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Abstract
In this paper we study algebraic branching programs (ABPs) with restrictions on the order
and the number of reads of variables in the program. An ABP is given by a layered directed
acyclic graph with source s and sink t, whose edges are labeled by variables taken from the set
{x1, x2, . . . , xn} or field constants. It computes the sum of weights of all paths from s to t, where
the weight of a path is defined as the product of edge-labels on the path. Given a permutation π
of the n variables, for a π-ordered ABP (π-OABP), for any directed path p from s to t, a variable
can appear at most once on p, and the order in which variables appear on p must respect π.
One can think of OABPs as being the arithmetic analogue of ordered binary decision diagrams
(OBDDs). We say an ABP A is of read r, if any variable appears at most r times in A.

Our main result pertains to the polynomial identity testing problem, i.e. the problem of
deciding whether a given n-variate polynomial is identical to the zero polynomial or not. We prove
that over any field F, and in the black-box model, i.e. given only query access to the polynomial,
read r π-OABP computable polynomials can be tested in DTIME[2O(r log r·log2 n log logn)]. In case
F is a finite field, the above time bound holds provided the identity testing algorithm is allowed
to make queries to extension fields of F. To establish this result, we combine some basic tools
from algebraic geometry with ideas from derandomization in the Boolean domain.

Our next set of results investigates the computational limitations of OABPs. It is shown that
any OABP computing the determinant or permanent requires size Ω(2n/n) and read Ω(2n/n2).
We give a multilinear polynomial p in 2n + 1 variables over some specifically selected field G,
such that any OABP computing p must read some variable at least 2n times. We prove a strict
separation for the computational power of read (r − 1) and read r OABPs. Namely, we show
that the elementary symmetric polynomial of degree r in n variables can be computed by a size
O(rn) read r OABP, but not by a read (r − 1) OABP, for any 0 < 2r − 1 ≤ n. Finally, we give
an example of a polynomial p and two variables orders π 6= π′, such that p can be computed by
a read-once π-OABP, but where any π′-OABP computing p must read some variable at least 2n
times.
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1 Introduction

The polynomial identity testing problem (PIT) is the question of deciding, given an arithmetic
circuit C with input variables x1, x2 . . . xn over some field F, whether the polynomial computed
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by C is identical to the zero polynomial in the ring F[x1, x2, . . . xn]. Efficient algorithms
for PIT are important both in theory and in practice. Randomized algorithms were given
independently by Schwartz [17] and Zippel [22].

Finding deterministic algorithms for PIT plays a crucial role in computational complexity
theory. Kabanets and Implagliazzo [11] showed that giving a deterministic subexponential
time algorithm for PIT implies that either NEXP 6⊆ P/poly, or that the permanent has
no poly-size arithmetic circuits. Agrawal [1] showed that giving a deterministic black-box
algorithm for PIT yields an explicit multilinear polynomial that has no subexponential size
arithmetic circuits. In [1] a program was outlined explaining how making progress towards
the latter kind of algorithm for PIT has the potential of resolving Valiant’s Hypothesis,
which states that the algebraic complexity classes VP and VNP are distinct. For optimists
certainly, the situation is tantalizing, as Agrawal and Vinay [2] showed that the black-box
derandomization of PIT for only depth-4 circuits would yield a nearly complete derandomiza-
tion for general arithmetic circuits. Recent progress on the PIT problem has been impressive.
See [16] for a recent survey.

In this paper, we contribute to the above mentioned lower bounds program by considering
black-box identity testing ordered algebraic branching programs (OABPs), which where
introduced in [8]. Algebraic branching programs have computational power somewhere in
between arithmetic formulas and circuits. Namely, they can efficiently simulate formulas
via a construction by Valiant [21]. Furthermore, their computational power is easily seen
to be equivalent to that of skew circuits. For skew circuits, which were introduced by Toda
[20], multiplication gates are restricted to have one of their inputs to be a variable or field
constant. OABPs can be thought of as being the arithmetic analogue of ordered binary
decision diagrams (OBDDs), which were introduced by Bryant [4].

Some polynomials can be succinctly represented in the OABP model. For example, we
show that the elementary symmetric polynomial of degree k in n variables can be elegantly
described by a grid shaped OABP of size O(kn). This can be done for any desired variable
order π, and shows small OABPs have some real computing power. We think the OABP model
has practical merit for polynomial representation, and being an analogue of the OBDD it
should be properly investigated. As our lower bounds show, a succinct OABP-representation
is not available for every polynomial. The situation is similar to what is well-known for
OBDDs. In practice this may be outweighed by the fact that PIT can be solved efficiently
for OABPs. Part of the popularity of OBDDs can be explained by the fact that identity
testing (and hence equivalence testing) can be done efficiently for the model, as e.g. Raz and
Shpilka [14] remarked.

