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Abstract 
The majority of current systems for automatic diagnosis considers the detection of a unique 

and previously known pathology. Considering specifically the diagnosis of lesions in the small 
bowel using endoscopic capsule images, very few consider the possible existence of more than 
one pathology and when they do, they are mainly detection based systems therefore unable to 
localize the suspected lesions. Such systems do not fully satisfy the medical community, that in 
fact needs a system that detects any pathology and eventually more than one, when they 
coexist. In addition, besides the diagnostic capability of these systems, localizing the lesions in 
the image has been of great interest to the medical community, mainly for training medical 
personnel purposes. So, nowadays, the inclusion of the lesion location in automatic diagnostic 
systems is practically mandatory.  

Multi-pathology detection can be seen as a multi-object detection task and as each frame can 
contain  different instances of the same lesion, instance segmentation seems to be appropriate 
for the purpose. Consequently, we argue that a multi-pathology system benefits from using the  
instance segmentation approach, since classification and segmentation modules are both 
required complementing each other in lesion detection and localization. According to our best 
knowledge such a system does not yet exist for the detection of WCE pathologies. 

This paper proposes a multi-pathology system that can be applied to WCE images, which 
uses the Mask Improved RCNN (MI-RCNN), a new mask subnet scheme which has shown to 
significantly improve mask predictions of the high performing state-of-the-art Mask-RCNN and 
PANet systems. A novel training strategy based on the second momentum is also proposed for 
the first time for training Mask-RCNN and PANet based systems. These approaches were 
tested using the public database KID, and the included pathologies were bleeding, 
angioectasias, polyps and inflammatory lesions. Experimental results show significant 
improvements for the proposed versions, reaching increases of almost 7% over the PANet 
model when the new proposed training approach was employed.  

Keywords: Multi-pathology detection, Lesion localization, Instance segmentation, Mask-RCNN, 
Wireless Capsule Endoscopy, PANet. 

 

1. Introduction 

Wireless Capsule Endoscopy (WCE) is a diagnostic tool that has revolutionized the 

ability of visualization of the gastrointestinal tract. The classic endoscopy technique 

only reaches duodenum (the first section of the small bowel), and colonoscopy is 

limited to the last section of ileum (area of the small bowel closer to the large intestine). 

The middle section of the small bowel, which is usually more than 4 meters long, is 

almost impossible to directly visualize without using WCE (Basar et al., 2012). Since 

the final WCE video usually has more than 50,000 images, the development of 



automatic diagnostic systems has been of interest for the researchers in the field. 

Nevertheless, most developed systems are capable of only detecting one lesion at a 

time, which is not what physicians look for in the clinical practice. Given the diversity of 

pathologies found in the gastro intestinal tract, multi-pathology detection is perhaps the 

last frontier for the massive use of automatic diagnosis systems integrated with      

wireless capsule endoscopy (WCE) exams (Thomson et al., 2001). In fact, the 

assumption of only one or a very small number of pathologies made by the most 

current diagnosis systems has been the biggest obstacle to its popularization in 

diagnostic procedures. 

There are a variety of lesions that can appear in the small bowel, but only a small 

number of lesions appear frequently in WCE exams. From these, some can be pointed 

out, like: angioectasias, polyps, tumors, ulcers or bleeding (Thomson et al., 2001). 

Convolutional Neural Networks (CNNs) have proliferated significantly and dominated 

the literature of modern automatic diagnosis systems due to their impressive 

performance. Even when using small datasets, which is frequently the case in medical 

applications, CNN-based automatic diagnosis systems can be applied. This is possible 

when using the Transfer Learning (TL) approach, that allows the training of most part of 

the system in large datasets (of different applications) and the use of the smaller 

dataset to perform refinements in the network, achieving high performances (Litjens et 

al., 2017; Yadav and Jadhav, 2019)      

According to current literature Magnetic Resonance Imaging (MRI) is the most 

frequently data used in CNN-based systems, being the segmentation the most specific 

use (Choi and Jin, 2016; Dou et al., 2017; Havaei et al., 2017; Kamnitsas et al., 2017; 

Moeskops et al., 2016; Payan and Montana, 2015; Rasti et al., 2017). Gastrointestinal 

tract has been subject of some studies using CNNs for identification purposes, such as 

cancer detection (Li et al., 2018) or colorectal polyp detection (Liu et al., 2016; Misawa 

et al., 2018; Urban et al., 2018; Zhang et al., 2019), and even using the powerful 

instance segmentation approach based on the YOLO-net (Zheng et al., 2018), however 

in this case only for classification purposes. It has also been used for segmentation and 

classification in esophageal images (Wu et al., 2021) or for classification of abnormal 

images in large datasets (Guo and Yuan, 2020). CNNs have also been used for 

gastrointestinal automatic diagnosis based on WCE data for polyp detection (Baopu Li 

et al., 2009), ulcer and bleeding classification (Liaqat et al., 2018), ulcer detection 

