for various resetting strategies 
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Figure 3.14: Probability of error against Eb/No with and without tap weight resetting: (a) 
theoretical BPSK, (b) A = 0.99, with resetting; (c) A = 0.99, without resetting; 

	

(d) A = 0.95, with resetting, (e) A 	0.95. without resetting 

With resetting, the performance appears almost identical for the two values of A, however 

the results without resetting show a more pronounced dependence on A. With A = 0.99, the 

memory appears to be too great, so that incorrect adjustments are being made to the RLS tap 

values, leading to a higher proportion of data bit errors. Not resetting with A = 0.95 gives better 

performance than resetting, and appears to be the optimum strategy in this case. However, 
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the problem with not resetting the RLS algorithm is that any step change in the signal, for 

example caused by the abrupt switching on or off of a particular user, even at a pre-arranged 

admissable instant, could cause the RLS algorithm to become unstable. In addition, all the 

calculations discussed here have been performed with double precision arithmetic, and the use 

of lower precision arithmetic, as may be required to reduce complexity in the receiver, has been 

shown [93] to increase the chance of instability and error propagation of this algorithm. 

Thus, although it appears optimal to not reset the weights, in practical situations, where 

the characteristics of the signal are not known a priori and lower precision arithmetic may 

be imposed, it may be better to reset the receiver tap weights between data cycles, even 

though this strategy has slightly worse performance. Further investigations, perhaps using other 

combinations of training and data lengths, may provide some more insight into this phenomenon 

and may form an area of future study. 

3.7.3 Varying forgetting factor 

As described in section 2.3.2.3, the main parameter of the RLS algorithm is the forgetting factor 

A, which controls the memory of the algorithm. In the stationary case, it is normally sufficient 

to use infinite memory (A = 1), however, in the case of a time-varying channel, this parameter 

may be tuned to provide a compromise between remembering enough data to train effectively 

while avoiding converging to old (and probably incorrect due to changes in the channel) values 

of the receiver tap weights. Again, the investigation of this parameter will be based on the two 

criteria of convergence and error performance. 

3.7.3.1 Channel equalisation 

Figure 3.15 shows the effect of varying both the forgetting factor and the number of active 

users, on the final mean square error (MSE), over 500 ensembles of 200 data bits, for Eh/NO  

equal to 10 dB for the 7-chip spreading sequence set. 

The previous chip rate (1 x 105  chip/s) has been used here, where it may be seen that the 

final value is largely independent of the number of users. The variation, predominantly due 

to varying A, arises because the time required to transmit 200 data bits is comparable to the 

timescale over which the channel is changing, and thus the algorithm is prone to converge to 
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RLS convergence in TU-6 channel, 7-chip Gold sequences 
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Figure 3.15: Variation in final convergence value with A and number of active users for 
Lb/NO = 10dB 

previous incorrect values. 

3.7.3.2 Error performance 

To investigate the effect of A on the error performance, the IS-95 chip rate is again used, with 

one user, and with resetting. The performance for a range of values of Lb / N0  is shown in Figure 

3.16, which shows only slight variation with A, in agreement with the results in section 3.7.2. 

One may expect the performance for A = I to not be as good as indicated, since this corresponds 

to remembering every previous data bit. However, the improved performance is attributable to 

the resetting operation which effectively prevents the algorithm from using data values older than 

the training and testing data cycle length of 91 data bits. Since this is a short enough timescale 

compared to the changes in the channel (at this chip-rate), the performance is reasonable even 

for apparently unlikely values of A. Thus, computational savings may be made by simply setting 

A to 1 and resetting the tap weights after each cycle. If resetting is not employed, as may be 

seen from Figure 3.17, the performance does indeed deteriorate as A approaches 1. 

The figure also demonstrates the large variation in performance with comparatively small 

changes in A as A - 1, so that for a practical system, close monitoring and fine tuning of this 

parameter would be required. 
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Figure 3.16: Probability of en-or against A for various values of Eb/NO  for the IS-95 chip rate 
with resetting: (a) 4 dB; (b) 6 dB; (c) 8 dB; (d) 10 dB; (e) 12 dB; (1) 14 dB 
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Figure 3.17: Probability of en-or against A for various values of Eb/NO for the IS-95 chip rate 
without resetting: (a) 4 dB; (b) 6 dB; (c) 8 dB; (d) 10 dB; (e) 12 dB; (l) 14 dB 
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3.8 Discussion 

In this chapter, the application of two adaptive algorithms to the DS-CDMA environment has 

been described and analysed. It has been shown that the LMS algorithm is dependent on both 

the number of participating users and the level of signal to Gaussian noise. In the stationary 

AWGN channel, the final mean square error achievable by the LMS has been shown to be 

greater than that due to the RLS algorithm. The LMS also requires variable training times to 

converge, while the RLS converges within a time only dependent on the length of the spreading 

sequence set used. The performance of the LMS in AWGN has been shown to be only at best 

as good as the RLS, with this performance level only achieved after significant amounts of 

training. The convergence and performance of the RLS algorithm in a particular non-stationary 

environment has been investigated. The effects of sequence length and background noise level 

on the convergence properties of the algorithm have been discussed, and the influence of various 

parameters on convergence and system performance has been examined. 

Other channel models, such as the less typical rural or hilly scenarios could also be investigated, 

as could higher vehicle speeds, which, with the attendant increase in maximum possible Doppler 

shift, will likely lead to degradation in performance. However, it is expected that the channel 

model and the parameters reported here provide a reasonably general model for many situations. 

Traditional anti-multipath techniques, involving RAKE receivers, either require a pilot channel 

or a sufficiently high signal-to-noise ratio to enable estimation of the number and strength of the 

multipath components. The adaptive techniques examined here require only a reasonable signal 

to noise ratio and sufficient time to converge. More elaborate receiver structures, employing 

multiple access interference (MAI) cancellation or data-encoding to provide some forward error 

protection will be investigated in the following chapters, which will also discuss the suitability 

of these more computationally-intensive receivers to a nonstationary environment. 

The crucial point is whether there is sufficient time for the adaptive algorithm to drive the tap 

weights to the correct values, and this depends on the time required to transmit the required 

number of data bits compared to the time over which the channel changes. One possibility to 

ensure that there is sufficient time is to perhaps use short sequences to equalise the channel, 

combined with longer ones to actually encode the data. In summary, it has been shown that 

it is feasible to use an adaptive algorithm to compensate for the detrimental effects of a non-

stationary channel, provided training can be performed in an appropriate time-scale. 
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Convolutional coding in a DS-CDMA 
system 

In this chapter, the use of convolutional coding as a means of forward error correction (FEC) 

for the DS-CDMA environment is investigated. The basic principles of convolutional coding 

in the context of a DS-CDMA system are first described in section 4.1, which builds on the 

ideas previously described in section 2.3.3.1. The first system, in which various methods of 

convolutional coding are used as an alternative to direct sequence spreading, is described in 

section 4.2. Results from some simulations to investigate this structure are then presented 

in section 4.3, and the implications of these results are discussed in section 4.4. A more 

conventional system, employing a combination of coding and spreading, is then considered in 

section 4.5, which explores the balance between devoting resources to coding or spreading, 

while maintaining a fixed processing gain. Results obtained from systems employing both Gold 

and random spreading sequences are described in section 4.6 and discussed in section 4.7. 

Finally, the main ideas discussed in the chapter are summarised and implications for future 

work are outlined in section 4.8. 

4.1 Principles of convolutional coding applied to the DS-CDMA 

environment 

The principles of forward error correction for a single user communication system have 

previously been briefly outlined in section 2.3.3. In this study, attention is focussed on convolu-

tional codes, which are distinguished by two parameters; the rate and the constraint length. 

The rate, R, of a convolutional encoder is defined as the ratio of the number of input to output 
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digits, while the constraint length, K, is the number of input digits that the encoder uses to 

construct the encoded sequence. To accomodate multiple access, different code configurations 

may be allocated for each user and the resulting encoded sequence may be used in place of the 

spreading sequences, as discussed in the first system, or the digits of these encoded sequences 

may themselves be used to modulate the user's spreading sequence, which is the technique 

described in the second system. 

Before proceeding to a detailed description of the systems considered, it is important to specify 

some parameters of the particular decoding mechanism employed. As described in section 

2.3.3.4, the Viterbi algorithm (VA) is used to decode the received vector, with soft decision 

decoding employed throughout, using double precision arithmetic. The use of lower precision 

does not significantly decrease the performance [70], but is not implemented here so as to obtain 

as accurate results as possible. 

An important parameter in the radio communications environment is the delay incurred by 

any additional processing, since this may ultimately degrade the quality of service (QOS) of a 

system. The maximum delay considered here for the convolutional code decoding portion of 

the receiver is arbitrarily set to 32 data bits, so that constraint lengths of up to K = 6 may be 

considered. The use of longer constraint lengths requires a greater processing delay to maintain 

the increased coding power, and this may prove intolerable for practical systems, which require 

additional processing delays for other portions of the receiver. 

4.2 System 1 description 

The first system considered is mainly concerned with a variant of convolutional coding [94] 

which has recently been applied to the DS-CDMA environment [95] and which provides 

coding and spreading in one step. Before detailing the operation of this encoder, the model for 

the communications system to be considered is defined. The flow of data in this scenario is 

shown in Figure 4. 1, in which each user's data bit is first processed by the relevant encoder unit, 

before combining at the summer. 

Multiple access is achieved in this system by assigning different code generators to each user. 

Optionally, the encoded data stream may be further randomised by a chip-by-chip multiplication 

of the output code sequence by the appropriate randomiser sequence. The motivation for this 
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Figure 4.1: System I considered to compare methods of convolutional coding performance 
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will be discussed later. This use of convolutional coding may be viewed as an alternative to 

direct sequence spreading, in which the mapping from input data bit to output code word 

replaces the operation of direct sequence spreading 1 . Additive white Gaussian noise is then 

added to this transmitted signal, to form the received signal which is to be processed by the 

receiver to produce the estimate of the original data bit. 

The performance of the encoded systems is compared to that of a system employing only direct 

sequence spreading with random sequences and a receiver consisting of either the conventional 

matched filter of section 2.2.3, or the minimum mean square error (Wiener) filter as described 

in section 2.3.2.2. Although a direct implementation of the latter receiver requires knowledge 

which may not be readily available, it has previously been shown in Chapter 3 that the Wiener 

filter may be adequately approximated by an appropriately tuned adaptive algorithm, and thus is 

useful as a benchmark, representing an upper performance bound on such an adaptive strategy. 

The matched filter represents the corresponding lower bound, since it would clearly be inefficient 

to employ a system with poorer performance than this. 

4.2.1 Orthogonal convolutional coding 

The orthogonal (or Hadamard [53]) convolutional encoder [94] represents an alternative to the 

standard convolutional encoding process as detailed in section 2.3.3.1. This encoder incorporates 

a second set of shift registers connected in parallel with the conventional unit data bit delay 

blocks, again represented by z. An example of this arrangement is shown in Figure 4.2, bit 

which demonstrates the case for a rate 1/8 constraint length 3 system. The switches at the 

output of this secondary set are toggled at rates 1, 2, 4, (etc for higher K) times the chip 

rate so that for each data bit input to the top register-set, a unique 21' -digit Walsh sequence, 

q = (q ,q2, 
, q2j)T [53] 

is output, as demonstrated for the K = 3 system in Table 4.1. 

Multiple access is achieved by assigning each user a unique 1-1 mapping between the two sets 

of shift registers [96], so that each input is connected to one and only one output. The particular 

Walsh sequence output for a given input data bit thus depends on three quantities; the incoming 

data bit itself, the present state of the upper register system, and the arrangement of connections 

between the two set of registers. Note that this now reduces the effective number of degrees of 

freedom of the code, since the output code rate is now determined completely by the constraint 

It must be acknowledged that this technique is not strictly spread spectrum communication as defined previously, 
since that requires that the spreading sequences be independent of the data [25] 
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Input sequence 
(sI(n)) 

Connector assignment rule 

------------------- 

2 
	

2 

Output 

Figure 4.2: Rate 1/8 orthogonal convolutional encoder 

Time step j 81 82 83  Output qj 
1 1 1 1 
2 2 1 1 03 

3 1 21 v3 

4 221 v3  
5 1 1 2 '02 

6 2 1 2 
7 1 2 2 V I  

8 2 2 2 

Table 4.1: States of the switches Siand corresponding output code chips qj  from the orthogonal 
convolutional encoder for the range of time steps I <j < 2K 
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length to be 2", rather than in the conventional convolutional case, where these two parameters 

are independent. 

This method of assigning connections means that the system is theoretically capable of 

supporting K! users, although practically, the number of users which can be supported is 

more limited, as will be discussed later. 

It must also be acknowledged that in Gaussian noise, simple direct sequence spreading using 

Walsh sequences offers 2' users the potential to communicate with no multiple access 

interference, as described in section 2.3.1.4. The use of Walsh sequences in this context may 

not provide such immunity since it is possible for the same Walsh sequence to be generated by 

different users, thus causing a clash of output encoded sequences. If the processing gain is not 

to be increased further, the method now discussed may be used to counter this problem. 

4.2.2 Orthogonal coding with randomiser 

The use of additional randomising sequences has been proposed by Ormondroyd and Maxey [96] 

to improve the spectral characteristics of the Walsh codes, thus increasing the ability of this 

scheme to separate users. No additional spreading of the transmitted signal spectrum is produced 

by this stage, in which competing users are assigned different random sequences, and the 

output from each orthogonal convolutional encoder is simply multiplied chip-by-chip by the 

appropriate random sequence. These random sequences are selected to be the same as those used 

in the system employing only direct-sequence spreading, so that no artificial bias is introduced 

due to particular cross-correlation effects. This randomising process is similar to that which 

occurs in the IS-95 system [15], in which the derived code sequence is combined with a mask, 

consisting of a portion of a long user-specific rn-sequence, to form the transmitted signal. 

4.3 System 1 results 

The ratio of the number of errors to the total number of transmitted data values (typically one 

million trials are performed) forms the main output statistic (Pe), which may be calculated as a 

function either of number of users for a fixed background noise level, as in the first cases, or of 

background noise level for a fixed number of users, considered in the subsequent sections. 
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4.3.1 Performance for fixed Eb/N()  

The performance as the number of users is varied is considered for two constraint-length 

systems, K = 3 and K = 6, for background noise values of Eb/NO 5 dB and 7 dB. This is 

to simulate systems with a variety of processing gains, since the K = 3 orthogonal coder will 

have a linear processing gain gp equal to 8, a value typical for many hybrid systems 2,  while 

the K = 6 orthogonal systems will have gp = 64 which is closer to the processing gain of the 

IS-95 standard. 

The results for the orthogonal coder for K 	3 are naturally only simulated for up to 6 active 

users, while for K = 6, theoretically 720 connections are possible. In practice, only a subset of 

up to 64 connections are in use at any one time, although the particular configurations used are 

periodically re-selected at random from the complete set of possible combinations. 

4.3.1.1 Constraint length 3 systems 

Figure 4.3 shows the performance of the various techniques for Eb/NO = 5 dB. As may be 

seen, none of the proposed schemes approach the performance of the Wiener filter for 2 or 

more users. When only a single user is present, all the coded schemes have lower average error 

probability than a direct spreading only architecture, as expected, although orthogonal coding 

is worse than devoting all resources to FEC coding. 

The performance of the convolutional-only system rapidly deteriorates with increasing users. 

This result is probably due to the inadequacies of the short constraint length connections used, 

since the error-correcting capabilities of the codes are being compromised by the interference 

from the additional users. Thus, this technique is impractical at providing a reliable multiple 

access method. The orthogonal-only coded system performs slightly better as the loading 

is increased, although beyond 2 users, this approach is worse than conventional matched 

filtering of a direct spreading only system. The additional randomising stage produces a further 

improvement in performance, although still not as good as the direct spreading system with the 

Wiener receiver filter. 

Figure 4.4 shows the performance of the systems for Eb/NO = 7 dB. 

2 e.g. such as proposals for extending the GSM system using code and time division multiple access (CTDMA) [1 81 
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Performance of systems with constraint length 3 and processing gain 8 

2 	 3 	 4 	 5 	 6 
Number of active users 

Figure 4.3: Probability of error vs number of active users for systems with K = 3 and gp = 8 
with Eb/NO = 5 dB: (a) convolutional only; (b) orthogonal only; (c) orthogonal 
with randomiser (d) matched filter; (e) Wiener filter 

Performance of systems with constraint length 3 and processing gain 8 

	

0.0001 I;i 1 	 1 	 1 I 

1 	 2 	 3 	 4 	 5 	 6 
Number of active users 

Figure 4.4: Probability of error vs number of active users for systems with K = 3 and gp = 8 
with Eb/NO = 7 dB: (a) convolutional only; (b) orthogonal only; (c) orthogonal 
with randomiser (d) matched filter; (e) Wiener filter 
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Again, the additional randorniser improves the performance of the orthogonal convolutional 

coder, but still not to as good as that of the Wiener filter for more than one user. The convolutional 

only system again has very poor peformance, and so will not be considered for the longer 

constraint length investigation. 

4.3.1.2 Constraint length 6 systems 

For more practical systems with K = 6 and a processing gain of 64, only four systems will 

be considered; the orthogonal coders with and without randomisation, together with uncoded 

systems with a matched filter and a Wiener filter receiver structure. 

The results for Eb/NO = 5 dB are shown in Figure 4.5 from which it may be seen that 

although the orthogonal convolutional coder with the additional randomiser stage has the best 

performance for less than around 15 users, as the number of users is increased, this system's 

performance degrades rapidly, and the uncoded system with the Wiener filter receiver offers 

the better performance. Indeed, for more than about 30 users, the orthogonal coder with the 

randomiser is actually poorer than simply using a matched filter receiver on an uncoded system, 

even with random spreading sequences. Without the randomiser, the ill-effects of the clashes of 

outputs, in which the same Walsh code is produced for different input conditions, may be seen 

in the poor performance of the orthogonal only system. 

Figure 4.6 shows the corresponding performance of the systems if the signal to Gaussian noise 

ratio is increased to 7 dB. 

The orthogonal coder with the randomiser is again clearly superior for very low numbers of 

users, however, for 15 users, which was the previous important loading, the Wiener filter now 

has the best performance. Thus, reducing the background noise for 15 users reverses the relative 

performance of the systems using the Wiener filter with an uncoded signal and that using the 

orthogonal convolutional encoder with the additional randomiser. This result may be explained 

by conjecturing that the Wiener filter is better able to make use of the reduction in background 

noise, and thus has increased performance. As in the previous case, there occurs another critical 

loading point, this time around 32 users, for which the orthogonal coder with randomiser is 

poorer than simply using a matched filter receiver on an uncoded system with random spreading 

sequences. The orthogonal only encoder again performs poorly for all loading values, as in the 

lower constraint length case. 
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Performance of systems with constraint length 6 and processing gain 64 
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Figure 4.5: Probability of error vs number of active users for systems with K = 6 and gp = 64 
with Lb/NO = 5 dB: (a) orthogonal only; (b) orthogonal with randomiser; (c) 
matched filter; (d) Wiener filter 
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Figure 4.6: Probability of error vs number of active users for systems with K = 6 and gp = 64 
with Lb/NO = 7 dB: (a) orthogonal only; (b) orthogonal with randomiser; (c) 
matched filter; (d) Wiener filter 
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4.3.2 Performance for fixed number of active users 

Since interference arises from both multiple access demands and background noise, it is 

important to also consider the relative performance of the schemes as the background noise 

is varied, for fixed number of active users. For this investigation, attention is focussed on the 

shorter processing gain (gp = 8) systems. 

4.3.2.1 Performance for 2 users 

A more detailed analysis of the K = 3 system for the 2-user case is shown in Figure 4.7 which 

shows the performance over a range of noise values. 

Performance of various coding strategies - 2 users 
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Figure 4.7: Probability of error vs E )/NO  for K = 3 systems with 2 users: (a) convolutional 
only; (b) orthogonal only; (c) orthogonal with randomiser; (d) matched filter; (e) 
Wiener filter 

It may be seen that the incorporation of the randomiser improves the performance of the 

orthogonal system to a level better than straightforward matched filtering, and approaching 

that of the MMSE receiver. The use of orthogonal only, or conventional convolutional coding 

schemes leads to much poorer results. This is probably due to clashes where the same output 

sequence is generated simultaneously by different users, causing the Viterbi algorithm to lock 

on to the wrong path. This situation cannot be resolved by any receiving methodology, but it 

may be expected that fewer such instances would occur for longer constraint-length systems. 
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4.3.2.2 Performance for 3 users 

The 3-user performance curves in Gaussian noise are shown in Figure 4.8. 

Performance of various coding strategies - 3 users 
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Figure 4.8: Probability of error vs Eb/NO for K = 3 systems with 3 users: (a) convolutional 
only; (b) orthogonal only; (c) orthogonal with randomiser; (d) matched filter; (e) 
Wiener filter 

While, as expected, the performance of both the convolutional only and pure orthogonal systems 

is increasingly unreliable, the perfonnance of the orthogonal convolutional coder with the 

additional randomising stage may approach being acceptable for sufficient signal to Gaussian 

noise ratio values. However, this system's performance is only marginally better than that of 

the unencoded system with a conventional matched filter and it is apparent that direct sequence 

spreading only, combined with the Wiener receiver filter remains the best approach over the 

complete range of noise levels. 

4.3.3 Performance in a stationary multipath channel 

The performance of the orthogonal systems with and without the additional randomisation 

stage is also considered in a stationary multipath channel, defined by the impulse response 

H(z) = 1.0 + 0.5z—  1 , which is suitably normalised to avoid affecting the overall signal to 

Gaussian noise ratio. In this implementation, perfect channel knowledge is assumed, and the 

received signal y  is first passed through the inverse (IIR) channel filter to give the compensated 
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received signal, denoted y',  and given by 

	

r. 	/ 	\ 

	

Y/ [zj 	k—) (y[z] - h1  y'[i - 1]) 	 (4.1) 
h0  

It is this compensated signal, y', which is then analysed by the Viterbi decoder in the receiver. 

The performance results of the orthogonal systems with and without randomisation for both 

AWGN and in the multipath channel are shown in Figure 4.9 for EbINO  = 5 dB and in Figure 

4.10 for EblNo =7 dB. 

Performance of systems with processing gain 8 in a stationary channel 
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Figure 4.9: Probability of error vs number of users in a stationary channel for K = 3 systems 

with Eb/NO = 5dB: (a) orthogonal only in AWGN; (b) orthogonal with randomiser 
in AWGN; (c) orthogonal only in multipath channel; (d) orthogonal with randomiser 
in multipath channel; (e) Wiener in AWGN; (1) Wiener in multipath channel 

To enable a fair comparison, the Wiener receiver has been extended to capture all the energy 

emanating from one data bit. It may be seen that the effect of the channel is to generally worsen 

the performance of all the systems, with the orthogonal systems in particular suffering markedly 

reduced performance. This is probably due to loss of orthogonality of the Walsh sequences after 

passing through the channel. 

Thus, even using perfect channel knowledge and a possibly unstable pre-processing hR filter 

stage, the orthogonal coder with additional randomisation does not appear to offer better 

performance than a system with equal processing gain and the Wiener receiver filter, which 

could be approximated by an adaptive algorithm. 
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Performance of systems with processing gain 8 in a stationary channel 
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Figure 4.10: Probability of error vs number of users in a stationary channel for K = 3 

systems with .Eb/NO = 7 dB: (a) orthogonal only in AWGN; (b) orthogonal with 
randomiser in AWGN; (c) orthogonal only in multipath channel; (d) orthogonal 
with randomiser in multipath channel; (e) Wiener in AWGN; (f) Wiener in 
multipath channel 

4.4 System 1 discussion 

It has been demonstrated that attempting to construct a multiple access scheme via convolutional 

coding alone is an unsuccessful strategy, due to the sensitivity of the decoding schemes to what 

amounts to significant MAT. The use of the orthogonal convolutional encoder, together with 

additional randomising sequences to improve the spectral characteristics of the output Walsh 

codes, rather than produce any further spreading of the signal spectrum, has been shown 

to produce performance characteristics comparable to those of conventional convolutional 

coding for single user scenarios, while permitting reasonable performance for low numbers 

of competing users. However, the performance as the number of users increases is reduced 

compared to that of the Wiener filter, principally because of the effect discussed previously; 

namely that the same Walsh sequence may be produced by more than one user, and the likelihood 

of such clashes increases with the number of active users. 

