872 research outputs found

    Shallow Circuits with High-Powered Inputs

    Get PDF
    A polynomial identity testing algorithm must determine whether an input polynomial (given for instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree) multivariate identity testing are weaker. To obtain our lower bound it would be sufficient to derandomize identity testing for polynomials of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads to new versions of the Shub-Smale tau-conjecture on integer roots of univariate polynomials. In particular, we show that a lower bound for the permanent would follow if one could give a good enough bound on the number of real roots of sums of products of sparse polynomials (Descartes' rule of signs gives such a bound for sparse polynomials and products thereof). In this third version of our paper we show that the same lower bound would follow even if one could only prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4 circuits computing the permanent.Comment: A few typos correcte

    Quantum Query Complexity of Multilinear Identity Testing

    Get PDF
    Motivated by the quantum algorithm in \cite{MN05} for testing commutativity of black-box groups, we study the following problem: Given a black-box finite ring R=∠r1,...,rkR=\angle{r_1,...,r_k} where {r1,r2,...,rk}\{r_1,r_2,...,r_k\} is an additive generating set for RR and a multilinear polynomial f(x1,...,xm)f(x_1,...,x_m) over RR also accessed as a black-box function f:Rm→Rf:R^m\to R (where we allow the indeterminates x1,...,xmx_1,...,x_m to be commuting or noncommuting), we study the problem of testing if ff is an \emph{identity} for the ring RR. More precisely, the problem is to test if f(a1,a2,...,am)=0f(a_1,a_2,...,a_m)=0 for all ai∈Ra_i\in R. We give a quantum algorithm with query complexity O(m(1+α)m/2kmm+1)O(m(1+\alpha)^{m/2} k^{\frac{m}{m+1}}) assuming k≥(1+1/α)m+1k\geq (1+1/\alpha)^{m+1}. Towards a lower bound, we also discuss a reduction from a version of mm-collision to this problem. We also observe a randomized test with query complexity 4mmk4^mmk and constant success probability and a deterministic test with kmk^m query complexity.Comment: 12 page

    Deterministic Black-Box Identity Testing π\pi-Ordered Algebraic Branching Programs

    Get PDF
    In this paper we study algebraic branching programs (ABPs) with restrictions on the order and the number of reads of variables in the program. Given a permutation π\pi of nn variables, for a π\pi-ordered ABP (π\pi-OABP), for any directed path pp from source to sink, a variable can appear at most once on pp, and the order in which variables appear on pp must respect π\pi. An ABP AA is said to be of read rr, if any variable appears at most rr times in AA. Our main result pertains to the identity testing problem. Over any field FF and in the black-box model, i.e. given only query access to the polynomial, we have the following result: read rr π\pi-OABP computable polynomials can be tested in \DTIME[2^{O(r\log r \cdot \log^2 n \log\log n)}]. Our next set of results investigates the computational limitations of OABPs. It is shown that any OABP computing the determinant or permanent requires size Ω(2n/n)\Omega(2^n/n) and read Ω(2n/n2)\Omega(2^n/n^2). We give a multilinear polynomial pp in 2n+12n+1 variables over some specifically selected field GG, such that any OABP computing pp must read some variable at least 2n2^n times. We show that the elementary symmetric polynomial of degree rr in nn variables can be computed by a size O(rn)O(rn) read rr OABP, but not by a read (r−1)(r-1) OABP, for any 0<2r−1≤n0 < 2r-1 \leq n. Finally, we give an example of a polynomial pp and two variables orders π≠π′\pi \neq \pi', such that pp can be computed by a read-once π\pi-OABP, but where any π′\pi'-OABP computing pp must read some variable at least $2^n

    Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

    Full text link
    We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models - depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: (1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and (2) constant-depth constant-occur formulas (no multilinear restriction). Constant-occur of a variable, as we define it, is a much more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique. In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool - the Jacobian - that is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    Arithmetic circuits: the chasm at depth four gets wider

    Get PDF
    In their paper on the "chasm at depth four", Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree
    • …
    corecore