In [14] a polynomial-time non-black-box algorithm was given for identity testing non-
commutative formulas, and more generally non-commutative ABPs. Identity testing OABPs
reduces to PIT for non-commutative ABPs, and hence can be done non-black-box in polynomial
time. Namely, if we take an OABP A computing some polynomial f over commuting variables,
and if we let f ′ be the evaluation of A, where we restrict the variables to be non-commuting,
then it can be observed that f ≡ 0 ⇔ f ′ ≡ 0. Giving a black-box algorithm for testing
non-commutative formulas and ABPs is currently a major open problem. Our main result
implies that for any variable order π, we have a DTIME[2O(polylog(n))] black-box algorithm
for testing OABPs with order π that have polylog(n) many reads.

Let us mention the connection of our work to the problem of identity testing multilinear
formulas raised by Raz [13]. Our results can be applied to black-box identity testing “ordered
multilinear formulas” with few reads (say polylog(n)). The latter can be defined for any
given variable order π, by requiring that for each multiplication gate g = g1 × g2 in the
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formula, variables in the subformula rooted at g1 should either all be smaller or all be larger
w.r.t. π than variables in the subformula rooted at g2. By applying the construction of
[21], judiciously to keep the order, a formula of this kind can be simulated by a π-OABP.
This then gives another important special case of PIT for multilinear formulas for which a
black-box algorithm is known. The other case being sum-of-k read-once formulas, which we
elaborate on next.

Any arithmetic read-once formula (ROF) can be simulated by an OABP, since the
construction of [21] mentioned before preserves the RO-property. Black-box Identity testing
sum-of-k ROFs was studied in [19], and this was subsequently generalized to the sum-of-k
read-once ABPs in [10]. These results suggest the difficulty of making generalizations in this
area to models beyond read-once. For example, by [10] we have an nO(logn) black-box test
for sum-of-two read-once ABPs, but for testing a single read-twice ABP, currently nothing is
known beyond brute-force methods. Our result is significant, in that the techniques apply to
a model where the multiple reads take place within one monolithic ABP. This opens up a new
thread of progress in the direction of identity testing unrestricted ABPs. We refer to [9] for
a direct connection between this, and proving lower bounds for the determinantal complexity
of explicit polynomials. The latter is what the separation of VP and VNP requires.

Another point of significance pertains to the techniques we use (on which we will elaborate
more below). To obtain the main result, we combine basic tools from algebraic geometry
with ideas from derandomization in the Boolean world (specifically, the pseudorandom
construction of Impagliazzo, Nisan and Wigderson [7] for network algorithms). As far as we
now, this kind of use of basic algebraic geometry is new to the PIT area. We hope our work
stimulates more research in this direction.

1.1 Techniques
Towards the identity testing algorithm, first we show that, without increasing the number of
reads, any π-OABP can be made π-oblivious. For the latter, all variables in a layer must be
identical, and all occurences of a variable xi appear in the same layer. Hence there is some
variable order xi1 , xi2 , . . . , xin in which the layers appear (possibly interleaved by constant
layers), when going from the source to the sink. The next step is to construct a generator
G(z) for π-oblivious ABPs. This is a mapping F` → Fn such that for any f ∈ F[x1, . . . , xn]
computed by a π-oblivious ABP, f ≡ 0 ⇔ f(G) ≡ 0. From this, one obtains an efficient
black-box test, if the number of z-variables ` and the degree of G is “small”.

For illustrative purposes, let us consider an π-oblivous ABP A with variable order
x1, x2, . . . , x2n of small width w, rather than small number of reads, and suppose it computes
f 6≡ 0. In order to achieve ` = O(w logn), we cut A in the middle layer. This gives a
decomposition (say) f =

∑
i∈[w] gi(x1, . . . , xn)hi(xn+1, . . . , x2n). Then we want f(G) =∑

i∈[w] gi(G1, . . . ,Gn)hi(Gn+1, . . . ,G2n) 6≡ 0. We would like to use recursion on the gis and
his, but in order to get ` small, this means Gu := (G1, . . . ,Gn) and Gd := (Gn+1, . . . ,G2n)
will share most of the variables. Consequently, cancelations might occur and may result in
f(G) ≡ 0. However, we do know that {gi(Gu)}i∈[w] must “communicate” through a small
dimensional space Fw. This allows one to take Gd identical to Gu, except for an additional
component to the input that inflates the dimension of any non-empty finite union of affine
varieties1, given by the preimage of a single point in Fw. More or less, G(z, z′) will look

1 Keeping with the terminology in [6], an algebraic set is the set of common zeroes of a list of polynomials.
Affine varieties are algebraic sets, which are irreducible in the Zariski-topology.
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like Gu(z);Gd(z, z′), with Gd(z, z′) = Gu(z + T (z′)), where T is a mapping of O(w) many
variables that contains any w-dimensional coordinate subspace. Doing so, we only add O(w)
many variables per inductive step. This mirrors the pseudorandom generator construction of
[7] mentioned before. To make an analogy, z + T (z′) can be thought of as similar to taking a
vertex (we pick z) and adjacent edge (we move by T (z)) on an expander graph.

Necessarily, our final construction will be more complicated than the above sketch, since
we assume a bound on the number of reads instead of the width. This will be dealt with
by taking a partial derivatives w.r.t. a centrally local variable xk in the ABP. Taking the
derivative w.r.t. xk has the net effect of cutting down the width of the xk-layer of A.