Thus, it may be concluded that it is inefficient to attempt a multiple access technique based 

only on a convolutional coding strategy, so that incorporation of forward error correction into 

the DS-CDMA environment may be better achieved by a combination of coding and spreading. 

In addition, the storage requirements of the orthogonal convolutional encoder are much greater 

0.1 

0.01 

0.001 
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than conventional high rate convolutional coding, combined with direct sequence spreading. 

This technique is designated system 2, and is now discussed. 

4.5 System 2 description 

In the second system considered, the more conventional technique of combining convolutional 

coding with direct sequence spreading is investigated. The allocation of resources to the 

respective parts of the transmitter (whether FEC coding or direct sequence spreading) is of 

primary concern in practical cellular communications applications and so it is useful to consider 

the performance of various systems comprising different proportions of convolutional encoding 

and direct sequence spreading, whilst maintaining a given overall bandwidth expansion. 

Boudreau [97] has calculated the theoretical performance (in terms of Chernoff upper bounds) 

of systems employing convolutional coding and trellis coding combined with spreading. The 

performance of actual systems, however, may be significantly superior (as much as 1.5 dB in 

some cases); this improvement being a non-linear function of Et/ No. The limited amount of 

simulations in [97] means that it is instructive to consider the simulated performance of such 

systems. 

4.5.1 Allocation of resources 

For the investigations considered here, the values for the code rate R and corresponding direct 

sequence spreading sequence length M for the various systems are shown in Table 4.2. (The 

symbols correspond to those which will be used in the presentation of the results.) Also shown 

is the resulting linear processing gain, 9Th  for each system and the octal format of the tap 

connections used for the convolutional codes. 

It may be seen that the rates of the codes and the lengths of the corresponding spreading 

sequences have been selected to maintain an overall linear processing gain gp of around 500 

(equivalent to a Gp of around 27 dB). Also, the tap connections in the coder are the same for 

each user, so that discrimination is solely provided by the direct sequence spreading portion. 

An obvious development would be to allocate different connections for each user, combined 

with different spreading sequences, although this would require a dedicated Viterbi decoder for 
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K R 8 16  

M_-255 	+ M127 	0 M63 	x M=31 
gp = 510 gp = 508 gp = 504 gp = 496 

(5,7) (5,7,7,7) (7,7,7,5,5,5,7,7) (7,7,7,5,5,5,7,7, 
7,7,7,7,5,5,7,7) 

4 (17,15) (13,15,15,17) (17,17,13,13,13,15,15,17) (17,17,13,13,13,15, 15,17, 
17,17,13,13,13,1 5,15,17) 

5 (23,35) (25,27,33,37) (37,33,25,25,35,33,27,37) (37,33,25,25,35,33,2 7,37, 
37,33,25,25,35,3 3,27,37) 

6 (53,75) (53,67,71,75) (53,67,71,75,53,67,71,75) (53,67,71,75,53,67, 71,75, 
53,67,71,75,53,6 7,71,75) 

Table 4.2: Convolutional codes used in the various simulations for system 2 

each user. The method implemented here means that the same decoder unit could be used for 

any user, given their spreading sequence, which may be easier to implement practically. 

The choice of tap connections for rates 1/2 (M = 255) and 1/8 (M = 63) mirror those 

in [97] for constraint lengths 3,4 and 5 whilst those for B = 1/4 are motivated by the results 

of Larsen [64]. While it is acknowledged that the repetition of the rate 1/8 code to form 

the rate 1/16 code may be sub-optimal, especially for the larger constraint-length systems, 

this configuration is liable to have similar properties to any optimal arrangement, and is thus 

employed here. 

The complexity and storage requirements for the various systems are shown in Table 4.3, 

assuming L 5K, 

K I Delay (bits) I Add compare & select (ACS) I Path storage 

3 15 4 60 
4 20 8 160 
5 25 16 400 
6 30 32 960 

Table 4.3: Complexity and storage requirements for the various simulations for system 2 

The number of add, compare and select (ACS) operations is given by 2(I_1),  while the path 

storage calculations require L x 	memory locations [31]. These estimates exclude the 

3Strictly, Gold codes of length 255 do not exist [481.  however Gold-like' sequences may he constructed with 
the required cross-correlation of - 1 at the synchronous point. Those used here are obtained from the rn-sequences 
[8,2,3,4], and [8,3,5,61. 

79 



Chapter 4: Convolutional coding in a DS-CDMA system 

requirements for the branch metric calculations, described in section 2.3.3.4, and which are in 

general a non-trivial function of the constraint length. 

4.6 System 2 results 

As discussed previously, the interference in a DS-CDMA system in Gaussian noise has two 

main sources, the background noise level and the multiple access interference from other users. 

Therefore, the performance of the systems must be considered for various values of both these 

quantities. In the first four sections, both Gold and random sequences are used as the spreading 

sequences and there are 20 active users present, while in the next two, random sequences have 

been chosen to spread the convolutionally-encoded data, and the values of Eb/No are held fixed 

at 2.0 dB and 4.0 dB respectively. The choice of random spreading sequences is motivated by 

the fact that in a multipath environment such as those defined in the COST207 study [35], the 

presence of intersymbol interference will corrupt the near-orthogonal qualities of Gold codes. 

Note that in this case, the percentage loading is calculated from the number of active users and 

the overall linear processing gain (gp), taking the code rate into account, rather than simply the 

length of the appropriate spreading sequence. 

4.6.1 Performance for various constraint lengths 

In the figures, the performance of each system is compared with the theoretical binary phase 

shift keying (BPSK) bound from Equation B. 13 and the performance of an uncoded DS-CDMA 

system with 511-chip spreading sequences. 

4.6.1.1 Constraint length 3 

The first case considered here is for constraint length 3 and the results using Gold spreading 

sequences are shown in Figure 4.11. 

It is apparent that in this case, the rate 1/2 system performs better than the other configurations, 

with the rate 1/8 system also performing well. The relatively poor performance of the rate 

1/ 16 system is probably due to the reduced capacity of the Gold sequences (20 users with 31- 
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Performance of constraint-length 3 systems, Gold spreading sequences, 20 users 
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Figure 4.11: Performance of convolutionally coded DS-CDMA systems with constraint length 
3 for 20 users employing Gold spreading sequences: (a) theoretical BPSK; (b) 
uncoded,M = 511;(c) rate l/2,M = 255;(d) rate l/4,M = 127; (e) rate l/8, 
M = 63; (f) rate I/ 16, M = 31 

chip spreading means that the multiple access interference is more significant than the longer 

spreading systems), combined with the possible sub-optimality of the convolutional codes. The 

reason for the anomalously poor performance of the rate 1/4 system is less clear, although this 

may simply be an unfortunate combination of rate and constraint length. Further investigations 

may provide some insight about this behaviour. 

Notwithstanding these comments, even the poorest performing convolutional code is still 

significantly better than the 20-user uncoded DS-CDMA system for values of Eb/NO greater 

than about I dB. 

For random spreading sequences, shown in Figure 4.12, the relative performance of the 

convolutionally encoded systems is broadly similar, although the absolute error probabilities 

are not. 

The major differences are that, because of the higher cross-correlations due to random spreading 

sequences, the performance of all the systems are generally worse, with the rate 1/16 and 1/8 

systems having inferior performance to uncoded CDMA for most of the values of Eb/IYO 

considered. As in the previous case, the rate 1/2 system performs best, while the rate 1/4 is the 

second best, in contrast to the results obtained using Gold sequences. 
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Performance of constraint-length 3 systems, random spreading sequences, 20 users. 
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Figure 4.12: Performance of convolutionally coded DS-CDMA systems with constraint length 
3 for 20 users employing random spreading sequences: (a) theoretical BPSK; (b) 
uncoded, M = 511; (c) rate 1/2, M = 255; (d) rate 1/4, M = 127; (e) rate 1/8, 
M = 63; (f) rate 1/16,M = 31 

4.6.1.2 Constraint length 4 

The results for constraint length 4 systems are presented in Figure 4.13, from which it may be 

seen that the rate 1/4 and 1/8 systems, which are now very similar, are slightly better than the 

rate 1/2 system, while the rate 1/16  system is still suffering from the increased MAT of the 

31-chip Gold sequences in a similar way to the K = 3 case. 

The improved performance of the rate 1/4 system is probably due to the increased error 

correcting power of this combination. Where a greater variety of tap connections is available 

(i.e. longer constraint length), it is prudent to make as full use of them as possible, thus 

increasing the power of the code and permitting more resources (bandwidth) to be invested in 

the direct spreading part, to allow greater capacity. 

Thus, while the choice of rate and constraint length are notionally independent, the use of 

appropriate rate codes, which make use of the full range of available connections for a given 

constraint length can lead to marked improvements in performance. 

The results using random spreading sequences are shown in Figure 4.14. Again, the rate 1/ 16 

system is worse than the uncoded one, while now the rate 1/2 and 1/4 systems have comparable 
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Performance of constraint-length 4 systems, Gold spreading sequences, 20 users 
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Figure 4.13: Performance of convolutionally coded DS-CDMA systems with constraint length 
4 for 20 users employing Gold spreading sequences: (a) theoretical BPSK; (b) 
uncoded,M =511;(c) rate l/2,M = 255;(d)rate 1/4, A4 = 127; (e)rate 1/8, 
M = 63; (Orate  1/16,M = 31 

performance. 

4.6.1.3 Constraint length 5 

Figure 4.15 shows the results obtained using systems with a constraint length of 5. 

This appears to confirm the trend noted previously, namely that the systems with rates 1/2 

and 1/16  are inferior to those with convolutional code rates of 1/4 and 1/8, which make 

more efficient use of the increased power, by virtue of their larger constraint lengths, of the 

convolutional codes. A point of interest is that now the performance of the rate I / 16 system is 

better than the rate 1/2 system. This is again due to the greater number of available connections, 

which is beginning to compensate for the relatively larger MAT of the 31-chip spreading module, 

in contrast with the first two cases with their shorter constraint lengths. 

The performance of the rate 1/2 system at E/iY0 values lower than around I dB is also worthy 

of note, since it is now inferior to direct sequence spreading alone. This is probably also due 

to the increased power of the convolutional codes, since more errors are introduced from the 

Viterbi algorithm losing track of the correct path through the trellis. Thus it is not always 
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Performance of constraint-length 4 systems, random spreading sequences, 20 users. 
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Figure 4.14: Performance of convolutionally coded DS-CDMA systems with constraint length 
4 for 20 users employing random spreading sequences: (a) theoretical BPSK; (b) 
uncoded,M=511;(c) rate l/2,M = 255; (d) rate 1/4, M = 127;(e) rate l/8, 
lvi = 63; (f)rate 1/16,M = 31 

Performance of constraint-length 5 systems. Gold spreading sequences, 20 users. 
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Figure 4.15: Performance of convolutionally coded DS-CDMA systems with constraint length 
5 for 20 users employing Gold spreading sequences: (a) theoretical BPSK; (b) 
uncoded, M = 511; (c) rate 1/2, Al = 255; (d) rate 1/4, lvi = 127; (e) rate 1/8, 
Al = 63; (1) rate 1/16,M = 31 
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beneficial simply to increase the constraint length independently, since more errors may be 

introduced in high noise environments. This effect will be examined in more detail later, in 

which the additional noise will be due to increasing numbers of users. 

Figure 4.16 shows the performance of the corresponding constraint length 5 systems, using 

random spreading sequences. 

Performance of constraint-length 5 systems. random spreading sequences, 20 users. 
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Figure 4.16: Performance of convolutionally coded DS-CDMA systems with constraint length 
5 for 20 users employing random spreading sequences: (a) theoretical BPSK; (b) 
uncoded, M = 511; (c) rate 1/2, M = 255; (d) rate 1/4, M = 127; (e) rate 1/8, 
M=63;(I rate l/16,M=31 

This also confirms the trend outlined, with the rate 1/4 system having the best performance. 

The rate 1/2 and 1/8 systems now have similar performance, while the rate 1/16 is now 

slightly better. The performance of the rate 1/2 system for low E1,/No minors that using 

Gold sequences, which provides further evidence for the phenomenon of the Viterbi algorithm 

being unable to locate the correct path through the trellis under high noise conditions, and thus 

producing more errors than an uncoded system. 

4.6.1.4 Constraint length 6 

For constraint length 6, shown in Figure 4.17, the trend outlined previously is reinforced, with 

the rate 1/8 and rate 1/4 systems better than the rate 1/16 and 1/2 systems, respectively. 
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Figure 4.17: Performance of convolutionally coded DS-CDMA systems with constraint length 
6 for 20 users employing Gold spreading sequences: (a) theoretical BPSK; (b) 
uncoded,M = 511;(c) rate l/2,M = 255;(d) rate l/4,M= 127; (e) rate l/8, 
M = 63; (F) rate 1/16,M = 31 

The rate 1/ 16 system has better performance than in the previous Gold sequence systems since 

again, more efficient use is made of the available tap connections. As with constraint length 5, 

the rate 1/2 system performs significantly poorer than the conventional case for Eb/NO values 

below around 1 dB. This is again due to the Viterbi algorithm producing a higher number of 

errors when an incorrect path through the trellis is selected. Thus, care needs to be exercised 

when employing a long constraint length, high rate convolutional code under conditions of high 

noise. 

The performance of the systems when using random spreading sequences is shown in Figure 

4.18. Again the rate 1/4 and 1/8 systems have the best performance, with that of the rate 

1/ 16 system only slightly poorer. The increased constraint length of the rate 1/2 system again 

causes problems for Eb/NO values below around I dB. Thus simply increasing the constraint 

length does not always increase the power of a convolutional code uniformly, and in high noise 

situations, may lower the overall system performance. 
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Figure 4.18: Performance of convolutionally coded DS-CDMA systems with constraint length 
6 for 20 users employing random spreading sequences: (a) theoretical BPSK; (b) 
uncoded, M = 511; (c) rate 1/2, M = 255; (d) rate 1/4, M = 127; (e) rate 1/8, 
M —63; (F) rate 1/16,M = 31 

4.6.2 Performance for varying capacity 

The simulations in this section are only performed with random spreading sequences, as a first 

approximation at modelling effects due to an unknown dispersive channel. The performance of 

these systems with varying numbers of active users may be judged from figure 4.19, for which 

the background noise level Lb/NO is set at 2.0 dB. 

For very low loading (around 2 %), the systems behave much as discussed previously, with the 

K = 3, rate 1/16 system performing even worse than uncoded DS-CDMA, and the K = 3 

rate 1/4 system only marginally better. In general, the K = 6 systems have better performance, 

due to the increased power of the FEC codes, however it is interesting that even for very low 

numbers of users, the rate 1/2 K = 3 and K = 6 systems are very similar. 

As the loading is increased, various effects may be seen. In particular, the only systems which 

continue to outperform uncoded DS-CDMA are the K = 6 rate 1/4 and K = 3 rate 1/2 

configurations. These systems represent the most efficient use of the combination of rate, 

constraint length (and hence power) and spreading capacity, and thus have superior performance. 

Significantly, the K = 6 rate 1/8 combination, which appeared to be the best for the previous 
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Figure 4.19: Performance of con vol uti on allycodedDS-CDMA systems with constraint lengths 
3 and 6 for Eb/No = 2.0 dB, with random spreading sequences; (a) uncoded, 
M = 511; (b) K = 3, rate 1/ 16; (c) K = 3, rate 1/8; 	K = 3, rate 1/4; (e) 
K 	3, rate 1/2; ( K = 6, rate 1/16; (g) K = 6, rate 1/8; (h) K = 6, rate 1/4; 
(i) K 6, rate 1/2 

cases with 20 users using either Gold or random spreading sequences, does not have such 

good performance (at least when using random spreading sequences) as the number of users 

is increased. In addition, the K = 6 rate 1/2 combination has poorer performance than the 

equivalent K = 3 system. Although this may at first appear counter-intuitive, the reason is due 

to the increased overall noise causing the Viterbi algorithm to lock on to the wrong path through 

the trellis, and hence produce more errors, as discussed previously. 

The equivalent results for Eb/NO = 4.0 dB are shown in Figure 4.20. 

This confirms some of the results in the previous case; specifically, that although the K = 6 

rate 1/2 system is better for low loading, as the loading is increased its performance becomes 

worse than the same rate K = 3 system, and that the beneficial effects of most convolutional 

coding systems are lost as the loading increases. As in the previous case, the optimal system 

as the number of users is increased is that using K = 6 rate 1/4 convolutional codes, with 

127-chip spreading sequences. 
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Figure 4.20: Performance ofconvolutionally coded DS-CDMA systems with cons train tlengths 
3 and 6 for Eb/NO  4.0 dB, with random spreading sequences; (a) uncoded, 
M = 511; (b) K = 3, rate 1/16;  (c) K = 3, rate 1/8;  (d) K = 3, rate 1/4; (e) 
It' 	3, rate 1/2; (f) K = 6, rate 1/16; (g) K = 6, rate 1/8; (h) K = 6, rate 1/4; 
(1) K = 6, rate 1/2 

4.7 	System 2 discussion 

This section has compared the simulated performance of a number of strategies utilising non-

linear convolutional codes combined with direct sequence spreading for use in a processing-

gain limited DS-CDMA cellular communication system. Convolutional codes with constraint 

lengths up to K = 6 have been considered, with rates of 1/2, 1/4, 1/8 and 1/16, together with 

appropriate length spreading sequences. 

With an overall processing gain of approximately 27 dB and 20 active users employing Gold 

spreading sequences, the optimal strategy seems to be the combination of a constraint length 6, 

rate 1/8 convolutional code and 63-chip spreading sequences, although increasing the constraint 

length beyond the values considered here may cause a different combination of spreading 

sequence length and coding rate to be optimal. Significantly, this result is again obtained if 

random sequences are used to spread the convolutional encoded sequence. 

Increasing the number of users and employing random spreading sequences means that this 

arrangement is no longer optimal, and that convolutional codes of the same constraint length 

but rate 1/4 should be used instead. The ill-effects of simply increasing the constraint length 
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without a corresponding adjustment of the convolutional code rate are also demonstrated. These 

observations serve to exhibit the fine balance that exists between the power of the convolutional 

code (obtained from a combination of both its rate and constraint length), the capacity of the 

spreading sequences and the noise level, whether from the background noise, or from MAT 

produced by other subscribers on the system. 

4.8 Summary 

This Chapter has discussed the use of convolutional coding as applied to the multi-user DS-

CDMA environment. The basic principles of implementing forward error correction using 

convolutional codes in a multiple access scenario were first described, following which two 

systems were considered. The first system described simply replaces the direct sequence 

spreading by the encoded sequence produced by the FEC unit, while the second combines 

coding and spreading to produce the overall processing gain. 

In the context of a limited processing-gain system, two encoding structures have also been 

discussed, the conventional convolutional encoder and the orthogonal convolutional coder. The 

orthogonal convolutional coder was shown to have poor performance, unless augmented with 

an additional randomising stage to avoid the number of occasions on which the output Walsh 

sequence is the same for different users with different input conditions. It was also shown that 

for greater than very light loading, the performance of the orthogonal convolutional coder with 

the randomiser is not as good as that of an uncoded system with the same bandwidth expansion 

and using random spreading sequences, provided the receiver is able to calculate the Wiener 

filter. This was shown in the previous chapter to be possible by implementing an adaptive 

algorithm. In addition, the training overhead imposed by such a technique is no worse than the 

additional bandwidth requirements for an FEC encoder. A possible application of such short 

processing-gain systems could be in the extension of existing technology, as used for example 

in the GSM system, by incorporating a short spreading sequence DS-CDMA system into each 

time frame of the GSM system. This code and time division multiple access system has been 

proposed [98] as a possible contender for the future European UNITS standard. 

For systems with a greater available processing gain, the efficient utilisation of bandwidth 

between convolutional coding and direct sequence spreading has been discussed. The requirement 

for a balance of resources has been demonstrated, as has the reduction in performance if the 
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constraint length is simply increased without a corresponding adjustment in the convolutional 

coding rate. It has also been demonstrated that the use of FEC in a multiple access environment, 

while clearly advantageous if the signal is sufficiently clean, may prove deliterious if the 

interference (whether arising from background noise or MA!) is more significant. 

This chapter has also stressed the differences between single user communications, where 

the interference is generally unstructured Gaussian noise and multiple access systems where, 

unless the systems use purely random (and very long) spreading sequences, the interference is 

structured. This structured interference affects the performance of the Viterbi decoder, possibly 

causing it to perform worse than if no FEC coding were employed. The following chapter will 

consider methods of cancellation of this structured interference before attempting to recover the 

desired signal. As a future development of the work presented here, other FEC coding schemes, 

such as turbo-coding or super-orthogonal coding could be investigated, but it may be anticipated 

that the above conclusions will be broadly upheld, namely that FEC encoding is of benefit when 

the signal can be processed to reduce the interference, but will produce more errors than an 

uncoded strategy otherwise. The increased processing delay associated with such increased 

complexity FEC coding schemes may hinder the application of these techniques for a rapidly 

varying channel. In addition, the simulations have been carried out with random spreading 

sequences, as a first attempt at modelling a dispersive channel. A further future development 

would be to investigate the effects of a more realistic channel model, as considered for adaptive 

algorithms in the previous chapter. 



Chapter 5 

Combined Viterbi decoding and 
interference cancellation in a 

DS-CDMA System 

In this chapter, the application of multiple access interference (MAT) cancellation methods to 

the downlink of a DS-CDMA system will be investigated. Specifically, the focus will be on 

combining parallel MAT cancellation, introduced in section 2.3.4, with forward error correction 

(FEC) using convolutional coding, as discussed in the previous chapter. The motivation for an 

approach of this nature will first be outlined in Section 5.1, which compares the theoretical 

and simulated performance of a single stage cancellation receiver applied to a DS-CDMA 

system without FEC coding, before briefly describing the extension of this principle to FEC 

encoded systems. The various proposed receiver architectures to be considered in more detail 

are described in Section 5.2. A theoretical analysis of these receiver structures is then developed 

in Section 5.3, followed by the results of some Monte Carlo simulations in Section 5.4. Possible 

improvements to the receivers considered here are then proposed in Section 5.5, with a summary 

of the main results of the chapter in Section 5.6. 

5.1 Motivation 

The important point about the interference in a DS-CDMA system is that, for non-orthogonal 

spreading sequences in Gaussian noise, it may be considered as consisting of two parts'. 

For orthogonal spreading sequences there is no MAI on the transmitted signal, and hence only non-deterministic 
background noise is present. 
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The first is a non-deterministic portion, arising from the background noise, and the second 

is a deterministic portion, produced by multiple access interference (MAI) resulting from the 

coherent addition of the other users' spread signals at the transmitter. The reason for using 

non-orthogonal spreading sequences is that under practical conditions, the transmitted signal 

will also be subject to the effects of a multipath channel, so that the properties of any special 

spreading sequence set will likely be destroyed. 

The most efficient receivers, therefore, will use this knowledge by estimating and cancelling 

the interfering users' contributions from a suitably delayed version of the received signal, with 

the intention of increasing the probability of correctly de-correlating this new signal, and thus 

inferring the desired user's data. This principle, which is here implemented as parallel MAI 

cancellation, is demonstrated in Figure 5.1 for a system with U active users, in which, as usual, 

the desired user is number 1. 