(Alaskar et al., 2019) and ulcer and erosion detection (Fan et al., 2018). Angioectasias 

were also correctly detected using CNNs in different studies (Shvets et al., 2018; 

Tsuboi et al., 2020; Yusuf et al.) However, none of these systems offer a multi-

pathology detection adequate for the clinical practice nor provide detection and 

segmentation results simultaneously. Systems with segmentation modules have been 

highly valued by the medical community, since the lesion tissue can be automatically 

assessed so the diagnostics process is speeded up. Additionally, segmentation 

modules allow the training of medical personnel in lesion detection. 

The CNN-based structure mostly used for medical image segmentation in 2D images 

is perhaps the U-net (Ronneberger et al., 2015) given its potential. In this configuration, 

the input image is down sampled through a traditional CNN before being up sampled 

using transpose convolutions, until it reaches its original size. One of the most 

fundamental characteristics of U-net is that it skips connections that concatenate 

features from the down sampling to the up sampling paths, which is however based on 



the ideas of ResNet. Several U-net variants have been used in the segmentation of 

WCE images for angioectasia segmentation (Shvets et al., 2018), which was the 

winning solution for MICCAI 2017 Endoscopic Vision SubChallenge. As U-net is a fully 

convolutional network it does not have any classification sub-net, therefore presents 

some restrictions for multi-pathology applications.  

Solutions for multi-pathology applications are very rare, however some approaches 

have been proposed even for WCE applications. In (Iakovidis et al., 2018) a CNN is 

used for frame classification (normal or abnormal) by using weakly annotated images 

(different lesions only annotated as abnormal). Salient points obtained from deeper 

CNN layers are then processed by a Deep Saliency Detection algorithm in order to 

localize GI anomalies using an Iterative Cluster Unification algorithm. Although this 

system can deal with multi-pathology conditions, the type of pathology is never 

detected, therefore it cannot be considered as an automatic diagnosis system for multi-

pathology applications. The system only provides the most likely lesion location in 

abnormal frames without considering its nature. For distinguishing the different types of 

lesions, a powerful segmentation module is missing as well as a sub-net for the 

detection of different pathologies. These are just the ingredients of instance 

segmentation systems such as Mask-RCNN (He et al., 2017), YOLO (Redmon et al., 

2016) and PANet (Liu et al., 2018).  

This paper proposes the Mask Improved R-CNN (MI-RCNN), an enhanced version of 

both mask subnets found in Mask-RCNN and PANet models, for multi-pathology 

detection and lesion localization in WCE videos. While the classification sub-net of the 

Mask-RCNN and PANet works well, some misalignments between the predicted and 

ground truth (GT) masks are found. Therefore, the mask sub-net needs to be 

improved. The most recent attempts to improve the mask sub-net are the Mask Scoring 

RCNN (MS-RCNN) (Huang et al., 2019) and the Boundary Mask-RCNN (BMask-

RCNN) (Cheng et al., 2020). MS-RCNN adds a sub-net to the baseline Mask-RCNN to 

learn the quality of the predicted instance masks. The approach of BMask-RCNN 

(Cheng et al., 2020) is based on boundary information captured from the lower level of 

the pyramidal structure that enters to the new boundary-preserving mask sub-net, in 

which object boundary and mask are mutually learned via feature fusion blocks.       

Instead of trying to add information that comes from different substructures of the 

Mask-RCNN to the mask sub-net (Huang et al., 2019), or merging mask sub-net 

information with information from the Region of Interest (RoI) alignment sub-net (Cheng 

et al., 2020), we propose making a more efficient use of the information that already 

exists in the mask subnet from the RoI alignment sub-net. This approach is followed in 

(Liu et al., 2018) where tiny fully connected layers which hold complementary 

properties to Fully Convolutional Network (FCN) (used in Mask-RCNN), can capture 

different views of each proposal. This increases the information diversity, hence 

producing masks of better quality. Several approaches show that propagating low-level 

information and combining information from different levels makes better use of the 

entire available information as observed in pyramidal based structures such as the 

Feature Pyramid Network (FPN), which is present in both Mask-RCNN and PANet. 