2 Preliminaries

For a natural number n, we denote the set {1, 2, . . . , n} by [n]. For an n-tuple a =
(a1, a2, . . . , an) and m-tuple b = (b1, b2, . . . , bm), we denote (a1, a2, . . . , an, b1, b2, . . . , bm)
by a#b. Let X = {x1, x2, . . . , xn} be a set of variables and let F be a field. For a polynomial
f ∈ R := F[X], if it is identical to the zero polynomial of the ring R, we write f ≡ 0. If the
degree of any variable of f is bounded by one, f is said to be multilinear (even if f has a
constant term). We say f depends on xi, if the formal partial derivative ∂f/∂xi 6≡ 0. V ar(f)
denotes the sets of variables f depends on. For a set of polynomial f1, . . . , fm ∈ F[X], we say
that they are independent if for all a ∈ Fm with a 6= 0,

∑
i∈[m] aifi 6≡ 0. We use the notation

f|xi=α to denote substitution of xi with α ∈ F.
We import the following definition and subsequent notations from [10]. An algebraic

branching program (ABP) is a 4-tuple A = (G,w, s, t), where G = (V,E) is an edge-labeled
directed acyclic graph for which the vertex set V can be partitioned into levels L0, L1, . . . , Ld,
where L0 = s and Ld = t. Vertices s and t are called the source and sink of A, respectively.
Edges may only go between consecutive levels Li and Li+1. The subgraph induced by Li∪Li+1
is called a layer. The label function w : E → X ∪ F assigns variables or field constants to
the edges of G. For a path p in G, we extend the weight function by w(p) =

∏
e∈p w(e).

Let Pi,j denote the collection of all paths p from i to j in G. The program A computes the
polynomial

∑
p∈Ps,t

w(p). The size of A is taken to be |V |, and the read of A is the maximum
of |w−1(xi)|, over all xi’s. The depth of A equals d, and the width of A equal maxi |Li|.

Algebraic branching programs were first introduced by Nisan [12]. Our definition differs
in the respect that [12] requires edge labels to be linear forms. We remark that the read of an
ABP always refers to global read, i.e. it bounds the total number of times a variable xi can
be reads in the entire ABP. With some abuse, an ABP A is called a read r ABP, if its read
is bounded by r. We also denote this by saying that A is a Rr-ABP. A polynomial f ∈ F[X]
is called a Rr-ABP-polynomial if there exists a Rr-ABP computing f . We use the following
notation: for an arc e = (v, w) in ABP A, begin(e) = v and end(e) = w. We let source(A)
and sink(A) stand for the source and sink of A. For any nodes v, w in A, we denote the
subprogram with source v and sink w by Av,w. We use Â to denote the polynomial computed
by A, and in particular, Âv,w is the polynomial computed by the subprogram Av,w. A layer
of an ABP A is the subgraph induced by two consecutive levels Li and Li+1 in A.

I Definition 1. Let π be a permutation of [n]. An ABP A is π-ordered, if on every directed
path p in A, if a variable xi appears before xj on p, then π(i) < π(j). For an ABP A we say
it is ordered if it is π-ordered w.r.t. some permutation π.

For a π-ordered ABP (π-OABP) variables appear (with possibly omissions) on any path
from source to sink in the order xπ−1(1), xπ−1(2), . . . , xπ−1(n). We will speak of the latter
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sequence as the variable order of A. To stress, for a π-OABP, for any path p, a variable
xi appears at most once on p. Hence, if a π-OABP is read r, each variable xi can appear
at most r times in the ABP, and each occurrence must be on a different path from the
source to the sink. Note that the output of a π-OABP must be a multilinear polynomial.
Ordered algebraic branching programs where first studied in [8], but with respect to the
homogeneous ABP definition of [12]. There the ordering condition states that on any path p,
for any edge e1 appearing before e2 on p, if e1 is labeled by

∑
i∈[n] aixi, and e2 is labeled by∑

i∈[n] bixi, then all variables in {xi : ai 6= 0} appear before all variables in {xi : bi 6= 0} in
the variable order. The usual “homogenization trick” of splitting nodes into parts computing
homogeneous components can be used to convert any OABP to the model of [8] (one also
needs to collapse circuitry going over constant wires). This outlines a proof of the second
part of the following lemma (the first part being obvious):

I Lemma 2. For any permutation π of [n] we have the following:
1. A homogeneous π-ordered ABP of size s with linear forms as edge labels can be converted

into an equivalent π-OABP with weight function w : E → X ∪ F of size O(ns).
2. For any π-OABP of size s computing a homogeneous polynomial of degree d, there exists

an equivalent homogeneous π-ordered ABP of size O(sd) with linear forms as edge labels.

An ABP is called oblivious, if for any layer all variables are the same. We call a layer
an x-layer, if x labels some of the edges in that layer, for x ∈ X. Layers with variables are
called variable layers. Layers without variables are called constant layers. We say an ABP is
π-oblivous, if it is oblivious, and for each variable xi there is at most one xi-layer, and the
layers appear in the order xπ−1(1), xπ−1(2), . . . , xπ−1(n) (with possible omissions) in the ABP.