Input 
Processing delay 

----------------------------------------------------- 

Despread 	 [Data estimate 	{Re_spreadF 

UserZ- - - - - - - - - - - - - - - - - - - - - - 

----------------------------------------------------- 

e_sPread] 	[Data estimate 	[ResPread 

LJset ---------------------- 

-----------------------------------------------------

L De-spread  [Data estimate ]-  

______________ 

Output 
Dc-spread 	Data estimate 

Jsr: 1 -------------- 

Figure 5.1: Parallel mulitple access interference cancellation principle in a DS-CDMA system 
with U active users 

It may be seen that this structure, when used on the uplink, relies on accurate timing and power 

information to be available at the base station, since the delay and strength of each user's signal 

must be specified to correctly align and scale each signal to be cancelled. If this arrangement 

is to be incorporated into the receiver on the downlink, for which all the users' signals are 

synchronised, only the initial signal acquisition information is required. With U active users, 
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and a linear processing gain of M, this structure requires (2U - 1)M multiplications, and the 

same number of additions and subtractions, which is the main disadvantage to this technique. 

Of lesser importance is that all of the interfering users' spreading sequences must be available to 

the mobile. In either case, the processing delay imposed must not be too exhorbitant, since there 

will likely be other delays in the system as a whole (e.g. that imposed by any FEC decoding or 

interleaving of the data). 

Before considering the extension of this principle to signals with forward error correction, it is 

useful to compare the theoretical and simulated performance of the single stage MAI canceller 

receiver when used in a DS-CDMA system which does not employ FEC coding. 

5.1.1 Theoretical analysis of single stage matched filter canceller 

It may be shown [37] that the probability of a bit error for a single-stage canceller employing 

matched filters (PeMFC ) on a DS-CDMA system with no FEC coding on the data and random 

spreading sequences applied to independent data may be approximated by 

PMFC 	 gp (Ugp) Q (a2+4W_l)PMF(U,qP)) 	
(5.1) 

where, as previously, U is the number of users, gp is the linear processing gain and pF  (U, ) 

is the error performance of a standard matched filter receiver with the relevant parameters as 

specified in equation 2.10. Again, a2  is the variance of the Gaussian noise, and Q(•) is the 

standard Gaussian upper cumulative distribution function defined in equation 2.11. The factor 

4 arises because if an error is made, the power of the resulting (incorrect) intermediate spread 

signal for that user is quadrupled, since the amplitude is doubled for BPSK modulation. 

5.1.2 Simulated performance of single stage matched filter canceller 

The results of Monte Carlo simulations using 31 chip random spreading sequences are shown 

in Figure 5.2 for the matched filter canceller (MFC) receiver along with the predictions using 

equation 5.1. 

Comparing the simulated results with those presented in Figure 2.9, it may be seen that 

incorporation of the canceller increases the number of supported users for a given probability 
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Capacity performance : 31 chip random codes 

Figure 5.2: Theoretical and simulated probability of error for matched filter cancellation 
(MFC): (a) theoretical, MAI only; (b) simulated, MAI only; (c) theoretical, 
Eb/NO = 7dB; (d) simulated, Eb/No = 7 d 

of error. In particular, for P = 0.01, 8 users (25 % capacity) may be supported, compared to 

less than half that number if a receiver based only on a matched filter is employed. 

The existence of a critical capacity level, beyond which the use of MAT cancellation leads to 

a reduction in performance compared to straightforward matched filtering is a consequence of 

the remark above, that incorrect intermediate decisions will cause the reconstructed signal for 

that user to have four times its original power, and hence degrade the performance in a similar 

manner to additional background noise. 

The variation in predicted and simulated performance is due to two main reasons; firstly, the 

noise on the signal at the input to each correlator is not independent, as is assumed in the analysis, 

and secondly, the Gaussian approximation is not completely valid since for low numbers of 

interferers, the combined noise will not closely approximate that distribution. A technique to 

provide a closer approximation is discussed in [6]. 

It must be acknowledged that interference cancellation, unlike FEC coding, does not improve 

the perfomance beyond that of the matched filter with a single user, however the use of 

additional stages in the canceller iteratively reduces the MAI so that for low numbers of users, 

the performance is simlar to the single user case, until the critical level is reached, at which point 

the performance abruptly collapses [43]. Unfortunately, an error in this paper over-estimates 
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this critical loading point, which simulations over a range of spreading sequence length have 

demonstrated is close to 70 % of gp. 

To ease the computational overhead in the simulations, only single stage cancellers will be 

considered here. Future developments of this receiver architecture could consider the trade-offs 

between the increased performance afforded by further stages of cancellation and the subsequent 

additional processing delay which this requires. 

Thus, interference cancellation increases the capacity of spread spectrum multiple access 

systems which do not employ FEC coding, so the focus of the remainder of this Chapter 

is to investigate whether a similar performance increase is possible with FEC-encoded DS-

CDMA signals. The transmitter structure considered is as specified in system 2 of Chapter 4, 

i.e. the data is first convolutionally encoded and then the resulting encoded digits are spread 

by the user's signature sequence. The convolutional coding element has a constraint length K 

and code rate R, so that, as before, the overall (linear) processing gain (gp) is given by M/R, 

where M is the length of the spreading sequence. 

5.1.3 Extension to FEC-encoded DS-CDMA 

The extension of the concept of MAI estimation and cancellation to the FEC-encoded DS-

CDMA environment requires increased sophistication in the receiver, since the initial estimation 

stage must now consist of the conventional correlator receiver to collapse the spectrum of the 

interfering users' signals, together with some method for estimating the FEC-encoded data, as 

shown in Figure 5.3. 

The interference from the other users must then be re-generated before being subtracted from a 

delayed version of the original received signal. Finally, an additional correlation of this derived 

signal against the desired user's signature sequence must be made before the FEC decoder is 

used for the second time to obtain the final estimate of the original data sequence. The overall 

delay incurred is thus twice that of a conventional FEC decoding system, while the increase in 

storage requirements is O((U - 1) M), since intermediate signals from U - I interferers must 

be calculated and stored. 

In addition, to properly reconstruct the encoded data, prior to spreading, the cancellation- 

based receiver requires the additional knowledge of the FEC encoder structure for each of 
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Processing delay 

----------------------------------------------------- 

.[_De-sPrcad1_[ FEC decodej___{ FEC coderj__.[ResPr]_1 
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----------------------------------------------------- 

Dc-spread 	EC decoder 	FEC coderRe-spread 
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----------------------------------------------------- 

___HC 0 rH- 
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MA! estimation 	 MA! reconstruction 

Output 
De-spread 	FEC decoder 

Uie[ I -------------- 

Figure 5.3: Extension of MAI cancellation technique to an FEC-encoded DS-CDMA system 

the interfering users, as well as each of their spreading sequences. This again may have an 

impact if security is important. In practice, a different encoder could be assigned to each user, 

in which case the receiver would then require extra storage of the appropriate tap connections 

for each user, but here the same encoder is used, partially to reduce the complexity, but also to 

demonstrate the effectiveness of this approach, even under what may be sub-optimal constraints 

2 This simplification also means that the receiver for a specific user could also be adapted easily 

for other users. The various methods by which the intermediate signal is constructed will now 

be described. 

5.2 	Structures considered 

The relative benefits of four receiver structures incorporating MAT cancellation with FEC 

coding will be considered, compared to a standard matched filter (MF), or matched filter 

canceller (MFC) receiver, with equivalent overall processing gains. 

2The number of available efficient tap connections for a given constraint length could pose a limiting factor on 
this approach, so that, for example, groups of users would have to share the same convolutional encoding structure, 
as is implemented here. 
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The four receivers considered share a common structure; the incoming signal is split into as 

many parallel paths as required and each replica is correlated with an appropriate de-spreading 

sequence. An estimate is then made of the original data bit and the deduced interference is 

reconstructed and cancelled from a delayed copy of the received signal. A final correlation is 

then performed with respect to the desired user, and the final data extraction is performed by a 

Viterbi algorithm to give an estimate of the original data sequence. The distinguishing features 

of the receivers to be considered are the tap weights of the initial and final despreading filter, 

and the method used to estimate the intermediate data. 

Receiver A, shown in Figure 5.4 and designated MFC+V, uses a matched filter to despread 

the received signal, followed by a sign decision block to estimate the individual digits of the 

convolutional code sequence. 

Input 

Receiver A: Matched filter canceller + Viterbi (MFC+V) 

- 	Processing delay 

----------------------------------------------- 

Dc-spread 	Data-estimationRe-s:pread 
tched filter 	sign decision 	 l 

RepeaLfriiUir[crijigjuets 	--- 

Output 
Dc-spread 	Data-estimation 

matched filter 	Viterbi algorithm 

UierI 	 - 

Figure 5.4: Receiver A: MAI cancellation using matched filter and sign decision before final 
data extraction using the Viterbi algorithm (MFC+V) 

Use of the simple hard limiter is acknowledged to be a non-optimal strategy, since no account 

is taken of the fact that the individual digits constitute the encoded sequence and hence are 

no longer independent. However, this simpler strategy reflects the application of conventional 

MAT cancellation techniques to the DS-CDMA environment, and so is useful for comparison 

purposes. In addition, using a sign decision block to estimate the digits of the code sequence 

overcomes the requirement for this receiver to possess the FEC-encoding parameters of the 

other users, so that although complete code sequences may be inferred, the underlying data bits 

which produced the corresponding state transitions are not deduced by this receiver, which may 

be an attractive option from a security viewpoint. 

Receiver B, shown in Figure 5.5, again only uses a sign decision to estimate the encoded 
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sequences, but in this receiver, the initial and final de-correlation is performed by a Wiener 

filter. 

Receiver B : Wiener filter canceller + Viterbi (WFC+V) 

Input 

I 	Processing delay 	I 
Y 	 I 	 I 

-iDe-sprcad 	Data-estimation 	Re-spread 
LWiener filter 	sign decision 	signal 

Rspatfetalljntcrfcgjiser.s 

	

§~9;1 (Viterbi aigorithinj 

	 Output 

Useri________________ 

Figure 5.5: Receiver B: MAI cancellation using Wiener filter and sign decision before final 
data extraction using the Viterbi algorithm (WFC+ V) 

This MMSE filter could either be approximated using some adaptive algorithm, as in Chapter 

3, or even calculated directly, since the receiver must have all the interfering users' spreading 

sequences available to reconstruct the interference, and the only additional quantities required to 

calculate the coefficients of this filter are estimates of the multipath channel and the background 

noise level. These estimates could be obtained for instance by employing a pilot signal on the 

data stream. 

The new receiver architecture, illustrated in Figure 5.6, is given by including a Viterbi decoder 

for each user to make the initial data estimate, rather than the conventional sign decision 

estimator, used in the previous two receivers. 

The motivation for using this structure is that the initial MAT estimation is now performed 

in terms of the most likely sequence, rather than simply the component digits, as in the 

previous receivers. Thus, in this approach, complete encoded sequences are estimated, before 

their digits are re-spread and the resulting contribution cancelled from the original signal. 

The obvious disadvantage in this approach is the increase in complexity since the Viterbi 

algorithm must be applied for each interfering user, thus requiring 0(( (T - 1) M21'~ — 1 ) storage 

and O((U - 1)LM2') calculations. Thus, to limit this increase to manageable levels, only 

short constraint-length (K=3) FEC portions will be considered. 

Finally, the fourth receiver structure considered here is as shown in Figure 5.7, which differs 
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Receiver C : matched Viterbi canceller + Viterbi (MVC+V) 

Input 
Processing delay 

Y 

Dc-spread 	Data-estimation 	Re_spreafli 
Lmatched filter 	Viterbi algorithm 	signal 

RepcatJoztl!wIcJfesLnguseri ------------- 

------------------------------- 

-spread Data-estiiation 	
utput 

matched filter 	Viterbialgorithm 

Figure 5.6: Receiver C: MAI cancellation using matched filter and Viterbi algorithm before 
final data extraction using the Viterbi algorithm (MVC+V) 

from receiver C only in the despreading vector used at each stage, which is now a Wiener filter. 

Receiver D : Wiener Viterbi canceller + Viterbi (WVC+V) 

Input 
Processing delay 	I 

V 

-------------------------------------------- 
1De-spread Data-estimation 	Re-spread 
LWiener filter 	Viterbi algorithm 	signal 	J 

R-Opeat-fiQ1 alJiutsrferingjssers 

Output 
Dc-spread 	Data-estimation 
Wiener filter 	Viterbi algorithm 

UcrJ---------------- 

Figure 5.7: Receiver D: MAI cancellation using Wiener filter and Viterbi algorithm before final 
data extraction using the Viterbi algorithm (WVC+V) 

As before, the construction of the Wiener filter is not an insurmountable task for the receiver, 

since most of the knowledge required is already available to perform the cancellation. 

Although these new structures introduce an extra processing delay since a number of extra 

passes of the data with the Viterbi algorithm are required, the extra delay is linear in the 

memory of the Viterbi decoder and so is not considered exhorbitant in view of the performance 

increases which may be anticipated. Before proceeding to the results from some Monte Carlo 

simulations, however, it is instructive to consider an analysis of the expected perfomance of 

these receivers. 
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5.3 	Theoretical analysis 

Because this analysis is based on the Gaussian assumption, extended using the central limit 

theorem, the predictions may not be quantitatively accurate, since the errors may not be 

independent and, for low loading, the multiple access interference is evidently non-Gaussian. 

In addition, the theoretical analysis of the performance of convolutional decoding algorithms 

becomes increasingly unreliable as the interference increases. However, the qualitative behaviour 

should be representative of the relative merits of the receivers, and so is of more interest here. 

The theoretical analysis [99] of Viterbi decoding of convolutional codes for a single user 

communication system, as outlined in section 2.3.3.4 leads to the following approximation 

for PeV  (E&/No), the probability of error for the Viterbi decoder as a function of the signal to 

Gaussian noise ratio, 

where 

-, 	 d—dupper 

P'(-) < 	ad(d;R,)
No  
	 adcb(d;R, 7 -) 	(5.2) 

dd f ,e 	 d_d free  

Eb 
ç(d) = Q (\/dR) 	 (5.3) 

and the set of coefficients {ad} for particular convolutional code configurations may be 

determined (e.g. [99]) by considering the expected departure of the Viterbi decoder from a 

known path through the trellis. 

Invoking the Gaussian assumption means that the multiple access interference may be regarded 

simply as additional noise, so that equations 5.1 and 5.2 may be combined to give the expected 

probability of error for receiver structure A, p'JFC+V  (U, qp), as 

PMFC+V((J gp) P' 	
gp 

(2 + 4(U l)pMF(I, gp) 	
(5.4)

j 

Receiver B has a similar structure to A, except that the initial and final de-spreading is achieved 

by correlation with a Wiener filter, which, as demonstrated in Chapter 3, upper bounds the 

performance of a least mean square adaptive algorithm, given sufficient training. By analogy 

with the analysis for receiver A, the expected probability of error pWFC+V  for this receiver 

may be estimated as 
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PWFC+Vgp) 	 gp - 	
( V 9' +4(U - l)PF(U, gp) ) 	 (5.5) 

where pWF(j,  N) is as defined in [37]. 

The initial data estimate formed by the proposed new receiver C is obtained from the application 

of a Viterbi decoder, so that by a similar argument to the above, the expected performance for 

this arrangement is given by 

gp PMVC+V(Ugp) P/ 
(a2+4(U_ 1)P(U,gp)) 	

(5.6) 

Finally, receiver D also has a Viterbi decoder as the initial estimator, but uses a Wiener filter 

for the de-spreading processes, so will again form an upper bound on the performance of an 

adaptive algorithm which uses equation 2.13 as its penalty function. 

The predicted performance of these receivers may be compared by reference to Figure 5.8, 

which shows the above expressions evaluated as a function of capacity (i.e. percentage of the 

overall processing gain) for gp = 126 and a signal to Gaussian noise level of Eb/NO = 5 dB. 

Theoretical probability of error vs capacity 
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Figure 5.8: Theoretical probability of error vs capacity for the various schemes for gp = 126 
and E&/No = 5 dB : (a) matched filter; (b) matched filter canceller; (c) matched 
filter canceller with Viterbi; (d) Wiener filter canceller with Viterbi; (e) matched 
Viterbi canceller with Viterbi 
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Predictions of probabilities of error in excess of 0.5 are due to the divergence of the truncated 

sums in the predicted probability of error for the Viterbi algorithm. 

It may be seen that the inclusion of the Viterbi decoder prior to cancellation leads to a predicted 

increase in capacity of approximately 15 %, or 19 users, as compared to the sign-decision 

approach at a probability of error of around 1.0 x 10-3.  This increase in performance is most 

likely due to the fact that decisions leading to the wrong code sequence, or even an impossible 

code sequence (since the corresponding transition in the state diagram is impossible), are 

avoided when the interference is manageable. 

If the interference becomes too great however, the Viterbi algorithm used in the initial estimation 

stage is more likely to follow the wrong path in the decoding trellis, and thus the attempt 

at correction actually degrades performance. Re-encoding and spreading of this incorrectly 

deduced data bit leads to an increase in the overall interference at the subsequent cancellation 

stage. This has two effects on the final decoding stage. The first is analogous to the power 

increase of a factor of four in the interference for the equivalent system without FEC coding, 

since some, or all of the digits in the inferred encoded sequence will be incorrect, while the 

second is the attendant reduction in performance of the Viterbi algorithm as discussed in the 

previous Chapter, where the performance degrades rapidly under significant noise conditions, 

because the algorithm selects the wrong path through the trellis. 

5.4 Simulations 

The simulations considered are also all conducted for systems with an overall processing gain 

(gp) of 126, so that comparison may be made with the predicted performance, shown in Figure 

5.8. This bandwidth expansion is also similar to that employed in the IS-95 system [15]. 

The Viterbi algorithm employed by all the FEC-encoded systems uses soft decision decoding 

and a survivor path length (memory) of 32 data bits. Rate  -, constraint length 3 convolutional 

coding is used on the data stream with all the users having the same tap connections. As 

discussed in the previous chapter, the use of more powerful coding may be expected to give 

suitably enhanced results, provided that a balance is maintained between FEC coding power 

and the corresponding amount of spreading invested. 

For the systems employing FEC-coding, randomly selected signature sequences of length 63 
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chips are used to further spread the convolutional code sequence. Rnadom sequences are used 

because any multipath channel will likely reduce any special correlation properties of other 

spreading sequence sets. Typically 105  data bits are transmitted before the performance statistic 

is formed, so that probabilities of error in excess of 1.0 x 10-3  may be considered statistically 

significant [41]. The uncoded systems employ random spreading sequences of length 126, so 

that a fair comparison may be made, based on equivalent overall bandwidth expansion. 

5.4.1 Performance for fixed Eb/No 

As previously, the simulations are performed with respect to capacity for a fixed background 

noise, and with respect to Eb/NO for a fixed capacity. In this section, the levels of Eb/NO  are 

set to 5 d and 7dB. 

5.4.1.1 Performance for Eb/NO = 5 dB 

The results obtained for the various architectures for Eb/NO = 5 dB are shown in Figure 5.9. 

Comparison with the theoretical predictions in Figure 5.8 shows the general trend that the 

absolute error probabilities are higher, but that the relative performance between the receivers 

is broadly similar to prediction. 

As predicted, for low numbers of users, the convolutional coding systems have much better 

performance than those without, with receiver A supporting 25 users at the same probability 

of error (10-2)  as the single user scenario with the conventional canceller. Use of the Wiener 

filter (receiver B) as the internal and external de-spreading filter increases this figure to around 

38 users. 

The Viterbi cancellers (C and D) show very good performance, with the matched filter Viterbi 

canceller (C) surpassing the performance of the standard matched filter canceller (B) for up to 

around 25 % capacity with an expected P of around 10-2.  At this level, the Wiener Viterbi 

canceller (D) is able to support 60 users, demonstrating that the combination of this structure 

with an adaptive algorithm could give promising results. 

104 



Chapter 5: Combined Viterbi decoding and interference cancellation in a DS-CDMA System 

Simulated probability of error vs capacity 
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Figure 5.9: Simulated probability of error vs percentage capacity for the various schemes for 
gp = 126 and Eb/NO = 5dB: (a) matched filter; (b) matched filter canceller; (c) 
matched filter canceller with Viterbi; (d) Wiener filter canceller with Viterbi; (e) 
matched Viterbi canceller with Viterbi; (i) Wiener Viterbi canceller with Viterbi 

5.4.1.2 Performance for Eb/No = 7 dB 

The situation for ELI/NO = 7 dB, shown in Figure 5.10 is similar to the above, with again very 

good performance achieved by using the Wiener filter together with the Viterbi canceller. 

Receiver D again offers the best capacity, supporting 60 users at a probability of error around 

io— , which is the same as that for the single user with conventional cancelling structures without 

forward error correction. The performance of receiver A is also worthy of note, since for under 

around 30 users, its performance surpasses that of the equivalent processing gain single stage 

matched filter canceller. The reason the performance of the Wiener Viterbi canceller (receiver 

D) appears to saturate for low capacity is likely due to insufficient simulation time. 

It must also be acknowledged that the new structures do suffer from poorer performance as the 

loading is increased beyond a certain level, but this is in the area where very little can be done to 

alleviate the effects of large multiple access interference, so that no communication is possible 

anyway. 
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Simulated probability of error vs capacity 
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Figure 5.10: Simulated probability of error vs percentage capacity for the various schemes for 

gp = 126 and .Eb/NO = 7 d : (a) matched filter; (b) matched filter canceller; (c) 
matched filter canceller with Viterbi; (d) Wiener filter canceller with Viterbi; (e) 
matched Viterbi canceller with Viterbi; (f) Wiener Viterbi canceller with Viterbi 

5.4.2 Performance for fixed capacity 

To gauge the performance of the various receivers as the background noise is varied, the loading 

is held fixed for the next two simulations. 

5.4.2.1 Performance for 25 % capacity 

The performance of the systems considered with 31 active users ( 25% capacity) is presented 

in Figure 5.11. 

For this loading, receiver C is approaching the performance of receiver D, indicating that for 

reasonably low numbers of users, a matched filter could be employed successfully, without 

recourse to using an adaptive algorithm to approximate the Wiener filter. 

5.4.2.2 Performance for 40 % capacity 

The results for 50 users or 40 % are shown in Figure 5.12. 
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Simulated probability of error vs noise for 31 active users (= 25% capacity) 
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Figure 5.11: Simulated probability of error vs Eb/NO for 25 % capacity for the various schemes 
with gp = 126 :  (a) matched filter; (b) matched filter canceller; (c) matched filter 
canceller with Viterbi; (d) Wiener filter canceller with Viterbi; (e) matched Viterbi 
canceller with Viterbi; (l) Wiener Viterbi canceller with Viterbi 
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Figure 5.12: Simulated probability of error vs Eb/NO for 40 % capacity for the various schemes 
with gp = 126: (a) matched filter; (b) matched filter canceller; (c) matched filter 
canceller with Viterbi; (d) Wiener filter canceller with Viterbi; (e) matched Viterbi 
canceller with Viterbi; () Wiener Viterbi canceller with Viterbi 
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For the higher levels of MAT experienced by the system at this loading, it may be seen that the 

systems employing Wiener filters have better performance, as may be expected, but that the 

inclusion of the proposed new structure still leads to increased performance. Indeed, even at this 

loading, receiver D is still able to achieve an estimated P of around 1.0 x 10 at Eb/NO = 6 

dB, an improvement of I dB over even the conventional single user system. It is also clear that 

the level of MAT present at this loading means that many of the intermediate decisions made by 

receiver A are incorrect, leading to poorer performance than a simple matched filter, irrespective 

of Lb/NO. Although for low Lb/NO, receiver C also makes many incorrect decisions, leading to 

similarly poor performance, as the background noise is reduced, the symbol based cancellation 

scheme is able to improve the performance of this receiver, so that the performance becomes 

better than an equivalent processing gain matched filter canceller. 