This approach, that was taken into account at the feature extraction level, was 

inexplicably ignored at the subnet mask module. The proposed MI-RCNN model 

improves the quality of predicted masks by propagating low-level information and 

combining information from different levels in the mask subnet proposed in PANet (Liu 

et al., 2018), which is already an improved version of the mask subnet proposed in 



Mask-RCNN (He et al., 2017).  

One of the most used methods for Neural Network training is the well-known 

Stochastic Gradient Descent (SGD) algorithm with momentum. The idea behind the 

momentum is to take advantage of the convergence dynamics on past iterations to 

more accurately predict the next one. Momentum codes directly the velocity of the 

weights variation along the training process. This reasoning can be extended by using 

higher order moments such as the second (acceleration) and third (variation of the 

acceleration) moments (Freitas et al., 2020).  Second and third order moments can 

take advantage of previous information, which is not taken into account by the 

momentum. According to our best knowledge, higher order momentums have never 

been used in the training of neural networks. Convergence analysis and detailed 

explanation of the method can be found in (Freitas et al., 2020).  

The developed system intends to simultaneously detect pathologies in WCE images, 

while delineating the abnormal tissue using an improved mask alignment and also a 

new method to accelerate convergence in neural networks training. Results reported in 

this paper constitute the use of higher order moments for the training of Mask-

RCNN/PANet based models for the first time. Therefore, new training methodologies 

for state-of-the-art instance segmentation models are also proposed in the ambit of this 

paper. The output of the proposed system is the lesion localization (inside a bounding 

box) in each test image with indication of the most likely type of lesion. The system can 

detect different types of lesion or different pieces of the same type of lesion in the same 

frame. The proposed methodology was tested in the KID dataset (Iakovidis et al., 2018; 

Koulaouzidis et al., 2017). 

2. Methodology 

The methodology  sectionproposed in this paper has three main sections: 

background, model structure and model training. The background section describes the 

different models that inspired the proposed MI-RCNN, while in. The model structure the 

approach to improve the mask sub-net of both the Mask-RCNN and PANet models is 

presented. Mask predictions can be improved by propagating and concatenating low 

and high layer information at the C4_fc layer (see Fig. 1) of the proposed PANet 

structure (Liu et al., 2018). Regarding model training, the use of the second momentum 

was proposed, which considers acceleration and velocity of the weight parameters 

instead of only the velocity considered by the regular (or first-order) momentum.  

2.1. Background 

When looking at MS-RCNN compared to Mask-RCNN, improvements can be seen in 

Average Precision (AP) of more than 1% in the COCO dataset. However, when 

deepening the results’ analysis, we can see that the Mask-RCNN outperforms MS-

RCNN for lower APs (Huang et al., 2019). This may be related with increased 

difficulties in the tracking of small objects since heuristically it seems to be more likely 

to have higher APs for large objects. Our results seem to confirm this suspicion, once 

that no AP improvements were obtained by using the MS-RCNN in the current 

application, perhaps because some of the lesions present in the small bowel are very 

small (e.g. angioectasias).  Preliminary experiments show that PANet outperforms MS-

RCNN for the KID dataset, therefore the focus was to improve PANet results by 

improving mask predictions which is the weak point of the original model. However, 

regarding to this approach two points must be taken into consideration:  



1. Although in (Huang et al., 2019) is not referred a direct comparison between MS-

RCNN and PANet using the demanding COCO dataset, when looking at both 

papers ((Liu et al., 2018) and (Huang et al., 2019) ), it is possible to conclude that 

PANet shows improvements in the performance when applied to COCO dataset. 

This was the main reason to explore the PANet sub-mask module structure in this 

paper. 

2. It is referred by MS-RCNN authors that there is room for mask prediction 

improvements in their method, which goes from 2.2% to 2.6%, depending on the 

used backbone (Huang et al., 2019). These results were found by changing the 

predicted mask for the GT in the training process. This approach seems promising 

however disregarded in the ambit of this paper since for the current 

implementation MS-RCNN underperforms PANet.   

When looking at BMask-RCNN, the conclusion that can be made is that the method 

works well, however the data flow in the mask subnet is intricate and complex, and 

consequently hard to improve. Additionally, authors do not clearly separate and 

analyze improvements due to information propagation from lower pyramidal levels from 

improvements due to mask subnet changes. Better improvements are reported in the 

COCO dataset when compared with MS-RCNN (1.2 and 1.5 % respectively), however 

both methods present similar behaviors since AP improvements are higher for higher 

APs. It was also previously proven that for APs lower than 0.5 the improvement of 

BMask-RCNN over Mask-RCNN becomes negligible, becoming perhaps worsen for 

smaller APs (Cheng et al., 2020). These results clearly show poor boundary refinement 

in small objects.      