To emphasize, for a read r π-oblivious ABP we have at most n layers where variables are
read. These layers appear in the variable order when going from the source to the sink, and
can be interleaved with constant labeled layers. Then for a variable layer w.r.t. a variable
x, we have at most r occurences of x on an edge in this layer. Any remaining edges in
the layer must be labeled by constants. The proof of the following lemma follows by some
straightforward circuit manipulations, and it will appear in the full version of the paper.
Note the lemma preserves read.

I Lemma 3. For any permutation π of [n], given a π-OABP A over n variables of size s
and read r, there is an equivalent π-oblivious ABP B of size O(sn), width ≤ 2s, read r.

Any subset X ⊆ Fn which is the set of simultaneous zeroes of a set of polynomials
f1, . . . , ft ∈ F[x1, . . . , xn] is called an algebraic set. For basic definitions we refer to [5, 6]. If
X and Y are algebraic sets in Fn, we denote by X+Y the subset {x+y ∈ Fn : x ∈ X, y ∈ Y }.
Note that X + Y may not be an algebraic set. We denote by X + Y the closure of X + Y in
the Zariski-topology. We need the following two lemmas:

I Lemma 4. Let X ⊂ Fn be an algebraic set of dimension 0 ≤ r < n. Then for some
(n− r)-dimensional coordinate subspace C ⊂ Fn, X + C = Fn.

Proof. For a coordinate subspace C denote the canonical projection to C by πC . Consider
K = {0}r × Fn−r and L = Fr, which we think of as the complement of K corresponding
to the first r coordinates. We have the following two properties: 1) The set X +K equals
πL(X)× Fn−r, and 2) πL(X)× Fn−r = πL(X)× Fn−r.

By this, dimX +K = n− r + dim πL(X). More generally, it can be seen (by applying
isomorphisms to Fn, where we permute the indices), that for any (n − r) -dimensional
coordinate subspace C with r-dimensional complement D, dimX + C = n− r + dim πD(X).
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Hence the lemma follows from the fact that for any r-dimensional affine variety there exists
a projection τ to some r-dimensional coordinate subspace E such that τ(X) is dense in E,
i.e. dim πD(X) = r. For a proof of the latter see [5], p480. J

I Lemma 5 (Lemma 2.1 in [3]). Let f ∈ F[X] be a nonzero polynomial such that the degree
of f in xi is bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n]. Then
there exists (s1, s2, . . . , sn) ∈ S1 × S2 × . . .× Sn with f(s1, s2, . . . , sn) 6= 0.

The following lemma gives us a decomposition satisfying some useful independence
properties.

I Lemma 6. Let k ≥ 1, and let A be an oblivious ABP of width w with source s and sink t
having variable order x1, x2, .., x2n. Suppose Â 6≡ 0. Then we can write for some w′ ≤ w,
f =

∑
i∈[w′] figi, where

1. {f1, f2, . . . , fw′} ⊆ F[x1, x2, . . . , xn] and {g1, g2, . . . , gw′} ⊆ F[xn+1, xn+2, . . . , x2n] are
both independent sets of polynomials.

2. ∀a ∈ Fw
′
,
∑
i∈[w′] aifi can be computed by an oblivious ABP of width w with variable

order x1, x2, .., xn.
3. ∀a ∈ Fw

′
,
∑
i∈[w′] aigi can be computed by an oblivious ABP of width w with variable

order xn+1, xn+2, . . . , x2n.

Proof. Let V be the set of variables used in A. Pick an arbitrary level L of nodes v1, v2, . . . , vw
such that V ∩{x1, x2, . . . , xn} appear on edges in layers before L, and V ∩{xn, xn+1, . . . , x2n}
appear on edges in layers after L. For i ∈ [w], let fi = Âs,vi and gi = Âvi,t. We proceed in
two phases. First we arrange for a decomposition where the fis are independent. Then we
will deal with the gis.

Wlog. assume that f1, . . . , fk is a maximum size independent set of polynomials. Since
f 6≡ 0, we know that not all fi ≡ 0. So k ≥ 1. For j > 0, any fk+j can be written as a
linear combination of f1, . . . , fk. Let A′ be an equivalent ABP obtained from A as follows.
First, A′ is just as A from the source up to the level L, except that we drop vk+1, . . . vw from
L. Let us use L′ to denote the modified level L. L′ is followed by a constant layer, where
f1, . . . , fw are computed (relative to s). After this we attach all the levels of A, just as they
followed L in A. We have that f =

∑
i∈[k] fig

′
i, where fi = Â′s,vi

and g′i = Â′vi,t. The fis
satisfy the first two conditions of the lemma. The g′is are in F[xn+1, xn+2, . . . , x2n]. This
completes the first phase.