5.5 Improvements 

The results presented here clearly only provide an indication of the benefits available by an 

approach combining interference cancellation and FEC coding on a DS-CDMA system. A 

number of modifications could be considered to improve the performance of these receivers 

further. 

The most immediate improvement would be to investigate additional stages of cancellation, 

although any gains achieved would necessarily have to be weighed against the increase in 

complexity and delay associated with this approach. These impositions may mean that such a 

computationally-intensive technique could only be practically implemented at the base station, 

which means that each user's delay must be estimated, since the intermediate signals must be 

aligned properly to avoid producing more interference. 

The use of soft-output devices at the intermediate stage prior to cancellation [100] may be 

expected to improve the overall performance since this approach weighs less heavily those 

decisions which have been judged less reliable, thus reducing error-propagation. This could 

also be combined with some thresholding technique, in which cancellation of a particular user's 

derived signal is only performed if a sufficient level of confidence can be associated with the 

intermediate decision. 

The calculation of the Wiener filter in receivers B and D requires an accurate estimate of the 
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background noise, which may not readily be available. A possible alternative to this could be 

the zero-forcing filter of section 2.3.2.1, the calculation of which only requires the various 

spreading sequences, or the non-optimal minimum mean square error (NO-MMSE) filter [101], 

which replaces the estimate of or in the calculation of the Wiener filter in Equation 2.14 by an 

upper bound on this parameter. 

Additionally, the use of sub-optimal convolutional decoding techniques, such as the Fano or 

stack algorithm may reduce the computational overhead or processing delay involved, although 

the sub-optimal performance of these algorithms may lead to more intermediate estimation 

errors, and thus reduced overall performance. 

5.6 Discussion 

In this Chapter, a new receiver structure for convolutional ly-encoded DS-CDMA communications 

systems has been proposed. The new structure, employing parallel MAT cancellation, obtains 

its intermediate data estimate using a Viterbi decoder, rather than the straightforward sign 

decision used by conventional interference cancellation receivers. The disadvantage of this 

approach is the increase in receiver complexity, which may be judged by combining the 

complexity requirements of the interference canceller portion, an O(U.M) process, with those 

of the intermediate data estimation stage and those for the final Viterbi algorithm, discussed 

in the previous chapter. For the sign-decision estimators, the additional complexity is simply 

determined by the receiver filter (either a matched filter or Wiener filter). For those receivers 

whose intermediate estimation is given by the Viterbi algorithm, a pass must be made through 

the data for each user present. Since each pass requires L2(I%_1)  storage locations, a choice 

must be made whether to attempt a truly parallel approach, or to recycle storage and decode 

each user in a serial fashion. For reasonably short constraint lengths, such as those considered 

here, this increase in complexity is likely to be tolerable. 

The error performance of this receiver has been derived analytically and simulated using both 

matched filters and Wiener filters to provide the initial and final direct sequence despreading. 

These structures have also been compared to conventional cancellation techniques, and equivalent 

processing-gain systems using matched filters and matched filter cancellers. 

Significant performance improvements have been achieved, with the new system, when employing 
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a Wiener filter to collapse the encoded signal spectrum, able to support 60 users ( 50% of the 

processing gain) at the same probability of error as the single user conventional case for a range 

of background noise values. In moderate capacity regimes, the use of a matched filter in the 

proposed system approaches the performance of a Wiener filter combined with conventional 

cancellation. 

In conclusion, this technique, which is practically feasible in hardware, is a promising one for 

the reduction of multiple access interference in a convolutional ly-coded DS-CDMA system. 
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Chapter 6 

Radial basis function network receiver 
structures for DS-CDMA 

In this chapter, non-linear signal processing techniques, using radial basis function (RBF) 

networks, will be considered as receiver structures for the DS-CDMA communications environ-

ment. The motivation for using RBF networks in a spread spectrum communication system will 

first be outlined in section 6.1. The details of the construction of the received signal and the 

receiver network for two systems, which are distinguished by their respective input, will then 

be described in section 6.2. The input to the first system is obtained by correlating the received 

signal using either a filter matched to the original spreading sequence, or one obtained by 

convolving the spreading sequence with an estimate of the impulse response of the channel, 

while the second system is based on the incoming chip-level signal. The results from this 

investigation are then presented in section 6.3. As will be demonstrated, the main disadvantage 

of an RBF-based approach is the high computational overhead involved, due to the large 

number of centres which are required as the number of inputs to the network increases. To 

counter this, section 6.4 will examine schemes for reducing the complexity of the RBF-based 

receiver, without unduly reducing this technique's performance. A new non-linear receiver, 

with comparable performance to one using an RBF network, will be proposed, and a graphical 

interpretation of this, based on the Voronoi diagram [102], will be used to provide a scheme for 

reducing the number of centres in the network. Finally, the main results of the chapter will be 

summarised in section 6.5. 
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6.1 Motivation 

As discussed previously, there are three main sources of interference in a DS-CDMA system; 

multiple access interference which occurs from cross-correlations if non-orthogonal sequences 

are used to spread the data, corruption of the transmitted signal by the communication channel, 

and background noise. 

The traditional method of collapsing the spectrum is for the mobile to use a RAKE receiver, 

with a bank of correlators, whose weights are either matched to the original spreading codes, 

or obtained via convolution with the impulse response of the channel. The soft decisions thus 

obtained may optionally be further processed (e.g. by a minimum mean square error filter) 

before being thresholded to provide the final estimate of the data. However, the presence of 

a multipath channel can cause the space spanned by these intermediate soft decisions to no 

longer be linearly separable, so that estimation of the original signal by linear techniques may 

be prone to a significant number of errors, regardless of the signal to noise ratio. 

This situation is analogous to the exclusive OR problem', which was solved adaptively by 

employing the use of a non-linear radial basis function (RBF) network in [103], or the problem 

of equalisation of an unknown channel, for which RBF functions have also been shown to 

provide good performance [84]. A review of the theoretical basis of functional approximation 

via RBF networks is given in [104]. Although this approach has been applied to many problems 

for which linear techniques are unsuitable [86], only a relatively small number of authors 

(e.g. [105], [106]) have considered RBF network based receiver structures for DS-CDMA, since 

the excellent performance obtained is only achieved at the expense of increased computational 

complexity, which will be discussed in section 6.2.2. 

As indicated in section 2.3.6, for a given input vector y  and a set P of N reference points, or 

centres, the (soft) output of the RBF network is given by 

fRBF(Y) = 	wi [d(y,] 	 (6.1) 

where wi is the weight associated with each centre p. E P. A sign decision is then made on 

this output to provide an estimate of the data. The distance of the input point to each centre 

is calculated using the metric d(., ), which is normally taken to be the Euclidean 12 metric 

'This essentially consists of separating some decision space using a non-linear boundary 

112 



Chapter 6: Radial basis function network receiver structures for DS-CDMA 

and 0(•) represents a non-linear basis function, or kernel. There are various choices for kernel 

functions, which will be investigated further in section 6.4.3, but for the initial investigations, 

the Gaussian kernel, defined by 

= G(C) = exp(-s) 
	

(6.2) 

where a2  controls the width of each kernel and is the noise power, will be used. The centres 

are located by calculating the noise-free response of the system to all possible combinations of 

inputs, so that this approach, as applied to a DS-CDMA system, requires knowledge of all the 

active users' spreading sequences as well as information about the channel to locate the centres 

and an estimate of the signal to noise ratio to specify the kernel widths. 

6.2 The RBF network receiver in a DS-CDMA system 

The application of an RBF network receiver to the downlink of a DS-CDMA communications 

system is now discussed. The model used for the received signal is first discussed in section 

6.2.1, while the details of the formation of the various networks considered are described in 

section 6.2.2. 

6.2.1 The received signal 

To simplify the calculations, forward error correction will not be included on the data signal, so 

that construction of the received vector y may be modelled by the process shown in Figure 6.1. 

The BPSK data bits {x, 1 < u < U} are used to modulate the user-specific spreading 

sequences {c,  1 < u < U}. These are of length M chips, and the resultant signals are then 

synchronously combined to form the transmitted signal vector s, given by 

u=U 
(6.3) 

This signal then passes through a multipath channel, which is again modelled at baseband by a 

linear transversal filter with impulse response H(z) = 	h3  z, where z 1  represents a 
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Figure 6.1: Construction of the received signal 

delay of one chip and nh is the number of chips spanned by the impulse response of the channel. 

The channel is assumed stationary in the investigations, although an adaptive technique [107] 

has also been shown to provide excellent performance, and could be employed when the channel 

is time-varying. The subsequent vector components are then added to iid samples of additive 

white Gaussian noise (AWGN) of zero mean and variance a2, where the signal to Gaussian 

noise ratio, Eh/NO,  is again given by 

EbM 
(6.4) 

No  2u2  

to give the signal, y,  received by the mobile. 

6.2.2 Construction of the network 

As with many neural network type approaches, the performance of the RBF network receiver is 

heavily dependent on the pre-processing applied to the data, before it is input to the network. The 

investigations reported here will consider the use of two distinct receiver structures. The input 

to the first of these structures consists of the result of pre-filtering the received signal, either by 

a matched filter, designated the post matched filter (PMF) approach and shown in Figure 6.2 or 

by the matched filter convolved with the impulse response of the channel, designated the post 

channel-matched filter (PCF), and shown in Figure 6.3. 
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Figure 6.2: The RBF network implemented as a post matched filter (PMF) processor block 
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The downsampling is performed with respect to the processing gain, which in this case is 

simply M, the length of the spreading sequence. Thus, this approach is effectively a multi-user 

detector, which may be tuned to the user of interest by the network. 

The input to the second type of receiver structure is the received chip-level sequence, as used 

in [105] and [106], and so this method is designated the direct (DRBF) approach, outlined in 

Figure 6.4. 

RBF network 

DRBF receiver 

Figure 6.4: The direct RBF network (DRBF) receiver 

The inputs to the first two structures are therefore at the bit rate, whilst those for the DRBF are 

at the chip rate. 

The number of centres in the network N is a function of the number of users, while each 

centre's dimension D depends on the number of input digits to the network. The situation is 

summarised in Table 6. 1, in which the total number of active users is U, and the spreading code 

length is M. 

Channel Method Number of centres N Dimension of each centre D 

AWGN PMF U 
AWGN DRBF 2u M 

multipath PMF 2 2U U 
multipath PCF 23U U 
multipath DRBF 23L1 (M) or (M + 71j1 - I) 

Table 6.1: Relative complexity of the various RBF network receiver implementations 

In AWGN, both the PMF and DRBF require 2Y centres, but the dimension of the input signal, and 

hence of each centre, is the number of users, and length of the spreading sequence respectively. 

In a multipath channel (in which it is assumed that the multipath delay does not extend over 
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more than M chips), the PCF and DRBF use all possible combinations of previous, current 

and next data bit, and thus require 23u  centres, while the PMF approach only considers the ICI 

arising from the previous and current data bits, so only requires 22U  centres. As in the AWGN 

case, the dimension of the centres in each network is different, since the dimension of the input 

vector will be different, unless U - M. 

With the above values for N and D, the number of calculations required for the Gaussian 

kernel RBF network is (3D + 2)N multiplications, 3N - 1 additions, and N square root and 

exponential evaluations. Even assuming that each of these operations may be performed in one 

floating point operation (flop), the evaluation therefore requires (3D + 7)N - 1 flops, which 

grows exponentially with the number of active users. 

It is important to acknowledge a significant change in the assumptions made at this point, 

since for the multipath channel implementations of the RBF network receivers, it is assumed 

that perfect channel knowledge is available to construct the RAKE and locate the RBF centres 

respectively. This is in contrast to the receivers described earlier, which in some cases had no 

such information available. Indeed, had this been available, there would be no need to train an 

adaptive algorithm. In addition, the DRBF may be extended by specifying a number of chips 

over which to extend the filter, to capture the complete energy originating from one data bit, as 

in [105]. In this case, the input vector to the RBF network is taken to have length M + n - I, 

where nh is, as before, the number of chips which span the impulse response of the multipath 

channel, as indicated in the table. 

In the following, it will be useful to define 7+  as the set {p. E P : Original data bit from the 

desired user was a +1), and P as the set {p. E P : Original data bit from the desired user 

was a - 11. Clearly, to satisfy linear independence and uniqeness conditions, it is required that 

PPU 	and PflP 	O. 

6.3 Results 

The performance of the structures described above will now be considered in both additive white 

Gaussian noise in sections 6.3.1 and 6.3.2, and in a stationary multipath channel with impulse 

response 11(z) = 0.3482 + 0.8704z'  + 0.3482z 2, in sections 6.3.3 and 6.3.4. Random 

spreading sequences will again be used, and the performance criteria will be Fe, as previously 

117 



Chapter 6: Radial basis function network receiver structures for DS-CDMA 

defined in section 2.2. The performance of the proposed receivers will be compared against that 

of the linear minimum mean square error (Wiener filter) receiver, as defined in Equation 2.14. 

To enable a fair comparison, the Wiener filter will be implemented with the same information 

as the RBF network, i.e. at the bit-level to compare with the PMF and PCF, and at the chip-level 

to compare with the DRBF. 

6.3.1 Performance in AWGN for varying Eb/No 

The results for 2, 4 and 7 users for the chip-level receiver structures are shown in Figure 6.5, 

and those for the bit-level receivers are shown in Figure 6.6. 

Additive white Gaussian noise, 7 chip random spreading sequences 
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Figure 6.5: Performance of chip-level receivers in AWGN, 7-chip random spreading sequences, 
varying Eb/No: (a) 2 users, DRBF; (b) 2 users, Wiener; (c) 4 users, DRBF; (d) 4 
users, Wiener; (e) 7 users, DRBF; (i) 7 users, Wiener 

For the chip-level receivers, the DRBF network outperforms the Wiener filter for the loadings 

considered for all background noise values. Indeed, the advantage of the DRBF over the Wiener 

increases as the number of users increases. For the bit-level receivers, the difference between 

the two approaches is less significant, although the PMF is still better than the Wiener filter, for 

2 and 4 users. For 7 users, the PMF has much better performance as the background noise is 

reduced. This is probably because, in this regime, the interference is predominantly MAI, and 

so the non-linear PMF is better able to separate users. The behaviour of the receivers for low 

Eb/NO values, where it must be acknowledged that performance is poor for both strategies, is 
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Additive white Gaussian noise, 7 chip random spreading sequences 
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Figure 6.6: Performance of bit-level receivers in AWGN, 7-chip random spreading sequences, 
varying Eb/No : (a) 2 users, PMF; (b) 2 users, Wiener; (c) 4 users, PMF; (d) 4 
users, Wiener; (e) 7 users, PA/IF, () 7 users, Wiener 

probably due to the fact that the noise on the output from the matched filter bank is correlated, 

since the spreading sequences are non-orthogonal. In this case, the Mahalanobis metric [108] 

should strictly be used in place of the Euclidean distance metric in Equation 6. 1, however the 

Euclidean metric will be retained in the simulations discussed here, to reduce the computational 

effort. 

6.3.2 Performance in AWGN for varying loading 

Figures 6.7 and 6.8 show the performance as the loading is varied for fixed Eb/No of the 

chip-level and bit-level receivers respectively. 

Again, the RBF network receivers generally perform better than the linear Wiener filters 

constructed using the same information. For the chip-level structures, the DRBF has clearly 

better performance than the Wiener filter, with again the improvement increasing with increasing 

signal to Gaussian noise ratio, while the performance of the bit-level structures are closer, only 

diverging for larger numbers of users. This is again probably due to the PMIF being better able 

to cope when the interference is predominantly MAI. Thus, when the interference is Gaussian 

noise-dominated, the performance of the two systems is similar, while if the interference 
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Additive white Gaussian noise, 7 chip random spreading sequences 
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Figure 6.7: Performance of chip level receivers in AWGN, 7-chip random spreading sequences, 
varying loading at two values of E& /NO: (a) DRBF 4 dB; (b) Wiener, 4 dB; (c) 
DRBF 7 dB; (d) Wiener, 7 dB 
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Figure 6.8: Performance of bit level receivers in AWGN, 7-chip random spreading sequences, 
varying loading at two values of Eb/NO: (a) PMF 4dB; (b) Wiener, 4dB; (c)PMF, 
7 dB; (d) Wiener, 7 dB 
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becomes dominated by MAI, the RBF network structures have a performance advantage of 

around 1.5 dB. 

6.3.3 Performance in multipath channel for varying Eb/NO  

For the stationary multipath case, the chip-level receivers will be extended in time to capture 

the total energy from one data bit2, while the inputs to the processing blocks for the bit-level 

receivers will be calculated by match filtering the received signal with a sequence obtained by 

convolving the channel impulse response with the appropriate spreading code. To reduce the 

computation time, only the results for 2 active users, shown in Figure 6.9 will be considered. 

Channel (0.3482, 0.8704, 0.3482), 7 chip random spreading sequences 
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Figure 6.9: Performance of chip-level receivers in multipath channel, 7-chip random spreading 
sequences, varying Eb/JVO: (a) extended DRBF; (b) extended chip-level Wiener; 
(c) PCF RBF network; (d) bit-level Wiener 

Again, the non-linear RBF network structures have better performance than their linear counterparts. 

The performance of the DRBF is again optimal, while the PCF RBF receiver is worthy of further 

investigation, since it has better performance than not only the Wiener filter implemented with 

the same information, but also than the chip-level Wiener filter receiver. The receivers based on 

the outputs of the matched filter bank are in general not as good as those implemented directly, 

however the possibility of incorporating a noise-whitening filter to counter the correlated nature 

of the inputs to these receivers may be worthy of future investigation. 

2  s that the dimension of the input vector is 9 chips in this case 

121 



Chapter 6: Radial basis function network receiver structures for DS-CDMA 

6.3.4 Performance in multipath channel for varying loading 

Figure 6.10 shows the performance of the various receiver structures as the loading is varied 

for Eb/NO = 7 dB. The simulations for the DRBF receiver are terminated at 5 users to avoid 

excessively large numbers of calculations3. 

Channel (03482, 0.8704, 0.3482), 7 chip random spreading sequences 
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Figure 6.10: Performance of RBF receivers in multipath channel for Eb/NO = 7 dB, 7-chip 
random spreading sequences, varying loading: (a) DRBF; (b) extended chip-level 
Wiener; (c) PCF RBF network; (d) bit-level Wiener 

From the figure, it may be seen that the reasonable performance of the PCF RBF receiver 

outlined above is maintained as the number of users increases, although the DRBF has clearly 

better performance. The disadvantage of the DRBF receiver, however, is that the number of 

centres which must be calculated and stored increases exponentially with the number of users, 

so that methods must be investigated to reduce the complexity of this approach. 

6.4 	Complexity reduction methods 

In this section, a variety of methods for reducing the inherent complexity of RBF-based receivers 

will be proposed. This complexity arises from two distinct sources which will be treated 

separately in the analysis. The first contribution is from the number of centres involved in 

users would require 218  centres for each data bit 

122 



Chapter 6: Radial basis function network receiver structures for DS-CDIVLA 

the calculation of the output from the network, while the second is the computational effort 

associated with each centre. Clearly a reduction in either of these components will reduce the 

overall computational requirement, and thus may provide motivation for the practical application 

of this technique. 

The most natural method of reducing the number of centres is to assume that the hard estimates 

obtained are correct, and to use the receiver in a decision directed mode. This approach halves 

the number of centres which contribute to the evaluation of the decision statistic, and is described 

in section 6.4.1. In section 6.4.2, a specific spreading sequence set and channel are defined to 

allow a more detailed investigation of the role of the centres of the network. This scenario is then 

employed to consider complexity reduction through replacing the transcendental function in 

equation 6.1 by an algebraic one, which requires fewer calculations. The effect of this approach 

will be described in section 6.4.3, which considers two such kernels. Then in section 6.4.4, 

a new approach will be described, which proceeds by selecting the nearest neighbour centre 

to the input test statistic. An interpretation of this procedure, which leads to considering the 

appropriate decision boundary in terms of a subset of the Voronoi diagram [102] will then 

be proposed in section 6.4.4.1. This approach provides a mechanism for centre reduction, by 

identifying those centres which do not contribute to the decision, and may thus be discarded 

from the network without adversely affecting the performance. Possible methods to extend this 

technique to time-varying multipath channels will then be considered in section 6.4.4.2. 

6.4.1 The decision directed approach 

In this approach, the previous decision is assumed to be correct, and the information resulting 

from this is used to discard exactly halø of the total number of centres, since they correspond to 

the previous data bit being of opposite sign. This decision direction (DD) approach is popular 

in adaptive techniques such as those described in Chapter 3. 

6.4.1.1 Results 

The direct (DRBF) structure is used to investigate the performance of decision direction. The 

results for the 7 chip random spreading sequence set in the channel defined previously are 

4since each centre is equally likely 

123 



Chapter 6 Radial basis function network receiver structures for DS-CDMA 

shown in Figure 6.11. 

DRBF receiver, channel (0.3482,0.8704,0.3482) 
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Figure 6.11: Performance of the decision directed DRBF receiver in multipath channel, 7-chip 
random spreading sequences, varying Eb/NO: (a) I user without DD; (b) I user 
with DD; (c) 4 users without DD; (d) 4 users with DD 

The implementation here uses the first of each block of 32 data bits as a known training bit, 

such as would be required in a time varying channel, to prevent error propagation. The results 

show that decision direction, with its lower computational demand, only slightly reduces the 

performance compared to the complete network receiver, and so may be worthy of future 

investigation. A possible future development would be to threshold the soft decisions so that 

decision direction is only applied if a certain level of confidence in the result is attained. 

6.4.2 Example situation 

Before proceeding to investigate methods of reducing the computation associated with each 

centre, it is useful to define a set of spreading sequences and a particular channel, which will 

have certain characteristics. Since RBF functions appear most useful when the interference is 

non-linear, and in order to make a graphical interpretation possible, this section will return to the 

post matched filter (PMF) implementation, with a spreading sequence set consisting of a two-

user "broken" 4-chip code set, given by c1  = (+1, +1,—i, -0.7) T,  c2  = (+1,—i, +1, _l)T, 

and the particular multipath channel defined by H (z) = 0.25 + z 1 . Note that the power of the 

noise has not been adjusted to compensate for the inefficient code employed by user 1, which 
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has been artificially created to make a simple nonlinearly separable problem. To enable a fair 

comparison, the Wiener filter will also operate at the output of the matched filter bank, and so 

will be at the bit-level. 

The number of centres in the (PMF) RBF network is thus 22(U)  2 4 = 16, and the location of 

these centres from the point of view of user I is shown in Figure 6.12. From the diagram, it is 

apparent that the output space spanned by the centres from user I is non-linearly separable, i.e. 

it is not possible to draw a straight line which correctly partitions the output space to separate 

centres produced from opposite data bits. Although the locations are the same as for user 1, 

the centres from user 2's point of view are linearly separable, since the associated weights are 

different. This may be seen in the figure which also shows the decision boundaries  for both 

users for the bit-level Wiener filter and the Gaussian kernel RBF network for Lb/No - 15 dB. 

1.5 

I : 
-1.5 	-1 	-0.5 	0 	0.5 	1 	1.5 

output from matched filter 1 

Figure 6.12: Location of centres and decision boundaries of receivers for Lb/NO = 15 dB: (-1) 
centres produced from a —1 from user 1; (+1) centres produced from a +I from 
user 1; (a) Bit level Wiener filter decision boundary (user 1); (b) RBF network 
decision boundary (user 1); (c) Bit level Wiener filter decision boundary (user 2); 
(d) RBF network decision boundary (user 2) 

At this noise level, the Gaussian kernel RBF network correctly partitions the output space, and 

thus a reasonable error performance may be expected. However, the linear decision boundary 

obtained using the bit-level Wiener filter for user I is not able to correctly separate the centres 

as required for the reasons outlined above. Indeed, it may be expected that this filter will cause 

2 out of every 16 data points to be in error for user 1, leading to a predicted Pe 0.125. These 

'where the value of the RBF function in equation 6.1 is identically zero 
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predictions may be verified by considering Figure 6.13, which shows the error performance of 

the RBF and bit-level Wiener filters for a range of noise values. 

