19 research outputs found

    Multichannel Seismic Deconvolution Using Bayesian Method

    Get PDF
    In this paper, we propose an algorithm for multichannel blind deconvolution of seismic signals, which exploits variational Bayesian method. It is related to the Kullback-Leibler divergence, which measures the independence degree of deconvolved data sequence. We assume that the reflectivity sequence is almost the same for each receiver while the noise level may differ at each channel. Compared to blind deconvolution of a single seismic trace, multichannel blind deconvolution provides an accurate convergence of the estimated parameters and reflectivity sequence

    Semi-blind Sparse Image Reconstruction with Application to MRFM

    Get PDF
    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization (AM) algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.Comment: This work has been submitted to the IEEE Trans. Image Processing for possible publicatio

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation

    Full text link

    A Regularization Approach to Blind Deblurring and Denoising of QR Barcodes

    Full text link
    QR bar codes are prototypical images for which part of the image is a priori known (required patterns). Open source bar code readers, such as ZBar, are readily available. We exploit both these facts to provide and assess purely regularization-based methods for blind deblurring of QR bar codes in the presence of noise.Comment: 14 pages, 19 figures (with a total of 57 subfigures), 1 table; v3: previously missing reference [35] adde

    Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation

    No full text
    corecore