For the next phase, wlog. assume that g′1, . . . , g′l is a maximum size independent set.
Say these correspond to nodes w1, . . . , wl, respectively. That is, Â′wi,t = g′i. Since f 6≡ 0,
we know that l ≥ 1. Symmetrically to the first phase, but now going in the direction from
sink to source, we modify A′ into an equivalent ABP A′′. A′′ is the same as A′ from the
sink back to the level L′, except that we drop nodes other than w1, . . . , wl from L′. Above
this is a constant level, where we compute g′1, . . . , g′k (relative to the sink). Above this we
attach all level from A′, just as they appear from s to L′ in A′. We now have arranged that
f =

∑
i∈[l] f

′′
i g
′
i, where f ′′i = Â′′s,wi

and g′i = A′′wi,t, for i ∈ [l]. Observe that for each i ∈ [l],
f ′′i = f ′i +Linear(fl+1, . . . , fk). Hence {f ′′1 , . . . , f ′′l } is an independent set of polynomials. All
required properties of the lemma are now clearly satisfied. J

I Corollary 7. Let k ≥ 1, n ≥ 3 and let 1 < i < n. Let A be a read r oblivious ABP, with
source s and sink t having variable order x1, x2, . . . , xi−1, xi, xi+1, . . . , xn. We use y as alias
for xi. Let f = ∂Â/∂y. Suppose Â depends on y, that is f 6≡ 0. Then we can write for some
r′ ≤ r, f =

∑
i∈[r′] piqi, where

FSTTCS 2010



302 Deterministic Black-Box Identity Testing π-Ordered Algebraic Branching Programs

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , xi−1] and {q1, q2, . . . , qr′} ⊆ F[xi+1, xi+2, . . . , xn] are both
independent sets of polynomials.

2. ∀a ∈ Fr
′
,
∑
i∈[r′] aipi can be computed by a read r oblivious ABP with variable order

x1, x2, .., xi−1.
3. ∀a ∈ Fr

′
,
∑
i∈[r′] aiqi can be computed by a read r oblivious ABP with variable order

xi+1, xi+2, . . . , xn.

Proof. Corollary 7 is now proved as follows. We make changes to A by modifying the edges
in the y-layer as follows: for a variable edge (labeled with y), label it with 1. For a constant
edge, remove it. The resulting ABP A′ computes f . Then in the proof of Lemma 6, take the
level L to be the starting level of the original y-layer. As |L| is bounded by the number of
y-variables in the y-layer of A, we are done. J

3 A Generator for π-Oblivious ABPs

We assume |F| is large enough. The explicit requirement on |F| will become clear after
the description of the generator. For now, let us fix S = {α1, . . . , , αN} ⊆ F, for some
N , and let Sm = {α1, . . . , αm}, for 1 ≤ m ≤ N . Let Z = {z1, z2, . . .}, Y = {y1, y2, . . .},
U = {u1, u2, . . .} and V = {v1, v2, . . .} be sets of variables. For k ≥ 1, we use Zk to denote
the k-tuple of variables (z1, z2, . . . , zk), similarly for Yk, Uk and Vk. Define the function ` on
natural numbers by `(k, r) = 2rk + 1. Abusing notation, we write (Z`(k,r), Uk, Vk) to denote
the tuple Z`(k,r)#Uk#Vk.

For every k ≥ 0, r ≥ 1 and a variable w, let Hk,r(w) =
(Hk,r

1 (w), Hk,r
2 (w), . . . Hk,r

`(k,r)+2k(w)), where for each i ∈ [`(k, r) + 2k], Hk,r
i is the

ith Lagrange interpolation polynomial on the set S`(k,r)+2k. Hk,r
i is a univariate polynomial

in w of degree `(k, r) + 2k − 1, satisfying that ∀αj ∈ S`(k,r)+2k, Hk,r
i (αj) = 1 if i = j and 0

otherwise. For k ≥ 1, and two variables u and v, let Ek(u, v) = (u · Lk1(v), . . . , u · Lk2k (v)), in
which Lki is the ith Lagrange interpolation polynomial on the set S2k .

For k ≥ 0 and r ≥ 1, we define the polynomial mapping F k,r(Z`(k,r), Uk, Vk) : F`(k,r)+2k →
F2k

inductively as follows:

1. F 0,r(z1) = z1, and
2. For clarity we use y1, y2, . . . , y2r as aliases for the variables

z`(k,r)+1, z`(k,r)+2, . . . , z`(k,r)+2r, respectively. We take F k+1,r(Z`(k,r), Y2r, Uk+1, Vk+1)
to be equal to the following 2k+1-tuple of polynomials:

Ek+1(uk+1, vk+1) +
[
F k,r(Z`(k,r), Uk, Vk)#F k,r

(
(Z`(k,r), Uk, Vk) + T k,r(Y2r)

)]
,

where T k,r : F2r → F`(k,r)+2k is defined by T k,r(Y2r) =
∑
i∈[r] yi ·Hk,r(yr+i).

