938 research outputs found

    Dynamically sampled multivariate empirical mode decomposition

    Get PDF
    A method for accurate multivariate local mean estimation in the multivariate empirical mode decomposition algorithm by using a statistical data-driven approach based on the Menger curvature measure and normal-to-anything variate-generation method is proposed. This is achieved by aligning the projection vectors in the direction of the maximum `activity' of the input signal by considering the local curvature of the signal in multidimensional spaces, resulting in accurate mean estimation even for a very small number of projection vectors

    Spectral analysis of stationary random bivariate signals

    Full text link
    A novel approach towards the spectral analysis of stationary random bivariate signals is proposed. Using the Quaternion Fourier Transform, we introduce a quaternion-valued spectral representation of random bivariate signals seen as complex-valued sequences. This makes possible the definition of a scalar quaternion-valued spectral density for bivariate signals. This spectral density can be meaningfully interpreted in terms of frequency-dependent polarization attributes. A natural decomposition of any random bivariate signal in terms of unpolarized and polarized components is introduced. Nonparametric spectral density estimation is investigated, and we introduce the polarization periodogram of a random bivariate signal. Numerical experiments support our theoretical analysis, illustrating the relevance of the approach on synthetic data.Comment: 11 pages, 3 figure

    ISAR imaging Based on the Empirical Mode Decomposition Time-Frequency Representation

    No full text
    International audienceThis work proposes an adaptation of the Empirical Mode Decomposition Time-Frequency Distribution (EMD-TFD) to non-analytic complex-valued signals. Then, the modified version of EMD-TFD is used in the formation of Inverse Synthetic Aperture Radar (ISAR) image. This new method, referred to as NSBEMD-TFD, is obtained by extending the Non uniformly Sampled Bivariate Empirical Mode Decomposition (NSBEMD) to design a filter in the ambiguity domain and to clean the Time-Frequency Distribution (TFD) of signal. The effectiveness of the proposed scheme of ISAR formation is illustrated on synthetic and real signals. The results of our proposed methods are compared to other Time-Frequency Representation (TFR) such as Spectrogram, Wigner-Ville Distribution (WVD), Smoothed Pseudo Wigner-Ville Distribution (SPWVD) or others methods based on EMD

    EEMD-based windturbinebearingfailuredetectionusing the generatorstatorcurrenthomopolarcomponent

    No full text
    International audienceFailure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non stationary cases

    Multivariate time-frequency analysis

    No full text
    Recent advances in time-frequency theory have led to the development of high resolution time-frequency algorithms, such as the empirical mode decomposition (EMD) and the synchrosqueezing transform (SST). These algorithms provide enhanced localization in representing time varying oscillatory components over conventional linear and quadratic time-frequency algorithms. However, with the emergence of low cost multichannel sensor technology, multivariate extensions of time-frequency algorithms are needed in order to exploit the inter-channel dependencies that may arise for multivariate data. Applications of this framework range from filtering to the analysis of oscillatory components. To this end, this thesis first seeks to introduce a multivariate extension of the synchrosqueezing transform, so as to identify a set of oscillations common to the multivariate data. Furthermore, a new framework for multivariate time-frequency representations is developed using the proposed multivariate extension of the SST. The performance of the proposed algorithms are demonstrated on a wide variety of both simulated and real world data sets, such as in phase synchrony spectrograms and multivariate signal denoising. Finally, multivariate extensions of the EMD have been developed that capture the inter-channel dependencies in multivariate data. This is achieved by processing such data directly in higher dimensional spaces where they reside, and by accounting for the power imbalance across multivariate data channels that are recorded from real world sensors, thereby preserving the multivariate structure of the data. These optimized performance of such data driven algorithms when processing multivariate data with power imbalances and inter-channel correlations, and is demonstrated on the real world examples of Doppler radar processing.Open Acces

    A Strategy for Classification of “Vaginal vs. Cesarean Section” Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings

    Get PDF
    We propose objective and robust measures for the purpose of classification of “vaginal vs. cesarean section” delivery by investigating temporal dynamics and complex interactions between fetal heart rate (FHR) and maternal uterine contraction (UC) recordings from cardiotocographic (CTG) traces. Multivariate extension of empirical mode decomposition (EMD) yields intrinsic scales embedded in UC-FHR recordings while also retaining inter-channel (UC-FHR) coupling at multiple scales. The mode alignment property of EMD results in the matched signal decomposition, in terms of frequency content, which paves the way for the selection of robust and objective time-frequency features for the problem at hand. Specifically, instantaneous amplitude and instantaneous frequency of multivariate intrinsic mode functions are utilized to construct a class of features which capture nonlinear and nonstationary interactions from UC-FHR recordings. The proposed features are fed to a variety of modern machine learning classifiers (decision tree, support vector machine, AdaBoost) to delineate vaginal and cesarean dynamics. We evaluate the performance of different classifiers on a real world dataset by investigating the following classifying measures: sensitivity, specificity, area under the ROC curve (AUC) and mean squared error (MSE). It is observed that under the application of all proposed 40 features AdaBoost classifier provides the best accuracy of 91.8% sensitivity, 95.5% specificity, 98% AUC, and 5% MSE. To conclude, the utilization of all proposed time-frequency features as input to machine learning classifiers can benefit clinical obstetric practitioners through a robust and automatic approach for the classification of fetus dynamics

    Blade Crack Detection of Centrifugal Fan Using Adaptive Stochastic Resonance

    Get PDF

    Online Epileptic Seizure Prediction Using Phase Synchronization and Two Time Characteristics: SOP and SPH

    Get PDF
    Background: The successful prediction of epileptic seizures will significantly improve the living conditions of patients with refractory epilepsy. A proper warning impending seizure system should be resulted not only in high accuracy and low false-positive alarms but also in suitable prediction time.Methods: In this research, the mean phase coherence index used as a reliable indicator for identifying the preictal period of the 14-patient Freiburg EEG dataset. In order to predict the seizures on-line, an adaptive Neuro-fuzzy model named ENFM (evolving neuro-fuzzy model) was used to classify the extracted features. The ENFM trained by a new class labeling method based on the temporal properties of a prediction characterized by two time intervals, seizure prediction horizon (SPH), and seizure occurrence period (SOP), which subsequently applied in the evaluation method. It is evident that an increase in the duration of the SPH can be more useful for the subject in preventing the irreparable consequences of the seizure, and provides adequate time to deal with the seizure. Also, a reduction in duration of the SOP can reduce the patient’s stress in the SOP interval. In this study, the optimal SOP and SPH obtained for each patient using Mamdani fuzzy inference system considering sensitivity, false-positive rate (FPR), and the two mentioned points, which generally ignored in most studies.Results: The results showed that last seizure, as well as 14-hour interictal period of each patient, were predicted on-line without false negative alarms: the average yielding of sensitivity by 100%, the average FPR by 0.13 per hour and the average prediction time by 30 minutes.Conclusion: Based on the obtained results, such a data-labeling method for ENFM showed promising seizure prediction for online machine learning using epileptic seizure data. Apart from that, the proposed fuzzy system can consider as an evaluation method for comparing the results of studies

    Electrohysterography in the diagnosis of preterm birth: a review

    Full text link
    This is an author-created, un-copyedited versĂ­on of an article published in Physiological Measurement. IOP Publishing Ltd is not responsĂ­ble for any errors or omissĂ­ons in this versĂ­on of the manuscript or any versĂ­on derived from it. The VersĂ­on of Record is available online at http://doi.org/10.1088/1361-6579/aaad56.[EN] Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries. Objective: A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context. Approach: This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results. Significance: This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant DPI2015-68397-R.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola Rubio, J.; Perales Marin, AJ. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39(2). https://doi.org/10.1088/1361-6579/aaad56S39
    • 

    corecore