Simulated performance for Gaussian kernel RBF network, 4-chip codes 
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Figure 6.13: Performance of RBF network and Wiener filter receivers: (a) Wiener, user 1; (b) 
Wiener, user 2; (c) RBF user 1; (d) RBF user 2 

As predicted, the Wiener filter for user I reaches an irreducible P of around 0.125 for high 

values of Lb/NO, while the performance of the bit-level RBF processor increases with the signal 

to Gaussian noise ratio. Since user 2 is linearly separable, the performance of the linear Wiener 

and non-linear RBF network receivers are very similar. 

The variation of the performance of the RBF network receiver with Eb/NO for user 1 may be 

predicted from Figure 6.14, which shows the activation function, i.e. the surface generated by 

the RBF network from equation 6.1 for three values of Lb/NO. 

5dB 	 15dB 	 25dB 

Figure 6.14: Centres and generated surfaces for the Gaussian kernel RBF network for E5/ N0 = 

5, l5 and 25dB 

Clearly, for low values of LoIN0, the spread of the basis functions leads to a loss in distinction, 
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so that contributions from individual centres are aggregated together in the activation function, 

and thus the performance is relatively poor. As the signal to Gaussian noise ratio increases, 

more definition is achieved, so that individual centres now contribute separately, leading to 

increased performance. 

6.4.3 Kernel simplification 

The first method of complexity reduction is to employ alternative kernels in equation 6. 1, which 

are designed to reduce the number of calculations required per centre. It must be acknowledged 

that only the speed of calculation will be improved since the dominant requirement is that of 

storage. The Gaussian kernel defined in equation 6.2 requires a series of exponential calculations, 

which may impose too great a computational load on the receiver, so the first alternative 

considered is the inverse multi-quadratic kernel [86], defined by 

0., (0 - 	 (6.5) 
C2 _+U2 

and the modified inverse multi-quadratic, defined by 

1 
= 	- 	 (6.6) 

- 1+v 

both of which are avoid the necessity for the exponential evaluation used in Equation 6.1. 

The decision boundaries for these algebraic kernels, again for user 1, compared to that for the 

Gaussian kernel of the previous section, are shown in Figure 6.15 for Eb/No = 15 dB. 

The algebraic kernels are clearly able to separate the centres arising from different data bits, 

although the reduced decay rate of the algebraic kernels causes their decision boundaries to 

always be interior to the Gaussian kernel decision boundary, so that their performance may be 

expected to be slightly worse. 

The error performance of these algebraic kernels is shown in Figure 6.16. 

As may be seen, the modified kernel has slightly better performance than the traditional inverse 

multi-quadratic kernel, and both algebraic kernels have only slightly poorer performance than 

the full Gaussian kernel. 
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Figure 6.15: Location of centres and decision boundary of various RBF network receivers for 
Eb / No  = 15 dB: (-1) centres produced from a —1; (+ I) centres produced from 
a + 1; (a) Gaussian kernel decision boundary; (b) decision boundary for v',, ; (c) 
decision boundary for 0 12  for v 

Simulated performance for RBF network with Gaussian and algebraic kernels, 4-chip codes 
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Figure 6.16: Performance of RBF network receivers with various kernels: (a) Gaussian, user 
1; (b) Gaussian, user 2; (c) inverse multi-quadratic 	, user 1; (d) inverse multi- 
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(f) modified inverse multi-quadratic 0112with  v = 1, user 2 

0.01 

ix". 

128 



Chapter 6 Radial basis function network receiver structures for DS-CDMA 

The additional parameter v in 0,, also permits an investigation of this parameter's influence on 

the decision boundary and error performance of a network employing this kernel. Concentrating 

on user 1, the decision boundaries for various values of v for Eb/NO - 10 dB are shown in 

Figure 6.17, whilst the corresponding error performance is shown in Figure 6.18. 
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Figure 6.17: Location of centres and decision boundary of RBF network using i,b kernel 
function for Eb/N0 = 10 dB: (-1) centres produced from a —1; (+1) centres 
produced froma+1;(a) Gaussian kernel; (b)v 0.01;(c)v = 0.08;(d)v = 1.0; 
(e)v = 10.24;(1)v = 81.92 

Simulated performance for algebraic kernel RBF network receivers for user 1, 4-chip codes 
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Figure 6.18: Performance ofRBF based receivers with 0a, kernel function; (a) Gaussian kernel.-
(b) v = 0.01,-  (c) v = 0.08.-  (d) v = 1.0; (e) v = 10.24; (1) v = 81.92 

ernel;
(b)v=0.01;(c)v=0.08;(d)v=1.0;(e)v=10.24;(1)v=81.92 
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It may be seen that the algebraic kernels for the first two values of v fail to separate the centres 

correctly for Lb /NO = 10 dB, and this is reflected in the relatively poor performance of these 

two receivers. Broadly, there is little advantage in increasing the value of v beyond 1 .0, since 

the performance of the other kernels is so similar. Interestingly, the v = 0.08 kernel, although 

obviously inferior for values of Lb/No below around 15 dB, approaches the performance of 

the other kernels as Lb/NO increases, so that it may be concluded that the influence of the 

parameter v is only weak as the noise is reduced. Future work may investigate whether this 

situation may be generalised. 

6.4.4 The nearest neighbour receiver 

As is apparent from Figure 6.14, when the signal to Gaussian noise ratio, Lb/NO, is sufficiently 

large, the Gaussian kernel RBF surface consists of individual peaks and troughs (according as 

the relevant centre p E 7+ or P respectively), located at the centres of the network. In this 

way, this receiver structure is able to compare the input statistic against all the centres and hence 

obtain an accurate estimate of the original data bit. In addition, the previous section showed that 

alternative kernels, while offering slightly reduced complexity, are broadly equivalent in terms 

of error performance, at high values of Lb /NO. It would appear natural, then, to investigate the 

performance of a receiver which is based on the centres as calculated previously, but rather than 

forming the sum in equation 6.1 using the metric to all possible centres, estimates the original 

data bit by simply considering the nearest6  centre to the input vector, so that the data estimate 

for user 'a is given by 

(6.7) 

This nearest neighbour (NN) approach is a commonly occurring problem in many fields in 

computational geometry [102], and as may be seen in Figure 6.19, the NM decision boundary 

represents the asymptotic limit of the Gaussian kernel based RBF network as Lb/NO -* Do. 

Thus it may be expected that these two approaches will perform similarly as the noise decreases. 

The error performance against Lb/NO of the NN-based receiver, compared to the Gaussian 

kernel RBF network receiver is shown in Figure 6.20 for both users. 

6where we again use the Euclidean metric here 
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Figure 6.19: Location of centres and decision boundaries of Gaussian kernel RBF network for 
various values of Eb/No: (-1) centres produced from a —1; (+1) centres produced 
from a +1; (a) 0 dB; (b) 5dB; (c) 10 dB; (d) 15 dB; (e) 20 dB; (1) NN receiver 
decision boundary 

Simulated performance for RBF network and nearest neighbour receiver, 4-chip codes 
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Figure 6.20: Performance of NN-based receiver compared to Gaussian kernel RBF receiver: 
(a)RBF, user 1; (b) RBF user 2; (c)NN, user 1; (d) NN, user  
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For user 1, the NN receiver has only slightly worse performance than the RBF network for 

low Eb/No, and is almost identical for Eb/N() > 10 dB as predicted. For user 2, the decision 

boundaries are very similar, as are the performance curves, as expected, since that user is 

linearly separable. 

Returning to the original 7-chip spreading sequences in AWGN only, the performance of the 

proposed NN receiver is shown in Figure 6.21, again for the same two values of Eb/NO as in 

the previous case. 

Additive white Gaussian noise, 7 chip random spreading sequences 

2 	3 	4 	5 	6 	7 
Number of active users 

Figure 6.21: Performance of non-linear receivers in additive white Gaussian noise: (a) RBF 4 
dB; (b) NN, 4 dB; (c) RBF 7dB; (d) NN, 7 d 

As may be seen, the performance of the proposed receiver is very close to that of the Gaussian 

kernel RBF network receiver for all loading values. Thus, the proposed receiver attains very 

similar performance characteristics to the standard RBF network receiver, but avoids the 

associated restrictively high computational complexity. 

6.4.4.1 A geometrical interpretation of the nearest neighbour receiver 

Efficient algorithms for the NN approach generally consist of two parts; the construction of a 

tree structure, containing all the centres as nodes, and the traversal of this tree, until the nearest 

match is found. In 2 dimensions, the construction may be accomplished optimally using 0 (Ne) 

storage whilst the search requires 0(log2 N) time 1091. This strategy produces a Voronoi 

diagram, V(P) from the set P of centres, which for the 2-user 4-chip spreading sequence 
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situation considered here, is shown in Figure 6.22. 

Figure 6.22: Location of centres and Voronoi diagram: (-I) centres produced from a —I from 
user 1; (+1) centres produced from a +1 from user 1; (a) Voronoi diagram; (b) 
NN decision boundary for user I 

It may be seen that the NN decision boundary for each user is simply a subset of the complete 

Voronoi diagram, and that a modification of this technique could be used to remove centres 

whose associated Voronoi polygons V (p) do not border the NN decision boundary, thus 

increasing the speed of this algorithm. This technique produces a reduced set of centres 1" c P 

for each user. With the scenario considered here, there are 4 centres for each user which may 

be removed, so that this modified NN algorithm would make 25 % fewer comparisons per data 

bit, and thus would be correspondingly quicker than the conventional NN algorithm. 

This may be seen in Figure 6.23 which shows the performance of the Gaussian kernel RBF 

network and the NN receiver when the four centres whose polygons are not part of the decision 

boundary for user 1 are removed from the network. 

Clearly, in this case, the performance of the receivers using the reduced set of centres 2' is 

virtually identical to that of the receivers which use the complete set of centres, P. Future work 

will consider the development of this approach, with the intention of characterising the ratio of 

the number of discarded centres to the number of centres in the original network. 
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Simulated performance for Gaussian kernel RBF and NN receiver, 4 chip codes 
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Figure 6.23: Simulated performance of Gaussian kernel RBF network and NN receiver based 
on the reduced set of centres, obtained from the Voronoi diagram: (a) Gaussian 
kernel RBF complete set; (b) Gaussian kernel RBF reduced set; (c) NN receiver, 
complete set; (d) NN receiver, reduced set 

6.4.4.2 Future developments 

Since the dimension of the decision space to be partitioned increases linearly with the number 

of users, the presence of more users means that the NN decision boundary is a U — 1-

dimensional hyperplane. The construction of the Voronoi diagram in higher dimensions is 

an area of current research [110], but it is shown in [111] that the nearest neighbour may 

be found in 0 ((log2N) U1  log2  (log2N)) time; this structure requiring 0 (N (1og2N) ' 

storage. For time-varying channels, the dynamic insertion and deletion of centres could be 

employed to update the network, or approximate (1 + e) [I 11] methods could be used if the 

channel characteristics evolve only slowly. 

A possible drawback to the nearest neighbour approach is that this method produces a hard 

decision, with no indication of the reliability of the estimate, as is required for instance for a 

soft-decision Viterbi decoder for an FEC encoded DS-CDMA system, as considered in Chapters 

4 and 5. As a development, it may be possible to construct a soft decision based on the distance 

to the nearest centre, or to extend this approach to also consider the next-nearest neighbour, 

although the excellent performance achieved by the NN algorithm as implemented, may mean 

that such an approach would be an unnecessary complication. 
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6.5 Summary 

In this chapter, non-linear structures, using radial basis functions have been considered as 

receivers for the DS-CDMA environment. Various methods of constructing the network have 

been considered, and the performance of these structures has been simulated and shown to 

outperform linear structures when the interference is predominantly non-linear in character. 

The direct implementation, whose input is formed from the received chip-level signal, was 

shown to have superior performance to a network whose input is obtained by correlating the 

received signal against either the matched filter, or the matched filter convolved with the channel 

impulse response. 

The chip level DRBF receiver, when employing decision direction was shown to have similar 

performance to the standard network, so that this method could be investigated to reduce the 

computational complexity. However, care would be needed to avoid the propagation of errors 

if this approach is adopted for time-varying channels. 

To illustrate the problem more clearly, a sample spreading sequence set and channel impulse 

response was then considered, which was shown to generate a system with non-linear behaviour. 

This system was used to investigate methods for reducing the complexity of RBF network 

receiver structures, firstly by the use of alternative kernels. The asymptotic behaviour of 

these receivers for high signal to Gaussian noise ratios then prompted an investigation of 

a receiver based on the nearest neighbour centre to the input. This strategy was shown to 

provide comparable performance to the standard Gaussian kernel RBF network receiver, and 

at much reduced computational effort. A graphical interpretation of this receiver was then 

proposed, and used to provide a scheme for reducing the number of centres in the network. 

The performance of a receiver based on this reduced set of centres was shown to have virtually 

identical performance to the original set, regardless of whether the receiver consisted of the 

Gaussian kernel RBF network, or the proposed nearest neighbour receiver. Finally, suggestions 

for possible developments of this receiver for a time-varying channel were indicated. 
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Chapter 7 

Conclusions 

The main contributions of the work presented will now be indicated. Firstly, a summary of 

the results obtained is given, with the specific novel contributions arising detailed in section 

7.2. Possible future developments of the work are then outlined in section 7.3, with the final 

conclusions of the thesis presented in section 7.4. 

7.1 Summary 

An outline was presented of various aspects of the system design of the downlink of a DS-CDMA 

communications system. A number of alternative receiver structures have been considered, and 

an idea of the complexity of each of these is summarised in Table 7. 1, in which there are U 

active users, the FEC coding (if present) has rate R = 1/C, constraint length K and memory 

L, and the spreading sequences are of length M chips. 

Receiver structure Storage required Number of operations 
Matched filter 0(M) 0(M) 
Adaptive LMS filter 0(M) 0(M) 
Adaptive RLS filter 0(M) 0(M2) 

Direct matrix inversion 0(1112) 0(1113) 

Viterbi algorithm 0(2" 	') 0(L2" 	') 
Interference canceller O(UM) 0(U M) 
Viterbi interference canceller 0(U M2" ') O(U LM2" ') 
PMF Radial basis function network 0(22U1) 0(U22') 
Nearest neighbour network 0(2 2U) 0(2Uu 	'log2  (2 U)) 

Table 7.1: The complexity of the receiver structures considered 
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In the AWGN channel, the convergence and performance of two adaptive receiver structures 

based on the square error penalty function were compared. The RLS algorithm was shown to be 

superior to the LMS algorithm, whose properties were shown to be dependent on the number of 

active users and the background noise level. In a typical urban time varying channel, the RLS 

algorithm was shown to converge within the same time as for the AWGN channel, although to 

a greater misadjustment M. The performance of the RLS algorithm in multipath was shown to 

degrade gracefully with loading and background noise, as in the AWGN only case. 

Convolutional coding was considered both as a replacement for and a supplement to direct 

sequence spreading, and a number of systems, combining FEC coding and direct sequence 

spreading, for a fixed overall processing gain, were considered. Simulations of these systems 

demonstrated the ill-effects of simply increasing the convolutional coder constraint length, 

without a corresponding adjustment in coding rate. MAT was shown to be a significant 

impairment to the operation of the Viterbi decoder in the receiver, and so a number of parallel 

interference cancellation schemes were considered. To reduce MAI, the principle of parallel 

interference cancellation was investigated in the context of signals consisting of both FEC 

coding and direct sequence spreading. Structures using either the matched filter or the Wiener 

filter, together with a data decision from a simple hard limiter or a Viterbi decoder were 

analysed and simulated. The combination of a matched filter receiver with the intermediate 

Viterbi decoder was shown to provide reasonable performance, without the requirement for the 

evaluation of the Wiener filter. 

Non-linear receivers were shown to provide excellent performance, whether implemented at 

the chip rate, or at the symbol rate, compared to the equivalent Wiener filter. The inherent 

complexity of these RBF-based receivers, as the number of active users increases was indicated 

and a number of methods for reducing this complexity were investigated. Decision direction 

was shown to provide a possible mechanism for reducing the number of centres which must be 

considered, at little detriment to the performance. Simpler kernel functions, enabling the more 

rapid evaluation of the decision function, were shown to provide a mechanism for reducing the 

complexity of the calculation for each centre. Finally a new receiver structure was proposed, 

and demonstrated to have comparable performance to the RBF receiver, but at much reduced 

complexity. The efficient calculation and traversal of structures representing this receiver was 

indicated, with emphasis on the application of this technique as the number of users increases, 

and to time-varying multipath channels. 
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7.2 Contributions 

The principal novel contributions to knowledge described in this thesis are as follows: - ollows:- 

• The performance of the RLS algorithm in a time-varying multipath channel was shown 

to depend on the system chip rate and the choice of resetting strategy. The influence of 

the forgetting factor A on the convergence and performance of the receiver was shown to 

be significant if the tap weights are not reset after each data cycle. 

Orthogonal convolutional coding was shown to be impractical for multiple access systems, 

unless augmented by a randomising sequence to avoid the same encoded sequence being 

output for different input conditions. Even when additional randomising stages were 

included, the orthogonal coding system was shown to have inferior performance compared 

to the MMSE (Wiener) receiver as the loading was increased for systems with constraint 

lengths of 3 and 6 (equivalent to linear processing gains of 8 and 64 respectively). 

For systems devoting resources to both FEC coding and direct sequence spreading 

for a fixed overall processing gain, both Gold and random spreading sequences were 

considered. With 20 users and a bandwidth expansion factor of around 500, the combination 

which offered the best performance, using either spreading sequence set, was the rate 1/8, 

constraint length 6 convolutional coder, with 63-chip spreading sequences. Increasing the 

loading caused the rate 1/4, constraint length 6 system, with 127 chip spreading sequences 

to offer the best performance, for a number of background noise levels. 

Simulations of the combined Viterbi decoder and MAT canceller confirmed predictions 

that, for a linear processing gain of 126, significant capacity improvements over the 

conventional sign decision cancellation receiver were achieved, with the combination of 

the Wiener filter to despread the signal together with an intermediate Viterbi decoder able 

to support 50 % capacity at the same probability of error as the single user matched filter 

receiver. 

The nearest neighbour receiver was shown to have comparable performance to the 

Gaussian kernel RBF receiver. Interpreting this proposed receiver in terms of a Voronoi 

diagram provided a mechanism for reducing the number of centres in the network, 

by discarding those centres which do not contribute to the nearest neighbour decision 

boundary. 
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7.3 Future developments 

In the simulations described, inter-cell interference from other base stations in the network 

and interference from other external commmunication systems is simply incorporated into the 

overall background noise. A possible development, therefore, would be to simulate the effects 

of realistic structured co-channel interference from neighbouring cells more accurately, or to 

model more closely the effects of other competing systems. 

Effects caused by step-changes in the transmitted signal, due to the abrupt cessation or initiation 

of a particular user's transmission have not been modelled in this investigation. While these 

effects may be reduced by limiting the exact times at which such events may occur, it would 

be interesting to investigate the impact of this on the convergence and error performance of 

the adaptive algorithms considered. Other adaptive algorithms based either on the mean square 

error as considered here, or other penalty functions, such as the least mean fourth (LMF) 

algorithm [112] may prove useful at combatting the effects of MAI, although these may impose 

additional computational requirements. Decision direction could be employed in conjunction 

with an adaptive algorithm to avoid the need for training data, although some means must be 

considered to prevent error propagation caused by incorrect decisions. A wider range of Doppler 

spreads, corresponding to different vehicle speeds, and a wider range of transmission data rates 

could also be considered, to investigate the effects of these parameters on the convergence 

and error performance characteristics of the RLS, and other adaptive algorithms. Other models 

for the channel may also be considered. The separation of the receiver tasks into channel 

equalisation, via a pilot signal to estimate the instantaneous channel impulse response and MAI 

rejection, via an adaptive algorithm, may be worthy of further investigation. 

Greater delays may be tolerated in the FEC-decoder portion of the receivers considered in 

Chapter 4, allowing the use of longer constraint length convolutional coders. While the 

performance advantages of these FEC coders are clear in the single user environment, the 

influence of MAI on systems using larger constraint lengths is unclear. In addition, the larger 

delays may adversely affect the ability of the system to perform in realistic time-scales. The 

performance of sub-optimal FEC-decoding algorithms, such as the stack or Fano algorithm may 

also be of interest. The allocation of resources to coding and spreading has been investigated 

for a relatively large linear processing gain of around 500. It would clearly be useful to also 

consider the optimal balance of FEC-coding and direct sequence spreading in systems with 

shorter processing gains, such as may be used in extensions of the GSM system. In addition, the 

inclusion of a multipath channel may cause a different combination of coding rate and spreading 
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sequence length to afford better performance. The additional use of an interleaver would be 

required in this case, to avoid the same part of each user's signal suffering the same attenuation. 

The use of more powerful FEC structures, such as turbo codes, have been shown to greatly 

improve single user communications, and whether similar improvements would be possible 

with multiple access schemes, set against the impact of the extra computational demand, and 

variable processing delay which these coding structures require, may also be of interest for 

further work. 

The receivers discussed in Chapter 5 are all limited to a single stage of MAT cancellation. 

An obvious development therefore, would be to investigate the performance of the receivers 

considered when further cancellation stages are included, although any improvements gained 

must be taken in the context of the increased complexity and additinal delay thus imposed on 

the system. The effect of assigning different convolutional coding structures to different users 

on the efficiency and memory requirement of the Viterbi cancellation receivers may also be 

of interest. Care would also need to be exercised if such structures were to be considered for 

the uplink, since the delay on each signal would have to be accurately estimated to properly 

align the re-spread signals, prior to cancellation. Use of soft decisions in the production of 

the intermediate signals is likely to lead to a significant performance advantage. In addition, 

thresholding the soft decisions to only make use of those results which are deemed sufficiently 

reliable may be a promising strategy, since it may prevent borderline decisions catastrophically 

affecting the final performance. Alternative despreading filters, which do not require the same 

level of accuracy in the estimation of the signal to noise ratio, may also prove worthy of future 

investigation. 

In the context of the non-linear receivers described in Chapter 6, the most fruitful improvements 

are likely to be those which lead to a reduction in complexity of the receiver, without significantly 

compromising performance. The approximation of the exponential by an algebraic function 

may prove of merit for any possible application in hardware, while other kernel functions could 

be investigated to more accurately approximate the Gaussian kernel. Decision direction has 

been shown to be a valuable method of reducing the number of centres, at little cost to the 

performance. The number and frequency of control, or training bits, used in this technique, to 

limit error propagation could be of interest. Focussing on the nearest neighbour receiver, the 

limiting factor is the efficient construction and rapid traversal of a suitably ordered representation 

of the centres. The complexity of this problem increases non-linearly with increasing numbers 

of users, whilst the presence of a time-varying channel will require the dynamic update of the 

location of the centres. Characterising the number of centres which may be discarded without 
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serious detriment to the performance, by employing a Voronoi-diagram based approach has been 

shown to be effective, and the application of this technique for more users, and in a time-varying 

channel is an obvious extension of the work presented here. Finally, as in the previous chapter, 

incorporation of soft decisions, possibly suitably thresholded to avoid borderline decisions, 

may further improve the performance of the nearest neighbour receiver, although, as has been 

demonstrated, the deviation in performance from the complete Gaussian kernel RBF network 

is only minimal, so that the increased complexity of this approach may be needless. 

