77 research outputs found

    Bleeding classification of enhanced wireless capsule endoscopy images using deep convolutional neural network

    Get PDF
    This paper investigates the performance of a Deep Convolutional Neural Network (DCNN) algorithm to identify bleeding areas of wireless capsule endoscopy (WCE) images without known prior knowledge of bleeding and normal features of the images. In this study, a pre-processing technique has been proposed to improve the classification accuracy of WCE images into bleeding areas and normal areas by enhancing the WCE images. The proposed technique is applied to WCE images from six cases and divided into one training case and five test cases. To evaluate the effectiveness of the processes, the results were then compared between DCNN, SVM and Fuzzy, and also between DCNN with completely enhanced images and DCNN with normalized images. DCNN has shown to give a better result compared to SVM and Fuzzy logic; and the latter experiment has shown that the WCE images that have undergone the proposed enhancement technique gives better classification result compared to those images that did not go through the technique. The specificity, sensitivity and average are 0.8703, 0.8271 and 0.8907 respectively. In conclusion, DCNN has been proven to be able to successfully detecting bleeding areas from images without having any specific knowledge on imaging diagnosis or pathology

    Intelligent Hemorrhage Identification in Wireless Capsule Endoscopy Pictures Using AI Techniques.

    Get PDF
    Image segmentation in medical images is performed to extract valuable information from the images by concentrating on the region of interest. Mostly, the number of medical images generated from a diagnosis is large and not ideal to treat with traditional ways of segmentation using machine learning models due to their numerous and complex features. To obtain crucial features from this large set of images, deep learning is a good choice over traditional machine learning algorithms. Wireless capsule endoscopy images comprise normal and sick frames and often suffers with a big data imbalance ratio which is sometimes 1000:1 for normal and sick classes. They are also special type of confounding images due to movement of the (capsule) camera, organs and variations in luminance to capture the site texture inside the body. So, we have proposed an automatic deep learning model based to detect bleeding frames out of the WCE images. The proposed model is based on Convolutional Neural Network (CNN) and its performance is compared with state-of- the-art methods including Logistic Regression, Support Vector Machine, Artificial Neural Network and Random Forest. The proposed model reduces the computational burden by offering the automatic feature extraction. It has promising accuracy with an F1 score of 0.76

    Angiodysplasia Detection and Localization Using Deep Convolutional Neural Networks

    Full text link
    Accurate detection and localization for angiodysplasia lesions is an important problem in early stage diagnostics of gastrointestinal bleeding and anemia. Gold-standard for angiodysplasia detection and localization is performed using wireless capsule endoscopy. This pill-like device is able to produce thousand of high enough resolution images during one passage through gastrointestinal tract. In this paper we present our winning solution for MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia Detection and Localization its further improvements over the state-of-the-art results using several novel deep neural network architectures. It address the binary segmentation problem, where every pixel in an image is labeled as an angiodysplasia lesions or background. Then, we analyze connected component of each predicted mask. Based on the analysis we developed a classifier that predict angiodysplasia lesions (binary variable) and a detector for their localization (center of a component). In this setting, our approach outperforms other methods in every task subcategory for angiodysplasia detection and localization thereby providing state-of-the-art results for these problems. The source code for our solution is made publicly available at https://github.com/ternaus/angiodysplasia-segmentatioComment: 12 pages, 6 figure

    Generic Feature Learning for Wireless Capsule Endoscopy Analysis

    Full text link
    The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase)

    A Robust Deep Model for Classification of Peptic Ulcer and Other Digestive Tract Disorders Using Endoscopic Images

    Get PDF
    Accurate patient disease classification and detection through deep-learning (DL) models are increasingly contributing to the area of biomedical imaging. The most frequent gastrointestinal (GI) tract ailments are peptic ulcers and stomach cancer. Conventional endoscopy is a painful and hectic procedure for the patient while Wireless Capsule Endoscopy (WCE) is a useful technology for diagnosing GI problems and doing painless gut imaging. However, there is still a challenge to investigate thousands of images captured during the WCE procedure accurately and efficiently because existing deep models are not scored with significant accuracy on WCE image analysis. So, to prevent emergency conditions among patients, we need an efficient and accurate DL model for real-time analysis. In this study, we propose a reliable and efficient approach for classifying GI tract abnormalities using WCE images by applying a deep Convolutional Neural Network (CNN). For this purpose, we propose a custom CNN architecture named GI Disease-Detection Network (GIDD-Net) that is designed from scratch with relatively few parameters to detect GI tract disorders more accurately and efficiently at a low computational cost. Moreover, our model successfully distinguishes GI disorders by visualizing class activation patterns in the stomach bowls as a heat map. The Kvasir-Capsule image dataset has a significant class imbalance problem, we exploited a synthetic oversampling technique BORDERLINE SMOTE (BL-SMOTE) to evenly distribute the image among the classes to prevent the problem of class imbalance. The proposed model is evaluated against various metrics and achieved the following values for evaluation metrics: 98.9%, 99.8%, 98.9%, 98.9%, 98.8%, and 0.0474 for accuracy, AUC, F1-score, precision, recall, and loss, respectively. From the simulation results, it is noted that the proposed model outperforms other state-of-the-art models in all the evaluation metrics

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE

    Multi-pathology detection and lesion localization in WCE videos by using the instance segmentation approach

    Get PDF
    The majority of current systems for automatic diagnosis considers the detection of a unique and previously known pathology. Considering specifically the diagnosis of lesions in the small bowel using endoscopic capsule images, very few consider the possible existence of more than one pathology and when they do, they are mainly detection based systems therefore unable to localize the suspected lesions. Such systems do not fully satisfy the medical community, that in fact needs a system that detects any pathology and eventually more than one, when they coexist. In addition, besides the diagnostic capability of these systems, localizing the lesions in the image has been of great interest to the medical community, mainly for training medical personnel purposes. So, nowadays, the inclusion of the lesion location in automatic diagnostic systems is practically mandatory. Multi-pathology detection can be seen as a multi-object detection task and as each frame can contain different instances of the same lesion, instance segmentation seems to be appropriate for the purpose. Consequently, we argue that a multi-pathology system benefits from using the instance segmentation approach, since classification and segmentation modules are both required complementing each other in lesion detection and localization. According to our best knowledge such a system does not yet exist for the detection of WCE pathologies. This paper proposes a multi-pathology system that can be applied to WCE images, which uses the Mask Improved RCNN (MI-RCNN), a new mask subnet scheme which has shown to significantly improve mask predictions of the high performing state-of-the-art Mask-RCNN and PANet systems. A novel training strategy based on the second momentum is also proposed for the first time for training Mask-RCNN and PANet based systems. These approaches were tested using the public database KID, and the included pathologies were bleeding, angioectasias, polyps and inflammatory lesions. Experimental results show significant improvements for the prFCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020 and through the PhD Grants with the references SFRH/BD/92143/2013 and SFRH/BD/139061/201
    • …
    corecore