From the construction we can see that in order to accommodate for S, |F| should be no less
than max(`(k, r)+2k, 2k). Note that the image of T k,r contains any r-dimensional coordinate
subspace of F`(k,r)+2k. Namely, for i ∈ [r], by choosing yr+i = αj , the corresponding vector
of yiHk,r(yr+i) becomes yiej , where ej is the jth standard basis vector of F`(k,r)+2k. Thus
by choosing different α’s for the yr+i’s, we can form any r-dimensional coordinate subspace
in the image. The term Ek+1 is there to deal with bounded read, e.g. it would not be needed
if we want to have a generator for small width π-oblivious ABPs. Ignoring this term, the
generator mimics the construction of [7]. Intuitively, the dimension expanding properties
of T k,r will yield that the two sides of the generator appear to be behaving “independently
enough”, yielding the desired non-cancelation property.
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3.1 Properties of the Generator
Let us compute F 1,r to get a sense and for later use. We obtain

F 1,r = E1(u1, v1) + F 0,r(z1)#F 0,r(z1 + (z1+1 + · · ·+ z1+r))
= (u1L

1
1(v1) + z1, u1L

1
2(v1) + z1 + · · ·+ z1+r).

Note that z2+r, . . . , z1+2r are not used in the Lagrange interpolation in the T 0,r part. By a
straightforward induction, one can prove the following bound for the individual degree of a
variable in F k,r.
I Proposition 1. ∀k ≥ 2 and r ≥ 1, the individual degree of any variable in any component
of F k,r is at most

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1)).

The following theorem shows that the generator F k,r works for the class C of polynomials
computed by read r π-oblivious ABPs, where there is one single fixed order π of the variables
for the entire class C. Wlog. the order is assumed to be x1, x2, . . .. A generator for any
other fixed order, is obtained by permuting the components of the output of the generator
in the appropriate way. To make the algebraic geometry go through in the proof, we will
assume that F is algebraically closed. We will remove this requirement subsequently with
Corollary 9.

I Theorem 8. Let F be an algebraically closed field. Let k ≥ 0, and let A be a π-oblivious
ABP of read r ≥ 1 with variable order x1, x2, . . . , x2k . Suppose A computes f , then f ≡
0 ⇐⇒ f(F k,r) ≡ 0.

Proof. The “⇒”-direction is trivial, so it suffices to show that if f 6≡ 0, then f(F k,r) 6≡ 0.
We prove this by induction on k. For k = 0 it is obvious. For k = 1, we know there exists
(a, b) such that f(a, b) 6= 0. Recall F 1,r = (u1L

1
1(v1) + z1, u1L

1
2(v1) + z1 + · · ·+ z1+r). Then

setting c to be the assignment of (Z2r+1, u1, v1) as z1 = a, z2 = b− a and other variables to
0, would give f(F 1,r) = f(a, b) 6= 0. So f(F 1,r) 6≡ 0.

Now let k ≥ 1. For the induction step from k to k+1, we need to prove that F k+1,r works
for an oblivious read r ABP polynomial f with variables x1, . . . , x2k+1 . We use X as an alias
for x2k , and Λ as an alias for α2k . Let g = ∂f/∂X, and note that f = g ·X + f |X=0, since
f is multilinear. Wlog. we can assume that f depends on X. Namely, since f is multilinear,
if f does not depend on any variable, i.e. ∀i, ∂f/∂xi ≡ 0, then f ∈ F (even if char(F) > 0).
Clearly the theorem holds in this case. Otherwise, the rest of the proof goes through mutatis
mutandis by selecting X to be the median variable (w.r.t. the variable order x1, x2, . . .) of
variables that f depends on. Thus g 6≡ 0. We claim that the following holds:
I Claim 1. h := g(F k+1,r) |vk+1=Λ 6≡ 0

Before proving Claim 1, let us show that this is sufficient to complete the proof of
Theorem 8. We will prove Claim 1 in the next subsection. Consider f(F k+1,r) |vk+1=Λ. It is
equal to the following:

h ·
(
F k+1,r

2k |vk+1=Λ

)
+
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ =

h ·
(
(Ek+1

2k + P (Z`(k,r), Uk, Vk)) |vk+1=Λ
)

+
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ =

h · (uk+1 + P (Z`(k,r), Uk, Vk)) +
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ,

for some polynomial P in variables (Z`(k,r), Uk, Vk). Observe that
(
(f |X=0)(F k+1,r)

)
|vk+1=Λ

does not contain the variable uk+1. The same holds for P (Z`(k,r), Uk, Vk)). Hence h · uk+1
cannot be canceled, and therefore f(F k+1,r) |vk+1=Λ 6≡ 0. This implies f(F k+1,r) 6≡ 0. J
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I Corollary 9. Let F be any field. Let k ≥ 0, and let A be a π-oblivious ABP over F of read r ≥
1 with variable order x1, x2, .., x2k . Suppose A computes the polynomial f ∈ F[x1, x2, .., x2k ].
Then in the construction of F k,r selecting any set S of size max(`(k, r) + 2k, 2k) contained
in F (or an arbitrary field extension G of F, if F is not large enough) yields that f ≡ 0 ⇐⇒
f(F k,r) ≡ 0,

Proof. First consider the case when char(F) = 0. In this case we take S = {0, 1, 2, . . . }. Let
F be the algebraic closure of F. Interpreting A as an ABP over F̄, we can apply Theorem 8
to conclude f ≡ 0 ⇐⇒ f(F k,r) ≡ 0. All coefficients of F k,r are rational numbers and thus
lie inside F. Hence the property f ≡ 0 ⇐⇒ f(F k,r) ≡ 0 also holds when considering we
work over F.