2.2. Model Structure 

The Mask R-CNN is perhaps the most popular CNN based structure for instance 

segmentation. Based on Fast/Faster R-CNN (Girshick, 2015; Ren et al., 2017), a FCN 

is used for mask prediction, along with box regression and classification. To achieve 

high performance, FPN is used to extract in-network feature hierarchy, where a top-

down path with lateral connections is augmented to propagate semantically strong 

features. Practical applications show that this method sometimes can provide high 

classification scores associated with misaligned masks. This happens since the 

confidence of instance classification is used as a mask quality score in most instance 

segmentation frameworks. The mask quality, which is quantified as the Intersection 

over Union (IoU) between the instance mask and its ground truth, is usually not well 

correlated with classification score. As masks are predicted by a subnet, specifically 

conceived for this purpose, in principle mask improvements will be associated with the 

improvement of this network substructure.  

 Several improvements regarding mask predictions have been proposed, where the 

most prominent can be found in (Cheng et al., 2020; Huang et al., 2019; Liu et al., 

2018).  Despite the approaches proposed in (Cheng et al., 2020; Huang et al., 2019) 

make sense and proved to be effective in the very difficult COCO dataset, according 

with our findings both show not to be the best for medical image segmentation, 

especially if small lesions appear. Therefore, in this paper it was tried to improve the 

approach proposed in (Liu et al., 2018), in which the basic approach is to make better 

use of the available information from the RoI alignment module instead of merging 

information from different modules.  



2.2.1. Motivation 

Methods proposed in (Cheng et al., 2020; Huang et al., 2019; Liu et al., 2018) were 

developed to improve the mask predictions of the Mask-RCNN network. BMask-RCNN 

(Cheng et al., 2020) is the only that presupposes incomplete information at the mask 

subnet structure, since information propagation from low levels of the FPN is proposed. 

This information comes to the mask subnet from an alternate channel and is mixed by 

the information coming from the RoI alignment module by an intricate scheme along 

the FCN pipeline. This scheme, which is poorly explained, is therefore hard to 

understand and hard to improve. In this way, it wasn’t an inspiration for us. 

The MS-RCNN (Huang et al., 2019) is inspired by the idea of controlling directly the 

mask production, inserting a loss for the mask quality (which requires a new network 

branch named MaskIoU subnet allowing end-to-end training). The maskIoU subnet 

uses information from the most likely predicted mask along with information coming 

from the RoI alignment module, therefore only existing information in the mask subnet 

is used. In the PANet model (Liu et al., 2018), the proposed subnet mask fuses 

predictions from two views; the conventional FCN (which exists in Mask-RCNN) and 

small fully-connected layers, which possess complementary properties of FCN. These 

complementary properties are the core of the method since information diversity is 

increased, improving the quality of produced masks. Similarly to MS-RCNN, no 

information from other modules are propagated to the mask module, while assuming 

that all the required information for producing better masks exists in the mask subnet. 

However, this feature needs to be improved so it can achieve greater performances. 

This is exactly the approach followed in the MI-RCNN network proposed in this paper. 

We argue that enough information for producing better masks exists, however the 

mask subnet structure must be improved in order to make a better use of the existing 

information. Regarding FCN structures it is well known that forwarding low layer 

information and mixing this information with high level information makes a better use 

of the existing information. The best example of this is probably the FPN, which is 

based on the fact that low-level and high-level information complement each other and 

together provide more information than just high-level information alone. Several 

authors have also used fused feature maps for segmentation with finer details (Ghiasi 

and Fowlkes, 2016; Peng et al., 2017; Pinheiro et al., 2016), which is the method 

required to improve the masks produced by state-of-the-art instance segmentation 

systems.  

2.2.2. Proposed Approach 

 In order to preserve most of the information along the CNN pipeline, it was proposed 

to join in the C4_fc layer information from all the preceding layers of the mask sub-net. 

The proposed structure is shown in Fig. 1 emphasizing the improvement of the Mask 

Head (mask sub-net) over the approach proposed in (Liu et al., 2018). In the first stage 

(backbone), FPN extracts features to generate RoIs via Region Proposal Network 

(RPN) for classification and bounding box regression, as it was proposed in (He et al., 

2017). The backbone consists of a CNN which extracts features from raw images. This 

work followed the typical approach when using small datasets of fine-tuning ResNet-

101-FPN, which was pre trained in the large COCO dataset. In this regard, the first four 

ResNet stages were frozen and only the weights of the last were trained with the 

remaining network. The mask sub-net uses each RoI features via RoIAlign, which 

preserves spatial information, essential for predicting segmentation. In fact, Faster R-



CNN uses RoIPool, which introduces misalignments between the RoI and the extracted 

features due to the consecutive quantizations, therefore losing some spatial information 

from the original images. RoiAlign aligns the extracted features with the input, 

preserving spatial information.  (Yang et al., 2018).  