7.4 Conclusion 

In this thesis, various signal processing techniques have been investigated to attempt to improve 

the downlink capacity and performance of a cellular DS-CDMA communications system. The 

principles of this spread spectrum technique were first outlined, including a description of a 

number of aspects of system design. Adaptive algorithms, which iteratively approximate the 

Wiener (MMSE) filter have been shown to be useful in countering the effects of a time-varying 

typical urban multipath channel. The use of forward error correction has been investigated, 

both as a substitute for and as a supplement to direct sequence spreading. Parallel interference 

cancellation methods have been combined with FEC decoding, and shown to provide significant 

increases in capacity, at tolerably moderate increases in overall complexity and processing delay. 

Finally, non-linear receivers, using radial basis functions, have been shown to provide excellent 

performance, but at the expense of significant complexity requirements. Methods to reduce 

the complexity of such receivers have been proposed, and shown to incur little degradation 

in performance. Thus, several signal processing methods to improve the performance of DS-

CDMA systems have been proposed, investigated and evaluated. 
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Convolutional Coding Strategies for Code Division Multiple Access 
Cellular Communications 
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Abstract This paper investigates the use of non-linear con-
volutional coding techniques for use in a DS-CDMA cellu-
lar communication system. Comparisons are made between 
various error-correction strategies and the Wiener minimum 
mean square error receiver filter, implemented with the same 
bandwidth expansion. The use of Gold codes in conjunction 
with an orthogonal convolutional encoder is shown to pro-
duce comparable performance to conventional convolutional 
coding for single user environments, and to yield reasonable 
capacity potential for low numbers of users. Future develop-
ments are indicated, including the possible application of this 
system to multipath channels. 

I. Introduction 

The demand for increased capacity of cellular mobile phone 
systems is projected [11 to reach some 40 million users in 
Europe alone by the end of the century. Current digital sys-
tems such as the European Global System for Mobiles (GSM), 
which use time as the discriminant between users to provide 
multiple access (TDMA), are in competition with potentially 
higher capacity [2, 31 code division multiple access (CDMA) 
systems, such as that detailed in the IS-95 Interim Standard 
for mobile communications [4]. CDMA systems gain a multi-
user capability from the shared use of the expansion of signal 
bandwidth afforded from [5] 

C=WLog2(l+ 
P

) 	 (I) 

where C is the capacity, W the bandwidth and P  the signal 
to noise power ratio. 

Specific problems are associated with the signal paths from the 
base station to the mobile receiver (downlink) and the reverse 

*Ian.Band@ee.ed.ac.uk  
tDavid.Cruickshank@ee.ed.ac.uk  

path (uplink). On the downlink, the signal may be subject 
to the effects of multipath and fading, whilst synchronisa-
tion and power control (the near-far problem) are additionally 
important in the uplink. 

In this paper, we restrict attention to the downlink of a 
synchronous Direct Sequence Code Division Multiple Ac-
cess (DS-CDMA) cellular communication system employing 
BPSK symbol modulation, and consider methods of corn-
baiting errors through the use of non-linear convolutional 
codes. The noisy environment considered here is due only 
to Multiple Access Interference (MAI) from competing users 
and Additive White Gaussian Noise (AWGN) which may be 
taken to represent either system or thermal noise. 

The performance in AWGN (in terms of the average number 
of errors over a suitably large number of Monte Carlo simu-
lations) may be considered as a function of the quantity 	, 
given by 

Eb /M 
2) 

where u2  is the signal to noise power variance and M is the 
bandwidth expansion or processing gain used. The decibel 
form of 	is used in the calculations. 

No 

It is envisaged that this work will eventually be incorporated 
into an environment with fast Rayleigh fading, such as those 
defined e.g. in [6], where preliminary analyses have shown 
low processing gain values are more suitable, especially with 
adaptive algorithms. To satisfy this criteria, and also so that 
the processing gain is a power of 2, for reasons which will 
become apparent later, we have chosen M = 8 for all the 
simulations reported here. 

The focus of the work presented here is on comparing the 
relative performance of the various techniques, implemented 
with equal overall processing gain, with that of the Wiener 
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receiver filter, previously detailed in [7]. 

Breifly, the Wiener filter gives the weights for the taps of the 
receiver filter as 

=(3) 

where I 	is the autocorrelation matrix of the signal vector 
y input to the receiver, and 	is the cross-correlation vector 
between y and the original data symbol x. 

This technique requires a priori information of all the users' 
spreading codes and an estimate of El, but is the minimum 
mean square error linear receiver and so is of use as a bench-
mark against which any proposed strategy must be compared. 

The next section describes the various techniques to be stud-
ied, while section III presents some results. Finally, section 
IV discusses the implications of these results with emphasis 
on future developments. 

H. Coding Strategies 

In this section, we describe a number of techniques involving 
the use of non-linear convolutional coding of data to increase 
the probability of decoding the received data stream with as 
few errors as possible. This may be viewed as an altern-
ative form of spreading the spectrum of a signal, in which 
the convolutional code provides the encoded signal, rather 
than conventional DS-CDMA, in which the chips are simply 
modulations of pseudo-noise sequences. 

Convolutional Encoding 

Convolutional encoding [8] is a popular form of forward error 
correction (FEC), where the output n data chips are a function 
of the incoming b data bits and the connections of a set of serial 
shift registers to a set of modulo-2 adders. The number of shift 
registers is termed the constraint length, K, and the rate of 
the code is defined as the ratio of input to output digits (). 
Conventionally, the particular configuration is denoted by the 
octal form of the connections to the mod-2 adder. As an 
example, the rate constraint length 3 convolutional encoder 
denoted by (7, 5) is shown in figure 1. 

Decoding of the convolutionally-encoded data is here per-
formed using the Viterbi Algorithm [9]. Since many subtle 
variants of this algorithm are frequently employed, it is use-
ful to state explicitly the assumptions made and procedures 
carried out in this implementation. 

The Viterbi Algorithm The Viterbi Algorithm is a max-
imum likelihood (ML) decoding algorithm [10], which pro-
ceeds by constructing a trellis; the surviving branches of which 
are determined by a comparison between the actual received 
and possible received signals. If the incoming data samples 
are first quantised to binary data the process is termed hard 
decision, while if a higher degree of quantisation is employed  

and retained for the comparisons, the decoder is said to be us-
ing soft decision. The latter improves performance by around 

	

2dB for most values of 	[II], and is the scheme adopted No 
here. 

After an appropriate amount (corresponding to the survivor 
path length, L) of data has been received and analysed, the 
algorithm makes a decision on the optimal path back through 
the trellis and hence deduces the initial data bit. Thus, a 
decision is only made on a particular data bit after code se-
quences from the next L data bits have been received. In 
this implementation, the trellis is re-calculated for each new 
bit entering the receiver, so that the system approximates to 
periodically sampling an infinitely long trellis. It has been 
shown [11] that, provided the survivor path length is chosen 
greater than 4-5 times the constraint length, this does not ad-
versely affect the performance of the Viterbi algorithm. In the 
investigations here, L is set to 32. 

Multiple Access Convolutional Codes In order to ac-
commodate more users, different convolutional codes (and 
therefore different trellis structures) are assigned to each user. 
Due to the short constraint length codes used here, the num-
ber of adequate (in terms of mean free distance) connections 
are limited. Since the optimal connections for a rate 1  code 
are (5,7,7,7) [12], the connections used here are chosen as 
follows 

	

User I 	Connection 

1 	(5,7,7,7,5,7,7,7) 
2 	(7,5,7,73,533) 
3 	(7,7,5,7,7,7,5,7) 
4 	(7,7,7,5,7,7,7,5) 

The use of longer constraint length codes, and hence a greater 
choice of connections may be expected to give better per-
formance, nonetheless the shorter codes are retained here or 
comparison. 

The Orthogonal Convolutional Encoder 

The orthogonal (or Hadamard) convolutional encoder [1 31 in-
corporates a second set of shift registers connected in parallel 
with the conventional convolutional encoding set. An ex-
ample of this arrangement is shown in figure 2, which demon-
strates the case for a rate constraint length 3 system. The 
switches at the output of this secondary set are toggled at rates 
1, 2, 4, etc so that for each data bit input to the top register-
set, a unique 2K -length Walsh code [14] is output. This is 
the prime motivation for choosing 8 as the processing gain of 
the previous convolutional coding systems, to enable a direct 
comparison between the systems. 

Multiple access is acheived by assigning each user a unique 
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I - I mapping between the two sets of shift registers[ 151. The 
particular Walsh code output thus depends on three quantities; 
the incoming data bit, the present state of the upper register 
system, and the arrangement of connections between the two 
set of registers. Note that this now reduces the effective 
number of degrees of freedom of the code, since the output 
code rate is now determined completely by the constraint 
length, rather than in the conventional case, where these two 
parameters are independent. 

Orthogonal Codes with Random codes 

The use of additional Pseudo-Noise (PN) codes has been pro-
posed by Ormondroyd and Maxey f 16 to improve the spectral 
characteristics of the Walsh codes, thus increasing the abil-
ity of the scheme to separate users. No additional spectrum 
spreading is produced by this stage, in which competing users 
are assigned different random codes, and the output from 
each orthogonal convolutional encoder is simply multiplied 
chip-by-chip by the appropriate random code. These random 
codes have been selected to be the same 8-chip codes used 
in the Wiener filter calculations, so that no artificial bias is 
introduced. 

Orthogonal codes with Gold codes Finally, we consider the 
use of Gold codes [17, 18] to modulate the encoded data, 
rather than using random codes. The motivation for this 
comes from the conventional synchronous DS-CDMA sys-
tein in AWGN, where the use of Gold codes to spread the 
data is more beneficial than random codes, due to the im-
proved cross-correlation qualities of the Gold codes. For this 
reason, the use of Gold codes is anticipated to give increased 
separation between users, and that the subsequent perform-
ance increase will continue with increasing processing gain. 
It must be acknowledged that these benefits will be nullified 
if a multipath channel is considered. Due to the chosen pro-
cessing gain of 8, we have selected 7-chip Gold codes for this 
application, augmenting them by a single digit to give a set of 
extended Gold codes. 

III. Results 

In this section, we present the results of the various tech-
niques described previously. Without loss of generality, we 
may concentrate attention on user I in the calculation of the 
performance curves. The basic system diagram is shown in 
figure 3 in which the encoder element is either a conven-
tional convolutional encoder, or an orthogonal convolutional 
encoder, and the switches may be set to modulate the output 
from the encoder by either a random code or a Gold code or 
not at all. In this way, the effects of the various stages may be 
considered separately. The output from each user, however 
coded and/or modulated, is then added coherently to that from 
the other users to form the transmitted signal vector s. Addit-
ive White Gaussian Noise is then added to form the input to 
the receiver, y, where the signal is dc-modulated if necessary 

and then passed on to the Viterbi Decoder, the output from 
which forms the estimate of the data, a. The ratio of the 
number of errors to the total number of transmitted data val-
ues (typically I million trials are performed) forms the main 
output statistic (Re), which may be calculated as a function 
either of number of users for a fixed background noise level, 
as in the first case, or of background noise level for a fixed 
number of users, considered in eases 2 and 3. 

Case 1: Pert i,r,nance with Number of Users 

Figure 4 shows the performance of the various techniques with 
increasing numbers of users for 	= 5d 13. As may be seen, 
none of the proposed schemes approach the performance of 
the Wiener filter for 2 or more users, although they all have 
lower average error probability when only I user is present, 
as expected. 

The performance of the conventional convolutional coding 
system rapidly deteriorates with increasing users. This result 
is probably due to the inadequacies of the short constraint 
length connections used, since the error-correcting capabilit-
ies of the codes are being compromised by the contribution 
from the additional users. The unmodulated orthogonal code 
system performs better, while the addition of random spread-
ing codes produces a further improvement in performance. 
Incorporation of Gold codes appears to increase the capacity 
yet further, at least for low numbers of users, although with 
such short codes, it would be difficult to claim any significant 
improvement. 

Case 2: Perft.rmance against 	for 2 users 

A more detailed analysis of the 2-user case is shown in figure 
5, which shows the performance for a range of noise values. 
It may be seen that the random codes performance is similar 
to that when using Gold codes, both systems approaching the 
minimum mean square error curves. The use of orthogonal 
or conventional convolutional coding schemes leads to much 
poorer results. This is probably due to clashes where the 
same output sequence is generated simultaneously by different 
users, causing the Viterbi Algorithm to lock on to the wrong 
path. This situation cannot be resolved by any receiving 
methodology, but it may be expected that fewer such instances 
would occur for longer constraint-length codes. 

Case 3: Perft,rtnance against 	for 3 users 

The 3-user performance curves in Gaussian noise are shown 
in figure 6. While, as expected, the performance of both the 
conventional and pure orthogonal systems is now becoming 
unreliable, the performance of the orthogonal with Gold codes 
system is now better than that of the orthogonal with random 
codes. This is probably due to the better cross-correlation 
values of the Gold codes, enabling the system to cope with 
more users. The use of longer constraint length code sets with 
e.g. 31-chip Gold codes as modulators may be expected to 
give even better performance. 
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IV. Discussion & Future Work 

This paper has compared the performance of a number of 
strategies based on error-correcting codes for use in a DS-
CDMA system. The use of orthogonal convolutional codes, 
together with Gold codes to improve the spectral character-
istics of the output Walsh codes, rather than produce any 
further spreading of the signal spectrum, has been shown to 
produce performance characteristics comparable to those of 
conventional convolutional coding for single user scenarios, 
while permitting reasonable performance for low numbers of 
competing users. 

An obvious development of the work would be to invest-
igate this promising behaviour for longer constraint-length 
spreading codes, and larger capacity modulating codes such 
as 31-chip Gold codes. 

Another development would be to investigate the suitability 
of this technique to multipath environments such as those 
defined in the COST 207 study. A possible difficulty with 
multipath environments is that the improved performance of 
the orthogonal Gold code system may be adversely affected, 
since the advantages of better cross-correlation values with 
Gold codes may be outweighed by intersymbol interference 
(ISI). It is anticipated that this will form the next development 
of this work. 
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Constraint Length 3, Rate 1/8, Eb/No = 5dB 

Figure 1: Rate 1, Constraint Length 3 (7,5) Convolutional 
Encoder 
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ABSTRACT This paper investigates the use of non-linear 
convolutional coding techniques for use in a DS-CDMA cel-
lular communication system. Particular attention is paid 
to the relative proportions of convolutional coding and dir-
ect sequence spreading which offer the most efficient use 
of the available processing gain. The dependency of the 
optimal strategy on various factors, including background 
noise level, number of active users and coding power is dis-
cussed. Future developments are indicated including the 
possible application of this system to multipath channels, 
and the use of other coding structures. 

1 Introduction 

The demand for increased capacity of cellular mobile phone 
systems is projected [1] to reach some 40 million users in 
Europe alone by the end of the century. Current digital 
systems such as the European Global System for Mobiles 
(GSM), which use time as the discriminant between users 
to provide multiple access (TDMA), are in competition 
with potentially higher capacity [2, 3] code division mul-
tiple access (CDMA) systems, such as that detailed in the 
IS-95 Interim Standard for mobile communications [4]. 

In this paper, we study the downlink (Base station to Mo-
bile) of a hit and chip-synchronous Direct Sequence Code 
Division Multiple Access (DS-CDMA) cellular communic-
ation system, and consider methods of combatting errors 
by introducing non-linear convolutional codes. The effi-
cient use of signal bandwidth is of primary concern in prac-
tical cellular communications applications, so we consider 
the performance of various systems comprising different 
proportions of convolutional encoding and direct sequence 
spreading, whilst maintaining a given overall bandwidth 
expansion. 

Boudreau [5] has calculated the theoretical performance 
(in terms of Chernoff upper bounds) of systems employing 
convolutional coding (and trellis coding) as a natural ex-
tension of the conventional CDMA principle. The perform-
ance of actual systems, however, may be significantly su-
perior (as much as 1.5dB in some cases); this improvement 
being a non-linear function of E . The limited amount of 
simulations in [5] means that it is instructive to consider 
the simulated performance of such systems. 

*Ian.Band@ee.ed.ac.uk  

IDavid.Cruickshank@ee.ed.ac.uk  

The noisy environment considered here is due only to Mul-
tiple Access Interference (MAI) from competing users and 
Additive White Gaussian Noise (AWGN) which may be 
taken to represent either system or thermal noise. The 
performance in AWGN (in terms of the average number 
of errors over a large number of Monte Carlo simulations) 
maybe expressed in terms of the decibel form of the quant- 
ity 	, given by 

Eb_(M 	
1 

No 	2u2 	 () 

where a 2  is the signal to noise power variance and M is 
the bandwidth expansion or processing gain used. 

The next section describes convolutional encoding and de-
coding in more detail, while section 3 presents some results. 
Finally, section 4 discusses the implications of these results 
with emphasis on future developments. 

2 Coding Strategies 

In this section, we briefly describe the use of non-linear 
convolutional codes to decrease the probability of error, 
discuss the decoding algorithm employed and give details 
of the particular configurations used in this study. 

Convolutional Encoding [6] is a popular form of forward 
error correction (FEC), in which the output C data chips 
are a function of the incoming b data bits and the connec-
tions of a, set of serial shift registers to a set of modulo-2 
adders. The number of shift registers is termed the cOn-
straint length, K, and the rate R of the code is defined as 
the ratio of input to output digits (). In this study, we 
confine simulations to convolutional codes with b = 1 and 
values of C of 2,4,8 and 16. 

The Viterbi Algorithm [7] is a maximum likelihood 
(ML) decoding algorithm [8], which proceeds by construct-
ing a trellis; the surviving branches of which are determ-
ined by a comparison between the actual received and pos-
sible received signals. If the incoming data samples are 
first quantised to binary data the process is termed hard 
decision, while if the floating point values are retained for 
the comparison, the decoder is said to be employing soft 
decision. The latter improves performance by around 2dB 
for most values of 	[9], and is the scheme adopted here. 

After an appropriate amount (corresponding to the sur-
vivor path length, L) of data has been received and ana- 
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lysed, the algorithm makes a decision on the optimal path 
hack through the trellis and hence deduces the initial data 
hit. Thus, a decision is only made on a particular data bit 
after code sequences from L data hits have been received. 

Convolutional Code Configurations: It has been 
shown [9] that, provided the survivor path length is chosen 
greater than 4-5 times the constraint length, the perform-
ance of the Viterbi algorithm is not adversely affected. In 
the investigations here, L is set to 32, and the values for 
R and M are shown in table 1, which provides the octal 
format of the tap connections used for the convolutional 
codes. It may he seen that the rates of the codes and the 

Table 1: Convolutional codes used in the simulations  

and the final transmitted signal vector s is then construc-
ted by coherently summing the spread signals over all the 
users. Additive White Gaussian Noise, represented by the 
vector n is then added chip by chip to this signal to form 
the input to the receiver, y. This noise-corrupted signal is 
then de-modulated by first correlating with the first user's 
spreading code, and then passing on the resulting LC en-
coded data hits to the Viterbi Decoder; the output from 
which forms the estimate, 	, of the original data vector. 

The ratio of the number of errors to the total number of 
transmitted data values forms the main output statistic. 
(Pc), which maybe evaluated as a function either of back-
ground noise level, considered in the first four case-studies, 
or of number of active users for a fixed value of 	, con- No  
sidered in the last two. 

K R= 
M = 255, PG= 510 M = 127, PG =508 M =63, PG= 504 M = 31, PG= 496 

(5,7) (5,7,7,7) (7,7,7,5,5,5,7,7) (7,7,7,5,5,5,7,7, 
7,7,7,5,5,7,7) 

4 (17,15) (13,15,15,17) (17,17,13,13,13,15,15,17) (17,17,13,13,13,15,15,17, 
17,17,13,13,13,15,15,17) 

5 (23,35) (25,27,33,37) (37,33,25,25,35,33,27,37) (37,33,25,25,35,33,27,37, 
37,33,25,25,35,33,27,37) 

6 (53,75) (53,67,71,75) (53,67,71,75,53,67,71,75) (53,67,71,75,53,67,71,75, 
53,67,71,75,53,67,71,75) 

lengths of the corresponding PN-sequences have been se-
lected to maintain an overall processing gain (denoted PG 
in the table) of around 500. The choice of tap connections 
for rates 1  (M = 255 ') and 1 (M = 63) mirror those in 
[5] for constraint lengths 3,4 and 5 whilst those for R = 
are motivated by the results of Larsen [11]. While it is ac-
knowledged that the repetition of the rate code to form 
the rate 1  code may be sub-optimal, especially for the lar-
ger constraint-length systems, this configuration is liable to 
have similar properties to any optimal arrangement, and 
is thus employed here. 

3 Results 

In this section, we describe the simulations carried out 
and present the results of the various scenarios outlined 
previously. The basic system diagram is shown in figure 1, 
which also indicates the length of the signal at each of the 
relevant points. 

Referring in more detail to figure 1, the data vector x1  
of L hits is input, to the convolutional encoder, and the 
resulting LC chips of data are then further spread by the 
user's pseudo-noise (PN) code to Produce a signal of LCM 
chips. This process is repeated over all active users (with 
the same convolutional code configuration for each user 2  

Strictly, Gold codes of length 255 do not exist[iO], however 
"Gold-like" sequences may he constructed with the required cross-
correlation of -.1 at the synchronous point. Those used here are 
obtainedfrom the ni-sequences [8,2,3,4], and [8,3,5,6], 

2 This means that the separation of users is achieved solely by 

In the first four cases, Gold codes are used as the PN se-
quences and there are 20 active users present, while in 
cases 5 and 6, random codes have been chosen to spread 
the convolutionally-encoded data, and the values of 
are held fixed at 2.0dB and 4.0dB respectively. The choice 
of random codes is motivated by the fact that in a mul-
tipath environment such as those defined in the COST 207 
study [12], the presence of intersymbol interference will 
corrupt the near-orthogonal qualities of Gold codes. Note 
that in this case, the percentage loading is calculated from 
the number of active users and the overall processing gain 
(PG) rather than the length of the appropriate PN code. 

Case 1: K = 3 The first case considered here is for con-
straint length 3 and is shown in figure 2. Note that, in 
the figures, the performance of each system is compared 
with Binary Phase Shift Keying (BPSK) and conventional 
DS-CDMA with 511-chip Gold codes. R refers to the con-
volutional code rate, M to the length of the Gold code used 
in the direct sequence spreading, and PG to the combined 
processing gain, via PG = M. 
It is apparent that in this case, the rate 	system per- 
forms better than the other configurations, with the rate 

system also performing well. The relatively poor per- 
formance of the rate 	system is probably due to the 
increased cross-correlation of these Gold codes (20 users 
with 31-chip spreading means that the multiple access in-
terference is more significant than the longer PN-code sys- 

the spread spectrum module. A possible development of this which 
may he considered in the future would be to assign different tap 
connections for each user 
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tems), combined with the possible sub-optimality of the 
convolutional codes. The reason for the anomalously poor 
performance of the rate 1 system is less clear, although 
this may simply be an unfortunate combination of rate 
and constraint length. Further investigations may provide 
some insight about this behaviour. 

Notwithstanding these comments, even the poorest per-
forming convolutional code is still significantly better than 
the 20-user conventional CDMA system for values of 1-3  No  
greater than about 1dB 

Case 2: K = 4 The results for constraint length 4 sys-
tems are presented in figure 3, from which it may he seen 
that the rate 1 and 1 systems, which are now very sim-
ilar, are slightly better than the rate I system, while the 
rate -j  codes are. still suffering from the increased MA! of 
the 31-chip Gold codes in a similar way to the K=3 case. 
The improved performance of the rate - system is prob-
ably due to the more diverse use of tap connections here 
than in the previous case. Where a greater variety of tap 
connections is available, it is prudent to make as full use 
of them as possible, thus increasing the power of the code 
and permitting more resources (bandwidth) to be invested 
in the direct spreading part, to allow greater capacity. 

Thus, while the choice of rate and constraint length are 
notionally independent, the use of appropriate rate codes, 
which make use of the full range of available connections for 
a given constraint length can lead to marked improvements 
in performance. 