In case char(F) > 0, if |F| is not large enough, by allowing ourselves to use elements from
the extension G, we can still get the required S. Then similarly as above, by considering
the algebraic closure of G and applying Theorem 8, the required generator property follows,
considering one works over G. J

3.2 Proof of Claim 1
Let F ′k+1,r = F k+1,r − Ek+1. Note that since f is multilinear, g does not depend on X.
Hence g(F k+1,r) |vk+1=Λ= g(F ′k+1,r). We will show that g(F ′k+1,r) 6≡ 0. We have that

F ′k+1,r = F k,r(Z`(k,r), Uk, Vk)#F k,r
(
(Z`(k,r), Uk, Vk) + T k,r(Y2r)

)
.

Again we will use y1, y2, . . . , y2r as alias for the variables z`(k,r)+1, z`(k,r)+2, . . . , z`(k,r)+2r,
respectively. Corollary 7 gives us that we can write g =

∑
i∈[r′] piqi, for some r′ ≤ r, where

1. {p1, p2, . . . , pr′} ⊆ F[x1, x2, . . . , x2k−1] and {q1, q2, . . . , qr′} ⊆ F[x2k+1, x2k+2, . . . , x2k+1 ]
are both independent sets of polynomials.

2. ∀a ∈ Fr
′
,
∑
i∈[r′] aipi can be computed by an oblivious ABP of read r with variable order

x1, x2, .., x2k−1.
3. ∀a ∈ Fr

′
,
∑
i∈[r′] aiqi can be computed by an oblivious ABP of read r with variable order

x2k+1, x2k+2, . . . , x2k+1 .
For any a ∈ Fr

′
with a 6= 0,

∑
i∈[r′] aipi 6≡ 0, and this sum can be computed by an

oblivious ABP of read r with variable order x1, x2, .., x2k−1. Hence by induction hypothesis∑
i∈[r′] aipi(F k,r) 6≡ 0. Let p̂i = pi(F k,r(z1, . . . , z`(k,r), Uk, Vk)). The above shows that P :=

{p̂1, p̂2, . . . , p̂r′} is an independent set of polynomials. Let q̂i = qi(F k,r(z1, . . . , z`(k,r), Uk, Vk)).
Similarly we have that Q := {q̂1, q̂2, . . . , q̂r′} is an independent set of polynomials.

Since p̂1 + p̂2 + . . .+ p̂r′ 6≡ 0, there exists input c ∈ F`(k,r)+2k so that if we let ai = p̂i(c),
then a = (a1, a2, . . . , ar′) 6= 0. Let V ⊆ F`(k,r)+2k be the algebraic set defined by the system
of equations

{p̂i(z1, . . . , z`(k,r), Uk, Vk) = ai : ∀i ∈ [r′]}

We know this system has a solution namely c. Since F is assumed to be algebraically closed,
by Exercise 1.9 p. 8 in [6], we know that each irreducible component of V has dimension at
least `(k, r) + 2k − r′. Since the system is solvable there must exist at least one irreducible
component, and since r ≥ 1, `(k, r) + 2k − r′ ≥ 3.

Let W ⊆ F`(k,r)+2k be the algebraic set defined by the equation∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk) = 0. Since Q is an independent set of polynomials

the l.h.s. of the above equation is a nonzero polynomial. In case the l.h.s. is a non-zero
constant, then we are done. Namely, letting b ∈ F`(k+1,r)+2(k+1) be the assignment where we
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set (z1, . . . , z`(k,r), Uk, Vk) to c, y1, . . . , yr to 0, and the remaining variables arbitrarily, would
give g(F ′k+1,r)(b) =

∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk)(b) 6= 0. Otherwise, we know by Propo-

sition 1.13 in [6], that W is a finite union of hypersurfaces each of dimension `(k, r) + 2k − 1
(these correspond to the irreducible factors of

∑
i∈[r′] aiq̂i(z1, . . . , z`(k,r), Uk, Vk) ). We want

to argue that V + Im T cannot be contained in W . Namely, to see the consequence, suppose
we have c′ = c′′ + T (d), for c′′ ∈ V and d ∈ F2r, with c′ 6∈W . Then letting b ∈ F`(k+1,r)+2k

be the assignment where we set (z1, . . . , z`(k,r), Uk, Vk) to c′′ and Y2r := d gives that
g(F ′k+1,r)(b) =

∑
i∈[r′] pi(F k,r(c′′))qi(F k,r(c′′ + T (d))) =

∑
i∈[r′] p̂i(c′′)q̂i(c′′ + T (d)) =∑

i∈[r′] aiq̂i(c′) 6= 0.
We complete the proof by showing that the Zariski-closure of V + Im T has dimension

greater than dimW .
I Claim 2. dimV + Im T = `(k, r) + 2k.