 

Fig. 1.  Schematic diagram of the proposed MI-RCNN structure for the mask sub-net proposed 

in this paper. 

 

2.3. Model Training 

The standard gradient descent (SGD) update rule is given by: 

𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘)        (1) 

where f(w) is the function to be minimized, k stands for iteration number and ηk is the 

learning rate parameter. The minimization of f(w) can be accelerated by the SGD with 

momentum method. Momentum is given by: 

𝑧𝑘+1 = 𝛽𝑘𝑧𝑘 + 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘) 

𝑤𝑘+1 = 𝑤𝑘 − 𝑧𝑘+1       (2) 

where βk is an iteration dependent parameter. Details on how the ηk and βk 

parameters must be updated can be found in (Freitas et al., 2020) and references 

therein. The combination of the pair of equations (2) results in a new update rule given 

by the momentum: 

𝑤𝑘+1 = 𝑤𝑘 − 𝛽𝑘𝑧𝑘 − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘)     (3) 

By comparing equations (1) and (3) we can see that the momentum inserted the term 

(−𝛽𝑘𝑧𝑘) in the update rule. By using the last equation of the pair of equations (2), 

equation (3) can be rewritten as: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛽𝑘(𝑤𝑘 −𝑤𝑘−1) − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘)  (4) 

Therefore, the term inserted by the momentum is the first difference of the network 



weights weighted by the βk parameter that must be adjusted.  

 Nesterov Accelerated Gradient (NAG) (Nesterov, 1983) computes equation (4) 

on the basis of the estimate of the next position of the parameters instead of on the 

current position. In addition to the momentum, NAG also significantly accelerates the 

algorithm convergence and the updating rule becomes: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛽𝑘(𝑤𝑘 −𝑤𝑘−1) − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘 − 𝛽𝑘𝑧𝑘)  (5) 

The acceleration of convergence through the momentum was based on the 

hypothesis that the successive aggregation of past gradient information is more 

effective than the latest negative gradient alone. In fact, the step taken at the previous 

iterate wk-1 was based on negative gradient information at that iteration, along with the 

search direction from the iteration prior to that one, wk-2. By following this line of 

reasoning, we see that the previous step is a linear combination of all the gradient 

information found at all iterates so far, going back to the initial iterate w0.  

2.3.1. Higher Order Moments 

Gradient information of past iterates is then given by the derivative of the weight 

parameters, which presupposes that at each iteration acceleration coefficients (second 

derivative of the weight parameters) can also encode convergence dynamics more 

extent in time and can help to improve convergence. A similar reasoning can be made 

regarding higher than second order moments. As the nth order derivative is just the 

derivative of the (n-1)th derivative then the nth moment is the momentum of the (n-1)th 

moment. Therefore the second momentum, which is the acceleration of the weight 

coefficients can be obtained by the momentum of the momentum given in equation (2) 

and is given in equation (6) already with the inclusion of the NAG which was named as 

NAG2:   

𝑠𝑘+1 = 𝛾𝑘𝑠𝑘 + 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘 − 𝛽𝑘𝑧𝑘 − 𝛾𝑘𝑠𝑘) 

𝑧𝑘+1 = 𝛽𝑘𝑧𝑘 + 𝑠𝑘+1 

        𝑤𝑘+1 = 𝑤𝑘 − 𝑧𝑘+1                              (6) 

The updating rule becomes: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛽𝑘(𝑤𝑘 − 𝑤𝑘−1) + 𝛾𝑘𝑠𝑘 − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘 − 𝛽𝑘𝑧𝑘 − 𝛾𝑘𝑠𝑘)       (7) 

From the last two equations of the set of equations (6) we obtain: 

𝛾𝑘𝑠𝑘 = 𝛾𝑘[𝑤𝑘 − (1 + 𝛽𝑘)𝑤𝑘−1 + 𝛽𝑘𝑤𝑘−2]     (8) 

Equation (8) shows that the second momentum also reinforce indirectly the first 

momentum which can be seen rewriting equation (7) by inserting equation (8). 

Equation (7) becomes: 

𝑤𝑘+1 = 𝑤𝑘 + (𝛽𝑘 + 𝛾𝑘)(𝑤𝑘 −𝑤𝑘−1) − 𝛽𝑘𝛾𝑘(𝑤𝑘−1 −𝑤𝑘−2) − 𝜂𝑘𝛻𝑤𝑘𝑓(𝑤𝑘 − 𝛽𝑘𝑧𝑘 −

𝛾𝑘𝑠𝑘)                  (9) 

 Convergence analysis of the second momentum is discussed in (Freitas et al., 

2020). 