Case 3: K = 5 Figure 4 shows the results obtained using 
systems with constraint length 5. This appears to confirm 
the trend noted in case 2, namely that the systems with 
rates 1 and 	are inferior to those with rates - and 
which make more efficient use of the increased perform-
ance, by virtue of their larger constraint lengths, of the 
convolutional codes. A point of interest is that now the 
rate 	codes are better than the rate 1 system. This is 
again due to more efficient use of available connections, 
which is beginning to compensate for the greater MAT of 
the 31-chip spreading module, in contrast with the first 
two cases with their shorter constraint lengths. 

The performance of the rate 1  system at 91  values lower 
than around 1dB is also worthy of note, since it is now 
inferior to conventional CDMA. This is probably also (lUe 
to the increased power of the convolutional codes, since 
more errors are introduced from the Viterbi algorithm los-
ing track of the correct path through the trellis. Thus it 
is not always beneficial simply to increase the constraint 
length independently, since more errors may be introduced 
under increased-noise environments. This effect will be ex-
amined in more detail in case 5, in which the additional 
noise will be due to increasing numbers of users. 

Case 4: K = 6 For constraint length 6, shown in figure 5, 
the trend outlined previously is reinforced, with the rate 
and rate 1  systems better than the rate 1 and systems, 
respectively. The rate 1  system has better performance 

than before, since again, more efficient use is made of the 
available tap connections. 

As in case 3, the rate 1  system performs significantly 

poorer than the conventional case for fk values below No  
around 1dB. This is again clue to the Viterbi algorithm 
producing a higher number of errors when an incorrect 
path through the trellis is selected. Thus, care needs to be 
exercised when employing a long constraint length, high 
rate convolutional code under conditions of high noise. 

Case 5: El = 2.0dB The performance of these systems 
with varying numbers of active users may be judged from 
figure 6, for which the background noise level is set at 
2.0dB (equivalent to 5.0dB signal-to--noise ratio). In this 
case, at least 1000 errors have been detected for each point 
on the curves and constraint lengths of 3 and 6 are em-
ployed. Random codes are used as the PN sequences to 
more closely model practical situations, and this means 
that the trends seen through the previous cases will be 
accentuated. 

For very low loading (around 2 %), the systems behave 
much as would be expected, although the K = 3, rate 

system performs even worse than conventional CDMA, 
and the K = 3 rate . system is only marginally better. 
In general, the K = 6 systems have better performance, 
due to the increased power of the codes, however it is in-
teresting that even for very low numbers of users, the rate 

K = 3 and K = 6 systems are very similar. 

As the loading is increased, various effects may be seen. In 
particular, the only systems which continue to outperform 
conventional CDMA are the K = 6 rate 1  and K = 3 
rate 	configurations. These systems represent the most 
efficient use of the combination of rate, constraint length 
(and hence code performance) and spreading capacity, and 
thus have superior performance. 

Significantly, the K = 6 rate 1 combination, which ap-
peared to be the best for the previous cases with 20 users 
using Gold codes, does not have such good performance 
using random codes as the number of users is increased. 
In addition, the K = 6 rate 	combination has poorer 
performance than the equivalent K = 3 system. Although 
this may at first appear counter-intuitive, the reason is due 
to the increased overall noise causing the Viterbi algorithm 
to lock on to the wrong path through the trellis, and hence 
produce more errors, analogous to the noisy situations in 
cases 3 and 4. 

Case 6: Eb-  = 4.0dB The equivalent results for 	= No  
4.0dB are shown in figure 7. This confirms some of the 
results in the previous case; specifically, that although the 
K = 6 rate I  system is better for low loading, as the load-
ing is increased its performance becomes worse than the 
same rate K = 3 system, and that the beneficial effects of 
most convolutional coding systems are lost as the loading 
increases. As in the previous case, the optimal system as 
the number of users is increased is that using K = 6 rate 

convolutional codes, with 127-chip spreading codes. 
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4 Discussion & Future Work 

This paper has compared the simulated performance of 
a number of strategies utilising non-linear convolutional 
codes combined with pseudo-noise spreading codes for use 
in a processing-gain limited DS-CDMA cellular communic-
ation system. Convolutional codes with constraint lengths 
up to K = 6 have been considered, with rates of 	, 

and & together with appropriate length spreading se-
quences. 

With an overall processing gain of approximately 27dB 
and 20 active users, the optimal strategy seems to he the 
combination of a constraint length 6, rate I convolutional 
code and 63-chip Gold spreading codes, although increas-
ing the constraint length may cause a different rate to he 
optimal. Increasing the number of users and employing 
random spreading sequences means that this arrangement 
is no longer optimal, and that convolutional codes of the 
same constraint length but rate 1 should be used instead. 
The ill-effects of simply increasing the constraint length 
without a corresponding adjustment of the code rate are 
also demonstrated. 

These observations serve to exhibit the fine balance that 
exists between the power of the convolutional code (ob-
tained from its rate and constraint length), the capacity of 
the spreading sequences and the noise level, whether from 
the background or from other subscribers on the system. 

A development of the work would he to investigate the 
performance of these techniques in irniltipath environments 
such as those defined in the COST 207 study. Alternative 
methods of convolutional encoding [13, 14] may also prove 
useful in future studies. 
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Short title: FEC coding and Interference Cancellation Applied to CDMA 

Abstract 
This paper compares methods of reducing the co-channel interference on a DS-CDMA downlink 
signal by employing convolutional coding at the base station and a Viterbi decoder as the initial 
estimator for a parallel cancellation scheme. The combination of a matched filter and the Viterbi 
algorithm is shown to afford increased performance compared to equivalent bandwidth systems 
which do not use forward error correction. The use of a Wiener filter to collapse the spectrum 
of the spread signal leads to even greater capacity improvements. The systems discussed may be 
implemented with an affordable increase in receiver complexity and processing delay. 

1 Introduction 

Current predictions [1] for general usage of mobile telecommunications in Europe are beyond that 
supportable by present systems. One possible contender for efficient use of the limited avail-
able bandwidth is direct sequence code division multiple access (DS-CDMA), employing spread 
spectrum technology. The IS-95 interim standard for CDMA [2], allowing for frequency re-use 
in neighbouring cells, the even distribution of workload amongst cells, and user-transparent soft 
hand-off as the call is re-routed from one cell to another, is likely to evolve to be in competition 
with any schemes chosen for the proposed European Universal Mobile Telecommunication Sys-
tem (UNITS) [3]. Specific characteristics are inherent in CDMA systems however, both in the 
down-link (Base Station to mobile) and on the reverse path, or up-link. 

Those specific to the downlink include the property that all the signals emanate from a common 
source, so that system resources must be expended on acquiring and maintaining synchronisation 
with the relevant base station to enable the mobiles to decode the data as reliably as possible. 

*el[lail: Ian.Band@ee.ed.ac.uk  
te..rIIail: David. CruickshankQee . ed. ac. uk  
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The effects of multipath propagation are not considered in this study, although the extension of 
the systems considered to such realistic environments is an obvious future development. 

In this paper, we concentrate on the downlink of a DS-CDMA system, assuming perfect acquisi-
tion and synchronisation of the signal, and propose the use of interference cancellation to reduce 
the multiple access interference (MAI) from competing users, combined with the error-correcting 
capabilities of convolutional encoding at the transmitter and the Viterbi algorithm (VA) at the 
receiver to improve the initial estimate inside the canceller. The next section outlines recent 
related work and section 3 analyses the various systems considered, following which we present 
some simulation results. Finally, some conclusions are drawn and ideas for future work indicated 
in section 5. 

2 Background 

A typical DS-CDMA transmitter is shown in figure 1, in which it may be seen that a sample of the 
transmitted signal vector s, is generated by the coherent addition of the required user's spreading 
code (of length N chips) modulated by the required data bit x, to similarly modulated spreading 
codes for the other users, so that, for a total of U active users, the N-dimensional data vector y 
received at the mobile is given by 

y=s+n=dc+n, 	 (1) 

where the data bit d(j) E f-1,+1), the spreading code for user j is {c} 1, and n is an N 
dimensional vector of additive white Gaussian noise (AWGN) of variance 0.2 • The simplest receiver 
structure, a matched filter (MF), with tap weights set to the original spreading code, was shown [4] 
to have relatively poor capacity compared to the minimum mean square error (MMSE), or Wiener 
filter, which may he successfully approximated via an adaptive algorithm. Convolutional coding 
[5, 6, 7] is a popular form of error-correction, in which the data bits are converted into a code 
sequence, which depends not only on the data, but also on the current status of the encoder. DS-
CDMA systems are interference limited, predominantly due to MAI from the other active users. 
The most efficient receivers, therefore, will utilise this knowledge by estimating and subtracting 
the interfering users' contributions from the suitably delayed received signal, thus increasing the 
potential of being able to correctly dc-correlate this new signal and infer the desired user's data. 
This is in contrast to joint detection (JD) techniques, which are typically employed on the uplink 
and have recently received attention as contenders for UNITS through an evolution of the GSM 
system to include a short-spreading code CDMA portion within an existing GSM timeslot [8]. 
These multi-user techniques succeed since the interference on all competing users' signals is a 
sufficient statistic for each data estimate, even though individual soft decisions may not be. 

Interference cancellation (IC) was successfully deployed in [9], using a matched filter for the initial 
estimate, in an asynchronous system using Gold spreading codes. The theoretical analysis of the 
synchronous system with random spreading codes has been developed in [10], in which a Wiener 
filter was used for the initial estimate. In [11], a Wiener filter was employed both for the initial 
estimate and for the final data extraction, and it was there demonstrated that the performance 
afforded by this arrangement surpassed any other two-stage system. 

3 Systems Considered 

We take as our common transmitter the system shown in figure 1, whose inputs come from a 
convolutional coder of rate R, and consider the relative benefits of the four receiver structures 
shown in figure 2, as compared to a standard matched filter (MF), or matched filter canceller 
(MFC) receiver, with equivalent processing gain N. The receivers share a common structure; 
the incoming signal is split into as many parallel paths as required and each replica is correlated 
with an appropriate dc-spreading code. An estimate is then made of the original data bit and 
the interference is reconstructed and cancelled from a delayed copy of the received signal. This 
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signal is then despread, before the Viterbi algorithm is applied for the second time to obtain the 
final data estimate. Although this introduces an extra processing delay since two passes of the 
decoder are required, the extra delay is linear in the memory of the Viterbi decoder, which is 
only determined by the constraint length. The complexity and delay associated with two passes 
of a short constraint length decoder is not exhorhitant when compared to a single pass of a high 
constraint length decoder, as is currently implemented in the IS-95 system. 

3.1 Analysis 

Before proceeding to the results from the Monte Carlo simulations, it is instructive to consider an 
analysis of the expected perfomance of these receivers. It may be shown [10] that the probability of 
a hit error (pe) for a single-stage canceller employing matched filters throughout (MFC), without 
convolutional coding is given by 

PMFC(N U, Es/No) Q 	4(U - 1)pF(N, U, Es/No)] 	
(2) 

where 

MF N 
U, E/N0) Q (VW2 (U_i)) 	

(3) 

is the error performance of a standard matched filter when U users are operating simultaneously, 
the signal to Gaussian noise density Eb/NO = N/2o-2 and Q(() is the standard Gaussian upper 
cumulative distribution function. The theoretical analysis [12] of Viterbi decoding of convolutional 
codes with no MAI leads to the following corresponding expression for p'(Eb/NQ ), 

00 
p(Eb/No) < 	ad(d, Eb/NO) 	 (4) 

d= d 

where (d, Eb/No) = Q (VdREb /No). Regarding the MAI simply as additional noise means that 

we can combine equations 2 and 4 to give the expected probability of error for receiver structure 
A, which uses matched filter cancelling with a Viterbi algorithm, or MFC-V, as 

pMFC+v(N U, E1/N0) 	( 
N 

4(U - 1)p"(N, U, E/N0 ) 
(5) 

Receiver B is similar to A, except that the intermediate and final de-spreading is achieved by 
a Wiener filter, as defined in [4]. By analogy with the analysis for receiver A, the expected 
performance for this receiver may be estimated as 

Pe 	
N, U, Eb/No) < P

4W - 1)p(N, U, Eb/NO)) 	
(6) 

where PF(N. U, E/N3) is derived in [10]. The intermediate data estimate in the proposed new 
receiver C is obtained from the use of a Viterbi decoder, so that this is denoted matched Viterbi 
cancelling with Viterbi, or MVC-'-V. By a similar argument to the above, the expected performance 
for this arrangement is given by 

PMVC+v(N U, E/N0) 	'
(~ 
	

4(U- 1)p (N, U, Eb/NO)) 	
(7) 

Finally, receiver D also has a Viterbi decoder as the initial estimator, but uses a Wiener filter 
for the de-spreading processes, so will again form a lower bound on the results from an adaptive 
algorithm. 
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4 Results 

The results presented compare firstly the theoretical performance of the various receiver structures 
discussed above against the results of Monte Carlo simulations for a fixed background noise level. 
Then simulations will he considered for a fixed loading. The Viterbi algorithm employed by all the 
systems uses soft decision decoding and a survivor path length (memory) of 32 data bits. Rate 1/2, 
constraint length 3 convolutional coding is used for illustrative purposes; the use of more powerful 
coding may be expected to give suitably enhanced results, at the expense of increased receiver 
complexity. With the systems using convolutional coding, random codes of length 63 chips are 
used as the spreading codes, since any rnultipath channel will likely reduce any special correlation 
properties of other spreading code sets. For comparison, a standard matched filter (MF) and 
matched filter canceller (MFC) receiver, without convolutional coding will also he considered, 
using 126-chip spreading codes, to maintain the same processing gain. To aid comparison, the 
capacity is expressed as a percentage of the appropriate overall processing gain for the relevant 
system. 

4.1 Theoretical and simulated performance vs capacity for Eb/NO  = 5 

dB 

Figure 3 shows the predicted theoretical and simulated performances of the various systems for 
Eb/No = 5 dB. As may be seen, the results show reasonable agreement for the matched filter 
structures, but the simulated performance of the canceller incorporating the Wiener filter is less 
close to prediction. This is probably due to the accumulation of many assumptions about the 
Gaussian nature of the multiple access interference, which means that the actual performance 
is somewhat worse than that predicted. In spite of this, the capacity achieved is significantly 
improved over the MFC alone. It may be seen that the inclusion of the Viterbi decoder prior 
to cancellation affords a predicted increase in capacity of approximately 15 %, or 19 users, as 
compared to the sign-decision approach at a probability of error of around iO— . This is most 
likely due to the fact that decisions leading to the wrong code word, or even an impossible code 
word (since the corresponding transition in the state diagram is impossible), are avoided when the 
interference is manageable. If the interference becomes too great however, the Viterbi canceller is 
more likely to be forced into the wrong state, and thus complete code words are in error. This is 
analogous to the conventional performance of Viterbi decoding of convolutional codes (e.g. [7]), 
where the performance degrades rapidly under high noise conditions. The approximations used 
for the Viterbi decoder become increasingly less applicable at high interference levels, and this is 
the reason why the graphs suggest probabilities of error in excess of 0.5. 

For low numbers of users, the convolutional coding systems have much better performance than 
those without, with receiver A supporting 25 users at the same probability of error (10-2)  as 
the single user scenario with the conventional canceller. Use of the Wiener filter (receiver B) as 
the internal and external dc-spreading filter increases this figure to around 38 users. The Viterbi 
Cancellers (C and D) show very good performance, with the matched filter Viterbi canceller (C) 
approaching the performance of the sig-decision Wiener canceller (B) around the 10 performance 
level. At this level, the Wiener Viterbi Canceller (D) is able to support 60 users, showing that the 
combination of this structure with an adaptive algorithm could give promising results. 

4.2 Simulated performance vs capacity for Eb/IVO  = 7dB 

The situation for .Eb/No = 7 dB, shown in figure 4 is similar, with again very good performance 
achieved by the use of the Wiener filter with the Viterbi canceller. Receiver D is again capable 
of supporting 60 users at a probability of error of around 10, which is the same as for the 
single user with conventional cancelling structures without forward error correction. It must also 
he acknowledged that the new structures do suffer from poorer performance as the loading is 
increased beyond a certain level, but this is in the area where very little can be done to alleviate 
the effects of large multiple access interference, so that no communication is possible anyway. 
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4.3 Performance vs Eb/No  for fixed capacity 

The performance of the various systems for 31 and 50 active users (25% and 40% of the overall 
processing gain respectively) is shown in figures 5 and 6 respectively. For 31 users, receiver C is 
approaching the performance of receiver D, indicating that for reasonably low numbers of users, 
a matched filter could be employed successfully, without recourse to using an adaptive algorithm 
to approximate the Wiener filter. 

For the higher levels of MAI experienced with the system at 40 % capacity, it may be seen that 
the systems employing Wiener filters have better performance, as may be expected, but that the 
inclusion of the proposed new structure still leads to increased performance. Indeed, even at this 
loading, receiver D is still able to achieve an estimated p of around 10 —  at Eb/NO = 6 dB, an 
improvement of 1 dB over even the conventional single user system. 

5 Conclusions 

We have proposed a new receiver structure for DS-CDMA, employing parallel multiple access in-
terference cancellation, which obtains its initial estimate using a Viterbi decoder. The performance 
of this receiver has been estimated analytically and simulated using matched filters and Wiener 
filters to provide the direct sequence spreading. These structures have also been compared to 
conventional cancellation techniques, and equivalent processing-gain matched filters and matched 
filter cancellers. Significant performance improvements have been achieved, with the new system, 
employing a Wiener filter, able to support 60 users (50% of the processing gain) at the same 
probability of error as the single user conventional case for a range of background noise values. 
In moderate capacity regimes, the use of a matched filter in our proposed system approaches the 
performance of a Wiener filter combined with conventional cancellation. 

A drawback of the new system is the increased processing delay, however it may be expected that 
this will be offset by the performance gains achieved. 

The extension of this work to multipath environments is an obvious development, which needs 
to be investigated in the future. The use of soft-output devices prior to cancellation [13] may 
also improve performance by weighting less heavily those decisions which have been judged less 
reliable, and thus reducing error-propagation. Additionally, the use of non-linear filters, perhaps 
employing radial basis function (RBF) networks instead of the matched filter or Wiener Filter may 
prove useful in those cases where the multiple access interference is too great for our proposed 
system. A hybrid approach invoving combinations of the above proposals may also prove useful. 

In conclusion, we have presented a promising technique for the reduction of multiple access inter-
ference in a DS-CDMA system which is practically feasible. 
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Figure 3: Theoretical and simulated probability of error vs percentage capacity for the various 
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Abstract 

This paper investigates complexity reduction techniques for radial basis function (RBF) 
network based DS-CDMA receivers. The performance advantage obtained from adopting this 
non-linear receiver structure must be weighed against the corresponding increase in system 
complexity, and so there exists a need to reduce this complexity. Alternative kernels are first 
investigated, showing that the Gaussian kernel may be replaced by an algebraic kernel, at 
little detriment to the performance. Then a nearest neighbour approach is outlined, and its 
implementation analysed in terms of the Voronoj diagram. Finally, conclusions are drawn and 
suggestions for future development are outlined. 

1 Introduction 

Direct sequence code division multiple access (DS-CDMA) technology is a strong contender for 
the proposed European third generation universal mobile telecommunications system (UNITS) and 
the worldwide future public land mobile telecommunications system (FPLMTS) [1]. An imple-
mentation of this spread spectrum approach has been adopted as the North American personal 
communications system (PCS) interim standard IS-95 [2], and is rapidly gaining commercial suc-
cess. 

This work is concerned with the downlink (the path from the base station to the mobile) of 
such a DS-CDMA system, on which there are three main sources of interference: multiple access 
interference which occurs from cross-correlations if non-orthogonal sequences are used to spread 
the data, corruption of the transmitted signal by the communication channel, and background 
noise. The important aspects of the downlink are that the individual user's spread signals are bit 
and chip-synchronous, and that the combined signal passes through a common multipath channel. 

* Ian . Band@e e . ed . ac . uk 
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The traditional method of collapsing the spectrum is for the mobile to use a RAKE receiver, 
with a bank of correlators, whose weights are either matched to the original spreading codes, 
or obtained via convolution with the impulse response of the channel. The soft decisions thus 
obtained may optionally be further processed (e.g. by a minimum mean square error filter) before 
being thresholded to provide the final estimate of the data. However, the presence of a rnultipath 
channel can cause the space spanned by these intermediate soft decisions to no longer be linearly 
separable, so that the estimated signal may contain a significant number of errors. 

This situation is analogous to the exclusive OR problem, which was demonstrated to be solved by 
the use of a non-linear radial basis function (RBF) network in [3], or the problem of equalisation of 
an unknown channel, for which RBF functions have also been shown to provide good performance 
[4]. A review of the theoretical basis of functional approximation via RBF networks is given 
in [5]. Although this approach has been applied to many problems for which linear techniques 
are unsuitable [6], only a relatively small number of authors (e.g. [7], [8]) have considered RBF 
network based receiver structures for DS-CDMA, since the excellent performance obtained is only 
achieved at the expense of increased computational complexity. 

In this paper, we investigate the use of an RBF network to attempt to combat the effects of 
the channel and thus recover the intended data. The RBF will be implemented at the output 
of a bank of matched filters, in contrast to [7] and [8], in which the network is constructed from 
the chip-level signal. If the number of users is less than the spreading sequence length, then the 
approach adopted here reduces the dimension of each centre in the network, as will be shown 
later. In particular, the contribution of this paper is the proposition of methods of reducing the 
complexity of the traditional RBF structure, whilst minimising the resultant reduction in system 
performance. 

The scenario to be considered will first be outlined in section 2, which also demonstrates the simu-
lated performance of an RBF network receiver filter in Gaussian noise. To illustrate the situation 
more clearly, attention is then fixed on a specific set of spreading sequences in a particular chan-
nel. This combination is then shown to exhibit the property of non-linear separability discussed 
above, which limits the performance of the minimum mean square error (Wiener) linear filter. 
The increased complexity of the RBF network receiver, compared to this Wiener filter, is also 
indicated. 

Section 3 then describes the use of alternative kernel functions of lower complexity than the Gaus-
sian kernel, and presents some results obtained from Monte Carlo simulations. The application 
of the nearest neighbour (NN) approach is then considered in section 4, which also investigates 
the performance of this new structure. Finally some conclusions are drawn and possible future 
developments of this new approach to contend with time-varying channels are outlined in section 
5. 

2 The scenario considered 

2.1 The downlink of a DS-CDMA system 

The haseband downlink of a chip and bit-synchronous DS-CDMA communication system is shown 
schematically in Figure 1, which demonstrates the implementation of the RBF network as a post 
matched filter (PMF) signal processing block. 

The data bits {x, 1 < u < U} are first used to modulate the user-specific spreading sequences 
{c,, 1 < u < U}. These pseudo-noise (PN) codes are of length M chips, and the resultant signals 
are then synchronously combined to form the transmitted signal vector s given by 

The modulation scheme chosen is BPSK, and only real-valued signals are considered here. This 
signal then passes through a multipath channel, which is here modelled by a linear transversal 
filter with impulse response H(z) =hj  z 	where z 1  represents a delay of one chip and 
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Figure 1: DS-CDMA system with an RBF network processing block after the matched filter bank 

nh is the number of chips spanned by the impulse response of the channel. The subsequent vector 
components are then added to iid samples of additive white Gaussian noise (AWGN) of zero mean 
and variance u2 , where the signal to Gaussian noise ratio, Eb/NO,  is given by 

Eb - M 
(2) 

No 20-2 

to give the signal, y, received by the mobile. 

2.2 	Construction of the network 

The inputs to the RBF network, {fi,, 1 < u < U), are obtained from the output of the bank 
of matched filters, sampled at the symbol rate. Perfect synchronisation will be assumed in the 
following. 