Proof. As remarked upon before, for any r′′ ≤ r, Im T contains any r′′-dimensional co-
ordinate subspace of F`(k,r)+2k. Namely, by setting yr+i = αji

, for all i ∈ [r], where
αj1 , αj2 , . . . , αjr

are distinct elements of S`(k,r)+2k, we obtain
∑
i∈[r] yi · Hk,r(yr+i) =∑

i∈[r] yi ·Hk,r(αji) =
∑
i∈[r] yi · eji , where e1, e2, . . . , e`(k,r)+2k are standard basis vectors

of F`(k,r)+2k. Hence the claim follows from Lemma 4. J
The above claim implies that V + Im T 6⊂ W . By the above remarks, this gives that

g(F ′k+1,r)(b) 6= 0, for some b. This proves Claim 1. J

4 A Black-Box PIT Algorithm for π-OABPs

Algorithm 1 PIT Algorithm for read r π-OABPs.
Input: Black-box access to f ∈ F[x1, x2, . . . , xn] computed by a π-OABP with read r.
Output: returns true iff f ≡ 0.
1: let k be such that 2k−1 < n ≤ 2k.
2: let D =

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1).

3: let SD+1 be an arbitrary subset of F (or an extension field of F if |F| < D + 1) of size
D + 1.

4: let R = S
`(k,r)+2k
D+1 .

5: compute A = F k,r(R).
6: permute the vectors in A according to π.
7: For every a ∈ A, check whether f(a) = 0.
8: return true if in the previous stage no nonzero was found, false otherwise.

I Theorem 10. Let F be an arbitrary field. Using black-box Algorithm 1 we can check deter-
ministically in time 2O(r log r·log2 n log logn) whether a given polynomial f ∈ F[x1, x2, . . . , xn]
computed by a read r π-OABP is identically zero or not. If char(F) > 0, the algorithm is
granted black-box access to extension fields of F.

Proof. By Lemma 3, we can assume wlog. that f is computed by a read r π-oblivious
ABP. By Theorem 8, we see that f ≡ 0 ⇔ f(F k,r) ≡ 0. By Proposition 1, the individual
degree of variables of f(F k,r) can be bounded by D =

∏
j∈[k−1](`(j, r) + 2j)(`(j, r) + 2j − 1).

Correctness now follows from Lemma 5. Bounding D by (2rk + 2k)2k, and knowing that
the number of variables of f(Gk,r) is 2rk + 2k + 1, the theorem follows by straightforward
arithmetic.
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We remark that the hitting set A, will be constructed over an extension field of F if
|F| < max(`(k, r) + 2k, 2k) or |F| < D+ 1. In the former case, it is because of having enough
interpolation points to define the generator. In the latter case it is in order to apply Lemma 5,
as was done in the above. To work over the extension field the algorithm by Shoup [18] can
be used to obtain an irreducible polynomial of degree d over F in time poly(d). For us, it
suffices for the degree of this polynomial to be bounded by O(logn log r + logn log logn).
Field operations in the extension field then take time poly(logn, log r), assuming a unit cost
model for operations in F. The cost of constructing A this way, can easily be seen to be
subsumed by the time bound given in the theorem. J

The above implies that read polylog(n) π-OABPs can be tested in DTIME[2O(polylog(n))].

5 Separation Results and Lower Bounds for OABPs

Omitted proofs in this section will appear in the full version of the paper.

I Theorem 11. Any OABP computing the permanent or determinant of an n× n matrix of
variables has size Ω(2n/n) and read Ω(2n/n2).

By extending the construction in [15], we can prove the following theorem:

I Theorem 12. Let X = {xi}i∈[2n+1] and W = {wi,j,k}i,j,k∈[2n+1] be sets of variables. We
can construct an explicit polynomial p ∈ F[X,W] such that any OABP A over variables
X ∪ W using constants from F computing p requires some variable to be read at least 2n
times.

We can also reinterpret the above result to be giving a stronger lower bound (seen as a
function of the number of variables), but for a polynomial which uses O(n3) transcendental
constants in its definition.

I Corollary 13. For any field F, and any extension field G of F of transcendence degree at
least (2n + 1)3, there exists an explicit polynomial p ∈ G[x1, x2, . . . , x2n+1], such that any
OABP over G computing p requires some variable to be read at least 2n times.

Consider the elementary symmetric polynomial Skn =
∑
S⊂[n],|S|=k

∏
i∈S xi.

I Theorem 14. Skn can not be computed by an Rk−1-OABP, for n ≥ 2k − 1, k ≥ 2.

I Theorem 15. Skn can be computed by an Rk-OABP of size O(kn), for n ≥ k ≥ 1.

The following theorem shows that under different permutations π and π′, the gap between
the number of reads for the models π-OABP and π′-OABP can be exponentially large.

I Theorem 16. Given X = {x0, x1, . . . , x2n−1, x2n}, n ≥ 1, there exists a polynomial p on
X, and two permutations π and π′ on X, such that 1) There exists a read-once π-OABP
computing p, and 2) Any π′-OABP computing p requires read 2n.
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