3. Experimental Results and Discussion 

The effectiveness of the proposed approach was evaluated in the public database 

KID dataset 2 (Iakovidis et al., 2018; Koulaouzidis et al., 2017). This contains WCE 

images obtained from the whole GI tract using different exams, all taken with 



MiroCam® (IntroMedic Co., Seoul, Korea) capsules. These images have a resolution of 

360×360 pixels and all were manually annotated and scrutinized by an international 

scientific committee (Koulaouzidis et al., 2017). These include 303 images of vascular 

anomalies (small bowel angioectasias, lymphangiectasias, and blood in the lumen), 44 

images of polypoid anomalies (lymphoid nodular hyperplasia, lymphoma, Peutz-

Jeghers polyps) and 227 images of inflammatory anomalies (ulcers, aphthae, mucosal 

breaks with surrounding erythema, cobblestone mucosa, luminal stenoses and/or 

fibrotic strictures, and mucosal/villous oedema).  

The vascular anomalies class was divided in two (angioectasias and bleeding), since 

these two lesions have too many differences in color, size and texture. Also, it is 

important to refer that for the physicians, the treatment and follow-up of these two 

lesions are extremely different. In this way, two physicians of Hospital of Braga 

reviewed the different images and classified them into angioectasia or bleeding 

separately, and in the case that a classification was different between them, a 

consensus was reached afterwards. So, the final dataset used in this work was 

composed of four different lesion classes: angioectasias, bleeding, polyps and 

inflammatory lesions. Examples of the different lesions present in the dataset can be 

seen in Fig. 2 and the final number of images by lesion are present in Table I.  

 

Fig. 2.  Examples of lesions retrieved from KID Dataset 2. In the top the images and in the 
bottom the annotated masks. From the left to the right, an example of angioectasia, bleeding, 

polyp and inflammatory lesion. 

 
Table I. Contents of the used dataset. 

Lesion Number of images 

     Normal      728* 

Angioectasia 248 

Bleeding 55 

Polyps 44 

Inflammatory 227 

* Normal images were included only in the testing phase. 



All frames were used in a proportion of 55% for training, 30% for testing and 15% for 

validation. All the sets were randomly selected from the entire dataset, since no subject 

related information is available in the KID dataset. As the background class is 

represented in all pathological frames, normal frames are not required for training 

purposes otherwise highly class imbalance will be obtained leading to a decreasing in 

performance.  

Results were evaluated in terms of mean Average Precision (mAP), which is a metric 

often used in segmentation-based applications, and its two variants (mAP50 and 

mAP75), which returns the values of the precision considering different values of 

Intersection over Union (IoU). The F1-score metric was also included in this analysis, 

which uses both precision and recall for its computation. The considered baseline 

system is the Mask-RCNN (He et al., 2017). Table II shows the obtained results. 

Table II. Comparison of the results obtained with the unseen test set among Mask R-CNN, 
PANet, the proposed approach with regular SGD and with the 2nd order moment optimizer in 

terms of mAP, mAP50, mAP75 and F1-Score. 

Method Backbone mAP mAP50 mAP75 F1-score 

Mask R-CNN (He et al., 2017) ResNet-101 + FPN 33.10 56.51 34.71 49.23 

PANet (Liu et al., 2018) ResNet-101 + FPN 34.66 56.56 36.79 53.66 

Proposed MI-RCNN ResNet-101 + FPN 35.75 57.43 38.34 56.83 

Proposed MI-RCNN + 2nd 
moment 

ResNet-101 + FPN 40.35 59.42 43.01 60.07 

 

Regarding mask refinements, it is important to note that although outperforming the 

conventional Mask-RCNN in the COCO dataset, the very promising approaches 

proposed in (Cheng et al., 2020; Huang et al., 2019) both underperform the PANet for 

the KID dataset, therefore for clarity purposes were not shown in Table II. Results show 

that MI-RCNN with the regular SGD with momentum outperforms the baseline Mask R-

CNN and PANet models, with improvements of almost 1% in mAP and mAP50, 1.5% in 

mAP75 and more than 3% in F1-score. This shows the efficiency of propagating and 

mixing lower layer information with high level information in the mask subnet. By using 

the second momentum technique for training purposes, which is the second proposal 

of this paper and constitutes a novelty for a network of the size of the Mask-RCNN, an 

extra improvement was achieved. In this case, values of almost 5% in mAP, 2% in 

mAP50, 5% in mAP75 and 3% in F1-score were obtained, which is consistent with the 

results presented in (Freitas et al., 2020). Globally, both proposals improve the results 

of the Mask-RCNN in the KID dataset, which is very significant. Although expecting a 

significant difference between mask scoring and classification results, the results in this 

case when looking at the masks shown a strong similarity between classification score 

and mask alignment, making the system more robust to changes. 