An alternative to this arrangement is to dispense with the matched filters and construct the 
RBF network based on the chip-level signal as is considered in [7]. This method will not be 
considered here, but the application of the techniques described in this paper to this structure 
may be considered in future. 

Given suitable estimates for the parameters of the channel, the centres for the RBF network may 
be calculated by forming all possible combinations of spreading sequences and taking the noise-free 
signal as the input to the matched filter bank. For this scenario, the number of centres N is given 
by 2LT+27hi_2,  where U is the number of active users, and nh  is the number of chips spanned by 
the impulse response of the multipath channel. 

The set of centres of the network may be represented by P - {p.pi - c.(h(z) *s), 1 < i < N}, 
and, concentrating on the required user, it will he useful to define 	as the set {p. E P : Original 
data bit was a +11, and P as the set {p. E P : Original data bit was a —11. Clearly, for 
this approach to be successful, it is required that P = P+ U P and 	fl P = 0. With these 
conditions met, the dimension of P is simply the number of inputs to the network, which in this 
scenario equals the number of active users. The weights of the network, denoted {w : 1 < i < IV, } 
are taken to he the sign of the data bit which produced that centre. 

The estimate of the original data hit is then given by a sign decision on 

f(F) 
	

(3) 

where we have taken d(., ) to be the usual 12 Euclidean metric, and '() is the kernel function, 
which controls the shape of each basis function, and must be monotonic in its argument. There 
are various choices for kernel functions, which will be investigated further in section 3, but for the 
initial investigations, the Gaussian kernel, defined by 

= V'c(C) = exp 
(2 	

(4) 

where a- is as in equation 2, will be used. 
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2.3 The Gaussian noise channel 

To demonstrate the effectiveness of employing an RBF network based receiver structure for DS-
CDMA, we shall consider the case for 7-chip random spreading sequences when no multipath 
channel is present. The performance, in terms of the probability of error ([) over a statistically 
significant number of trials, of the RBF receiver is shown in Figure 2, for Eb/NO  values of 4dB and 
7dB. The performance is compared with the minimum mean square error (MMSE, or Wiener) 
filter, also implemented at the outputs of the matched filter bank. This structure is often referred 
to as the MMSE multi-user detector (MUD) [9]. 

Additive white Gaussian noise, 7 chip random spreading sequences 

0.1 

5., 

0.01 

0.001 

0 

3 	4 	5 
Number of active users 

Figure 2: Performance in additive while Gaussian noise: (a) Wiener, 4dB, (b) REF 4dB, (c) 
Wiener, 7dB, (d) RBF, 7dB 

Because non-orthogonal spreading sequences are used, the noise at the output from each matched 
filter in Figure 1 is correlated, so that strictly, the Mahalanobis metric [6] should be used in 
equation 3, however, even with the Euclidean metric, the performance of the RBF receiver is clearly 
superior to that using the Wiener filter as the loading is increased. To reduce the computational 
overhead therefore, we shall retain the Euclidean metric in the subsequent calculations. 

To illustrate more clearly the effects of non-linearity on the RBF and MMSE based receivers, we 
shall now consider a specific spreading sequence set and multipath channel in some detail. 

2.4 Example situation 

The spreading sequence set on which we now concentrate consists of a two-user 'broken" 4-chip 
code set, given by c1  = (+1, +1, —1, _0.7)T, C2 = (+1, —1+1, _l)T,  and the multipath channel 
is defined at the chip rate by H(z) = 0.25 + z 1 . Note that the power of the noise has not been 
adjusted to compensate for the inefficient code employed by user 1, which has been artificially 
created to make a simple nonlinearly separable problem. 

The number of centres in the RBF network is thus 22+2(2)2 = 16, and the location of these 
centres from user l's point of view is shown in Figure 3. From the diagram, it is apparent that the 
output space spanned by the centres from user 1 is non-linearly separable, i.e. it is not possible 
to draw a straight line which correctly partitions the output space to separate centres produced 
from opposite data bits. Although the locations are the same as for user 1, the centres from user 
2's point of view are linearly separable, since the associated weights are different. This may be 
seen in the figure which also shows the decision boundaries' for both users for the hit-level Wiener 
filter and the Gaussian kernel RBF network for E5/N0  = 15dB. 

'where the value of the RBF function in equation 3 is identically zero 
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Figure 3: Location of centres and decision boundaries of receivers for Eb/NO = 15dB: (=1) centres 
produced from a —1 from user 1; (+1) centres produced from a +1 from user 1; (a) Bit level 
Wiener filter decision boundary (user 1); (b) Bit level Wiener filler decision boundary (user 2); 
(c) RBF network decision boundary (user 1); (d) RBF network decision boundary (user 

At this noise level, the Gaussian kernel RBF network correctly partitions the output space, and 
thus a reasonable error perfomance may be expected. However, the linear decision boundary 
obtained using the bit-level Wiener filter for user 1 is not able to correctly separate the centres 
as required for the reasons outlined above. Indeed, it may he expected that this filter will cause 
2 out of every 16 data points to be in error for user 1, leading to a predicted P5 	0.125. These 
predictions may be verified by considering Figure 4, which shows the error performance of the 
RBF and bit-level Wiener filters for a range of noise values. 

Simulated performance for Gaussian kernel RBF network, 4-chip codes 
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Figure 4: Performance of RBF and Wiener based receivers : (a) Wiener, user 1; (b) Wiener, user 
2; (c) RBF, user 1; (d) RBF, user 2 

As predicted, the Wiener filter for user 1 reaches an irreducible P5  of around 0.125 for high values of 
Eb/No, while the performance of the hit-level RBF processor increases with the signal to Gaussian 
noise ratio. Since user 2 is linearly separable, the performance of the linear Wiener and non-linear 
RBF network receivers are very similar. 

The variation of the performance of the RBF network receiver with Eb/No  for user 1 may be 
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predicted from Figure 5 , which shows the surface generated by the RBF network from equation 
3 for three values of Eb/NO. 

5dB 	 15dB 	 25dB 

Figure 5: Centres and generated surfaces for the Gaussian. kernel RBF for Eb/No = 5, 15 and 
15dB 

Clearly, for low values of Eb/No, the spread of the basis functions leads to a loss in distinction, so 
that individual centres are aggregated together, and thus the performance is relatively poor. As 
the signal to Gaussian noise ratio increases, more definition is achieved, so that individual centres 
now contribute separately, leading to increased performance. 

2.5 Discussion 

The increased performance of the RBF networks must be set against the corresponding increase 
in computational complexity required, so that adoption of this non-linear strategy can only be 
considered feasible in conjunction with some methods for reducing the inherent complexity of RBF 
based receivers. This complexity arises from two sources; the first is the number of calculations 
required per centre, while the second is the number of centres which must be stored. In this paper, 
we shall investigate methods of reducing the number of calculations required per centre, although 
in section 4.1, we shall demonstrate that some centres are effectively redundant. 

3 	Complexity reduction through different kernel functions 

The first method of complexity reduction is to employ alternative kernels in equation 3. The 
Gaussian kernel defined in equation 4 requires a series of exponential calculations, which may 
impose too great a computational load on the receiver, so we first consider the inverse multi-
quadratic kernel [6], defined by 

1 
(5) V(-2—+—, 2 

and the modified inverse multi-quadratic, defined by 

1+v cr 	

(6) 

both of which are simpler functions of the metric than the exponential used in equation 3 

The decision boundaries for these algebraic kernels, again for user 1, compared to that for the 
Gaussian kernel of the previous section, are shown in Figure 6 for Eb/NO = 15dB. 

The algebraic kernels are clearly able to separate the centres arising from different data bits, 
although the reduced decay rate of the algebraic kernels causes their decision boundaries to always 
be interior to the Gaussian kernel decision boundary, so that their performance may be expected 
to be slightly worse. 
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Figure 6: Location of centres and decision boundary of various RBF network receivers forEb/No = 
15dB: (-1) centres produced from a —1; (+1) centres produced from a +1; (a) Gaussian kernel 
decision boundary; (b) decision boundary for 0a1 ; (c) decision boundary for ya2  for v = 1 

Simulated performance for RBF network with Gaussian and algebraic kernels, 4-chip codes 
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Figure 7: Performance of RBF based receivers with various kernels: (a) Gaussian, user 1; (b) 
Gaussian, user 2; (c) inverse multi-quadratic 	user 1; (d) inverse multi-quadratic, y,  user 2; 
(e) modified inverse multi-quadratic 0a2  with v = 1, user 1; (f) modified inverse multi-quadratic 
?,b a,, with v = 1, user 2 
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The error performance of these algebraic kernels is shown in Figure 7. 

As may be seen, the modified kernel has slightly better performance than the traditional inverse 
multi-quadratic kernel, and both algebraic kernels have only slightly poorer performance than the 
full Gaussian kernel. 

The additional parameter v in a2  also permits an investigation of this parameter's influence on 
the decision boundary and error performance of a network employing this kernel. Concentrating 
on user 1, the decision boundaries for various values of v for Eb/NO = 10dB are shown in Figure 
8, whilst the corresponding error performance is shown in Figure 9. 
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Figure 8: Location of centres and decision boundary of RBF network using iJa2  kernel function for 
Eb/NO = 10dB: (-1) centres produced from a —1; (+1) centres produced from a +1, (a) Gaussian 
kernel; (b) v = 0.01, (c) v = 0.08; (d) v = 1.0; (e) v = 10.24; (0 v = 81.92 

Simulated performance for algebraic kernel RBF network receivers for user I, 4-chip codes 
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Figure 9: Performance of RBF based receivers with ç/'2  kernel function: (a) Gaussian kernel; (b) 
v = 0.01; (c) v = 0.08; (d) v = 1.0; (e) v = 10.24; (f) t: = 81.92 

It may be seen that the algebraic kernels for the first two values of v fail to separate the centres 
correctly for Eb/No = 10dB, and this is reflected in the relatively poor performance of these 
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two receivers. Broadly, there is little advantage in increasing the value of v beyond 1.0, since 
the performance of the other kernels is so similar. Interestingly, the v = 0.08 kernel, although 
obviously inferior for values of Eb/NO  below around 15dB, approaches the performance of the 
other kernels as Eb/NIj increases, so that it may be concluded that the influence of the parameter 
v is only weak as the noise is reduced. Future work may investigate whether this situation may 
he generalised. 

4 The nearest neighbour approach 

As is apparent from Figure 5, when the signal to Gaussian noise ratio, Eb/NO,  is sufficiently 
large, the Gaussian kernel RBF surface consists of individual peaks and troughs (according as 
the relevant centre p 	or 7)-  respectively), located at the centres of the network. In this 
way, this receiver structure is able to compare the input statistic against all the centres and hence 
obtain an accurate estimate of the original data bit. in addition, the previous section showed that 
alternative kernels, while offering slightly reduced complexity, are broadly equivalent in terms of 
error performance, at high values of Eb/No. It would appear natural, then, to investigate the 
performance of a receiver which is based on the centres as calculated previously, but rather than 
forming the sum in equation 3 using the metric to all possible centres, estimates the original data 
hit by simply considering the nearest2  centre to the input vector, so that the data estimate for 
user u is given by 

u=wj:d(,p.)<d(,p.),1<i<Nc.ii4j 	 (7) 

This nearest neighbour (NN) approach is a commonly occuring problem in many fields in compu-
tational geometry [10], and as may be seen in Figure 10, the NN decision boundary represents the 
asymptotic limit of the Gaussian kernel based RBF network as Eb/NO - c. 

1.5 

15 
-1.5 	-1 	-0.5 	0 	0.5 	I 	1.5 

output from matched filter I 

Figure 10: Location of centres and decision boundaries of Gaussian kernel RBF network for various 
values of Eb/No: (4) centres produced from a —1; (+1) centres produced from a +1; (a) 0dB; (b) 
5dB; (c) 10dB; (d) 15dB; (e) 20dB; (f) NN receiver decision boundary 

Thus it may be expected that these two approaches will perform similarly as the noise decreases. 
The error performance against Eb/NO  of the NN-based receiver, compared to the Gaussian kernel 
RBF network receiver is shown in Figure 11 for both users. 

For user 1, the NN receiver has only slightly worse performance than the RBF network for low 

Eb/No. and is almost identical for Eb/NO > 10dB as predicted. For user 2, the decision boundaries 

2 where we again use the Euclidean metric here 
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Simulated performance for RBF network and nearest neighbour receiver. 4-chin codes 
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Figure ii: Performance of NN-based receiver compared to Gaussian kernel RBF receiver: (a) 
RBF, user 1; (b) RBF, user 2; (c) NN, user 1; (d) NN, user 2 

are very similar, as are the performance curves as expected, since that user is linearly separable. 

Returning to the original 7-chip spreading sequences in AWGN only, the performance of the 
proposed NN receiver is shown in Figure 12, again for the same two values of Et/NO  as in the 
previous case. 

Additive white Gaussian noise. 7 chip random spreading sequences 

0.! 

0.01 

0.00! 

2 	3 	4 	5 	6 	7 
Number of active users 

Figure 12: Performance in adds/ire while Gaussian noise: (a) RBF, 4dB; (b) NN, 4dB; (c) RBF, 
7dB; (d) NN, MB 

As may he seen, the performance of the proposed receiver is very close to that of the Gaussian 
kernel RBF network receiver for all loading values. Thus, the proposed receiver attains very similar 
performance characteristics to the standard RBF network receiver, but avoids the associated 
restrictively high computational complexity. 

4.1 	Graphical interpretation of the nearest neighbour approach 

Efficient algorithms for the NN approach generally consist of two parts; the construction of a tree 
structure, containing all the centres as nodes, and the traversal of this tree, until the nearest match 
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is found. In 2 dimensions, the construction may be accomplished optimally using O(N) storage 
whilst the search requires 0(1092 N) time [11]. This strategy produces a Voronoi diagram, V(P) 
from the set 7' of centres, which for the 2-user 4-chip spreading sequence situation considered here, 
is shown in Figure 13. 
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Figure 13: Location of centres and Voronoi diagram: (-1) centres produced from a —1 from user 
1; (+1) centres produced from a +1 from user 1; (a) Voronot diagram 

It may be seen that the NN decision boundary for each user is simply a subset of the complete 
Voronoi diagram, and that a modification of this technique could be used to remove centres whose 
associated Voronoi polygons V(p) do not border the NN decision boundary. This technique 
produces a reduced set of centres 7" c 7' for each user. With the scenario considered here, there 
are 4 centres for each user which may be removed, so that this modified NN algorithm would 
make 25 % fewer comparisons per data bit, and thus would he correspondingly quicker than the 
conventional NN algorithm. 

This may be seen in Figure 14 which shows the performance of the Gaussian kernel RBF network 
and the NN receiver when the four centres whose polygons are not part of the decision boundary 
for user 1 are removed from the network. 

Clearly, in this case, the performance of the receivers using the reduced set of centres 7" is virtually 
identical to that of the receivers which use the complete set of centres, P. Future work will consider 
the development of this approach, with the intention of characterising the ratio of the number of 
discarded centres to the number of centres in the original network. 

Since the dimension of the decision space to be partitioned increases linearly with the num-
ber of users, the presence of more users means that the NN decision boundary is a U - I-
dimensional hyperplane. The construction of the Voronoi diagram in higher dimensions is an 
area of current research [12], but it is shown in [13] that the nearest neighbour may be found in 

((log2N)U_tlog,(!og2N)) time: this structure requiring O(N(log2 N) 	) storage. For time- 
varying channels, the dynamic insertion and deletion of centres could be employed to update the 
network, or approximate (1 + c) [13] methods could be used if the channel characteristics evolve 
only slowly. 

A possible drawback to the nearest neighbour approach is that this method produces a hard 
decsion, with no indication of the reliability of the estimate, as is required for instance for a 
soft-decision Viterbi decoder for a DS-CDMA system. As a development, it may be possible 
to construct a soft decision based on the distance to the nearest centre, although the excellent 
performance achieved by the NN algorithm as implemented, may mean that such an approach 
would be an unnecessary complication. 
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Simulated perfonnance for Gaussian kernel RBF and NN receiver, 4 chip codes 
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Figure 14: Simulated performance of Gaussian kernel RBF network and NN receiver based on the 
reduced set of centres, obtained from the Voronoi diagram.: (a) Gaussian kernel RBF, complete 
set; (b) Gaussian kernel RBF, reduced set; (c) NN receiver, complete set; (d) NN receiver, reduced 
set 

5 Conclusions 

In this paper, we have considered the reduction in computational complexity of the non-linear 
RBF network receiver for the downlink of a DS-CDMA system. The RBF receiver was first 
demonstrated to have excellent performance, and be able to correctly estimate the data even 
when the decision space is non-linearly separable. The use of alternative kernels in the evaluation 
of the RBF soft decision was shown to be of value in reducing the computational complexity with 
little performance loss at usable signal to noise ratios. It was also shown that at higher signal to 
noise ratios, the output from the RBF network is dominated by a subset of the total number of 
centres. This prompted the proposal to use simply the nearest centre of the network to provide the 
decision, and a receiver based on this approach was shown to have comparable performance to the 
complete network with Gaussian kernels, and at much reduced complexity. An interpretation of 
this algorithm, in terms of the Voronoi diagram was outlined, and a possible technique to reduce 
the number of centres which must be considered was outlined. Suggestions for the use of this 
non-linear receiver in a system serving more subscribers, and in a time-varying channel, were also 
given. 
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Appendix B 

Additive white Gaussian noise channel 
calculations 

Many of the simulations discussed in the thesis are conducted with respect to the additive 

white Gaussian noise channel, and all are performed using binary phase shift keying (BPSK) 

modulation. This Appendix develops the expressions for the signal to Gaussian noise ratio and 

the theoretical prediction for the probability of error for BPSK in the Gaussian channel, as 

described in [31]. 

B.! 	Signal to Gaussian noise ratio 

The background noise level in a communications system may be characterised by the single 

sided-noise density, No. The relationship between this quantity and the linear processing gain, 

gp, may be determined by the following. 

Let z represent Gaussian-distributed random deviate with zero mean and variance a2, i.e. 

zA1(O,a2) 	 (B.1) 

where 

2 ATO  0 	 (B.2) 
2 

The signal to Gaussian noise ratio, denoted Eb/NO is an adjusted form of the conventional 

signal to noise ratio (SNR), taking into account the processing gain afforded by the spreading 

and despreading process. 

If the processing gain consists of a mixture of signature sequences of length M, and forward error 

ii: 
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correcting coding of rate 1/C, the overall processing gain will be given by gp = MC = N3. 

Thus, for each data bit to be transferred to the mobile, the output baseband signal from the base 

station transmitter consists of N3  chips. If the amplitude of each chip in this signal is denoted 

A, then the energy transmitted per data bit will be given by 

Eb = N, A, 	 (B.3) 

Here, A = 1 so that the decibel form of the signal to Gaussian noise ratio is thus given by 

Eb 
101 N3 = og10 	 (B.4) 

This is the fundamental measure of background noise throughout the simulations presented. 

B.2 	Probability of error using BPSK in the AWGN channel 

The theoretical probability of error, Fe , of an unspread signal in the additive white Gaussian 

noise (AWGN) channel may be derived via the following argument. 

Let x1  be the transmitted data bit. Then, since the modulation scheme is BPSK, a data bit error 

will occur if the decision is made that the original transmitted data bit was the complementary 

symbol —x1 . 

Assume, without loss of generality, that x  = 1. Then it is evident that a data bit error will 

occur if the decision statistic 

r=/+z<0 	 (B.5) 

where Eb is the total energy per bit, and z is a Gaussian random variable whose statistics are as 

described in Equation B.1. 

Let the probability of this error event be denoted P1 , then 

0 
P1  = P(—x i  estimated Isi transmitted) = f CO 

p(r I x 1 )dr 	 (B.6) 
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where p (r I x i)  is the conditional probability density function of r, given that x 1  was transmitted. 

For the AWGN channel, this probability density is given by 

I 	(r_\/L)2  
p(rIxi) 	Ng 	No (B.7) 

where the noise variance is given by N0 /2. 

Substituting B.7 in B.6 yields 

P1 = 	
fo 

exp— 	 (B.8) 
N ] 

By making the change of variable 

F20  

	

- 	 (B.9) 
No 

Equation B.8 may be re-written as 

j —"/YEb/NO 
) 

Pi 
=

exp(—t2/2)dt 	 (B. 10) 

Reversing the limits of integration, and since the above expression also holds when x 1  = — 1, 

the final error probability may be written as 

\/) 	 (B.1I) PeQ(  

where Q(.) is defined [381 by 

1 	(•c 
(2(X) 

=
exp(—t2/2)dt 	 (B.12) 

v/27 
X 

Equivalently, B.I 1 may be expressed as 

P=erfc (\/1) 	(B.13) 
2 	NO 

 

which is the form used to generate the results shown in Figure B.1. 
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BPSK calculations - theoretical predictions and simulation 
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Figure B.!: Theoretical and simulated probability of error for BPSK modulation in the AWGN 
channel: (a) theoretical predictions; (b) Monte Carlo simulation results 
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Appendix C 

Software 

The routines supplied by Dr. D. Laurenson to allocate and de-allocate memory dynamically 

are detailed below. 

/ gen_array provides functions to create and destroy arrays of */ 

/* arbitrary size and dimension, with an arbitrary size of element */ 

/* The result should be type cast to the desired pointer type at / 

/* the calling level. Note that compilation of this code will */ 

/* result in a warning if -Wmissing_prototypes is used in the *7 

/* compile options */ 

/ Usage: */ 

/ 	a = (double ***)genarray(sizeof  (double), 3, 10, 7, 4); */ 

/* */ 

/ generates a 10 by 7 by 4 array of doubles, and */ 

1* del_array(a, 3, 10, 7, 4); */ 

/ destroys it. *1 

#include<stdio .h> 

#include<inalloc .h> 

#include<varargs .h> 

#ifdef STDC 

void *_gen_array(unsigned,  int, va_list); 

#else 

void *_gen_array();  

#endif 

void *genarray(sze,  dims, ap) 

unsigned sze; 

mt dims; 
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va_list ap; 

void *tmp; 

mt i, j, lngth; 

lngth = va_arg(ap, int); 

if (dims==1) 

if ((tmp = mailoc(sze * lngth)) == NULL) 

printf ( \n 	Warning Failed to allocate enough memory 	k  \n) 

return (NULL); 

else { 

if ((tmp = mailoc(sizeof(void *) * lngth)) == NULL) 

printf(\n 	Warning : Failed to allocate enough memory 	\n); 

return (NULL); 

for (i=O; i<lngth; i++) 

if ((((void **)tmp)  [ii = _gen_array(sze, dims-1, ap)) == NULL) { 

printf ( \n 	Warning : Failed to allocate enough memory 	\n); 

for (j0; j<i; j++) { 

free((char *) ((void **)tmp) [i1);  

return(NULL); 

return(tmp); 

void *genarray(sze,  dims, va_alist) 

unsigned sze; 

mt dims; 

va_dcl 

void *tmp; 

va_list ap; 

va_start(ap); 

tmp = _gen_array(sze, dims, ap) 

va_end(ap); 

:: 



Appendix C: Software 

return(tmp); 

) 

#ifdef 	STDC 

void _del_array(void , int, va_list); 

#else 

void —del—array; 

#endif 

void _del_array(tmp, dims, ap) 

void *tmp; 

int dims; 

va_list ap; 

{ 

int 1, lngth; 

if (dims==l) 

free( (char *) tmp); 

} else { 

lngth = va_arg(ap, int); 

for (i=O; i<lngth; i++) 

_del_array( ((void **)tmp)  [i], dims-1, ap); 

free( (char *) tmp); 

void del_array(tmp, dims, va_alist) 

void *tmp; 

int dims; 

va_dcl 

va_list ap; 

va_start(ap); 

_del_array(tmp, dims, ap); 

va_end(ap); 
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