When looking at the resultant masks (Fig. 3), it is visible that sometimes more than 

one lesion can be found (first and third example), but in all of these cases, the contour 

that better filled the annotated mask is the one with the higher probability returned by 

the model. It is important to note that in these cases, the region with the higher 

probability was considered to compute the metrics presented in Table II. It is also 

possible to understand that the examples with the smaller lesions are the ones where 

the resultant segmentation has the worst match when comparing to the mask, but still 

better than the state-of-the-art. 



 

 

Fig. 3.  Results of the segmentation using the proposed approach, in examples of the four 
different considered lesions. From the top to the bottom, an example of angioectasia, bleeding, 
polyp and inflammatory lesion. From the left to the right, the original image, the annotated mask 

and the predicted mask with the class probability. 

 

The instance segmentation approach is a fundamental piece in automatic diagnosis 

for multi-pathology applications, however its use has been very limited which makes it 

difficult for performance comparisons with alternative systems as they do not exist. This 

is the case for multi-pathology detection and lesion segmentation by using WCE 

videos. In this regard the only possible comparison would be with (Iakovidis et al., 



2018), which is the most advanced known system that uses the KID dataset. However, 

as (Iakovidis et al., 2018) doesn’t provide segmentation related metrics, only 

classification performances comparisons are possible. It is also important to notice that 

in (Iakovidis et al., 2018), although using the same dataset, the classification is done as 

normal/abnormal, and does not classify each lesion individually. Thus, it is not correct 

to directly compare our multi pathological system with the binary classification system 

in (Iakovidis et al., 2018). Table III shows the advantages of the instance segmentation 

approach. In fact, including both classification and segmentation modules in the same 

system, information sharing is promoted by different subsystems improving their joint 

use.    

Table III. Comparison of the classification performances obtained with the unseen test set 
among Mask R-CNN, PANet, the proposed approach with regular SGD and with the 2nd order 

moment optimizer in terms of Recall, Precision, F1-score and Accuracy. 

Method Class Recall Precision F1-score Accuracy 

Mask R-CNN 
(He et al., 2017) 

Inflammatory 45.45 87.5 59.83 

62.69 

Polypoids 71.43 90.91 80.00 

Bleeding 50 100 66.67 

Angioectasia 79.76 95.71 87.01 

Weighted Average 62.69 92.49 73.76 

PANet (Liu et 
al., 2018) 

Inflammatory 45.45 89.74 60.34 

63.21 

Polypoids 78.57 84.62 81.48 

Bleeding 61.11 84.62 70.97 

Angioectasia 77.38 95.59 85.53 

Weighted Average 63.21 91.44 73.83 

Proposed MI-
RCNN 

Inflammatory 51.95 90.91 66.12 

66.32 

Polypoids 78.57 73.33 75.86 

Bleeding 66.67 85.71 75.00 

Angioectasia 77.38 94.20 84.97 

Weighted Average 66.32 90.58 75.86 

Proposed MI-
RCNN + 2nd 

moment 

Inflammatory 55.84 93.48 69.92 

69.95 

Polypoids 71.43 100.00 83.33 

Bleeding 61.11 73.33 66.67 

Angioectasia 84.52 97.26 90.45 

Weighted Average 69.95 93.72 79.52 

 

Looking at Table III it is possible to conclude that the proposed MI-RCNN led to good 

performances in lesion detection, specially in the case of inflammatory, polypoids and 



angioectasia lesions. It is noticeable a very promising result with angioectasia 

detection, which was not the most expected outcome due to the inclusion of other 

vascular-related lesions in the dataset (bleeding). On the other hand, the results of 

bleeding detection were substantially lower. By looking at the segmentation we can 

conclude that some of these lesions were mixed up with shadows and natural hollow 

spaces of the small bowel. It is also important to note that this was one of the less 

representative type of lesion in the dataset, which can damage the performance of the 

classifier. The polypoids detection always achieved the best results when MI-RCNN 

was applied, but a lower precision value was reached when applying the 2nd 

momentum, which was not expected. But looking at the overall performance, the 2nd 

momentum improved the results when looking at these lesions. Finally, when looking at 

inflammatory lesions, it is noticeable a significant difference between the precision and 

the recall values, but the proposed approach reached the best performance of the test. 

To compare these results with the performance of physicians, a 2012 study will be 

used (Zheng et al., 2012). In here, 17 WCE readers (8 with low experience and 9 with 

median or high experience) were used. In average, less than 50% of the lesions were 

found by this group of physicians; with a range that goes from 17% to 78%. Also, it is 

interesting to notice that there was no direct relationship between the reader 

experience in WCE analysis and the performance in this study (the physician with a 

performance of 17% was in fact the one with most experience in WCE). Regarding the 

different lesions present in the clips, angioectasias were the lesions most found (69%), 

followed by polyps (46%), ulcers (38%) and blood (17%). It is clear that in fact our 

system is able to classify a greater number of lesions in WCE abnormal frames, when 

compared to the average of physicians. 

Regarding normal images, as explained previously, they were only included in the 

testing phase, since they are considered entirely background. Since the focus of      this 

paper was to prove that different lesions in WCE images could be correctly classified     

, the results with normal images were not included into Table III. In fact, the True 

Positive (TP) rate when normal images are considered is 64.15% / 66.07% / 70.05% / 

71.43%, when using Mask R-CNN, PANet, MI R-CNN and MI-RCNN with 2nd moment, 

respectively. It is clear that the proposed methodology improves the correct 

classification of normal images, outperforming sometimes physicians’ performances 

hence able to be used in the clinical practice. If it is true that higher values are found in 

the literature, it is also true that they usually do not reflect current clinical practice with 

highly unbalanced classes and images hard to analyze.  

Overall, when looking at the accuracy of the system, the MI-RCNN with the 2nd 

momentum reached the higher value, and it is a promising result, since no other 

previous work applied multi-pathology classification and segmentation in the KID 

dataset. Looking at (Iakovidis et al., 2018), the only work that used the whole KID 

dataset 2 for classification purposes, they have reached an accuracy of 77.5%. 

Although higher than our accuracy of 69.95%, results aren’t comparable since 

(Iakovidis et al., 2018) used only a binary classification task of normal/abnormal. As a 

matter of fact, some pathological frames were incorrectly classified regarding its 

pathology, but this is not measured by (Iakovidis et al., 2018).  

4. Conclusions 

Current clinical practice of the gastrointestinal tract requires multi-pathology detection 

given the amount of different pathologies that can be found. Lesion localization 



modules provided by modern automatic diagnosis systems have been highly 

appreciated by the medical community, since the specific region of the lesion is shown, 

improving the physician's confidence in the system. Therefore, a useful system must 

have a classification module and a segmentation module that can complement each 

other if they share components. Current instance segmentation systems have these 

characteristics, with Mask-RCNN being one of the most used systems of this type. One 

of the characteristics that can be improved in Mask-RCNN is the quality of the 

predicted mask. MS-RCNN and BMask-RCNN are two methods that improve the 

predicted mask quality in the COCO dataset, however both underperform PANet in our 

case. PANet adds a branch in the mask sub-net containing tiny fully connected layers 

that can capture different views of each proposal increasing information diversity hence 

producing masks of better quality. 

This paper proposed MI-RCNN, an efficient method to improve the quality of the 

predicted mask that outperforms PANet. The method is based on the well-established 

principle that forwarding low-layer information and mixing this information with high-

level information makes a better use of the existing information. In this regard, 

propagation of low layer information from all sub-net mask levels to the C4_fc layer is 

proposed. Also, the use of the 2nd momentum for training the network instead of a 

simple momentum was proposed, which is an innovative contribution from this work. 

Experimental results show that the proposed methods significantly improve the 

evaluation metrics, with an increase of 3% in F1-score. By training the proposed model 

with the innovative method based on the second momentum an extra improvement of 

more than 3% was achieved over the PANet model. The classification results also 

followed the same behavior, with accuracies for the proposed MI-RCNN and MI-RCNN 

with 2nd momentum 3% and 7% higher than the PANet, respectively, for the majority of 

the analyzed lesions. Also, it is shown that the classification of normal images show 

improved performances when using the proposed methodology, with an increase of 4% 

and 6% in TP rate when comparing PANet with MI-RCNN and MI-RCNN with the 2nd 

momentum, respectively. 

Although it is a first work in a scenario of multi-pathology detection in WCE images, 

the achieved results are quite promising. The good results not only in the classification 

task, but also on the segmentation task, could lead to the conclusion that in fact, these 

two modules should be always complementary to each other. As future work, we would 

like to improve the masks predictions to achieve better results, increase the number of 

pathologies by using other datasets and validate in a clinical setting the whole system. 
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