172 research outputs found

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Power Efficient IP Lookup with Supernode Caching

    Get PDF
    Abstract-In this paper, we propose a novel supernode caching scheme to reduce IP lookup latencies and energy consumption in network processors. In stead of using an expensive TCAM based scheme, we implement a set associative SRAM based cache. We organize the IP routing table as a supernode tree (a tree bitmap structure

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Design and Evaluation of Packet Classification Systems, Doctoral Dissertation, December 2006

    Get PDF
    Although many algorithms and architectures have been proposed, the design of efficient packet classification systems remains a challenging problem. The diversity of filter specifications, the scale of filter sets, and the throughput requirements of high speed networks all contribute to the difficulty. We need to review the algorithms from a high-level point-of-view in order to advance the study. This level of understanding can lead to significant performance improvements. In this dissertation, we evaluate several existing algorithms and present several new algorithms as well. The previous evaluation results for existing algorithms are not convincing because they have not been done in a consistent way. To resolve this issue, an objective evaluation platform needs to be developed. We implement and evaluate several representative algorithms with uniform criteria. The source code and the evaluation results are both published on a web-site to provide the research community a benchmark for impartial and thorough algorithm evaluations. We propose several new algorithms to deal with the different variations of the packet classification problem. They are: (1) the Shape Shifting Trie algorithm for longest prefix matching, used in IP lookups or as a building block for general packet classification algorithms; (2) the Fast Hash Table lookup algorithm used for exact flow match; (3) the longest prefix matching algorithm using hash tables and tries, used in IP lookups or packet classification algorithms;(4) the 2D coarse-grained tuple-space search algorithm with controlled filter expansion, used for two-dimensional packet classification or as a building block for general packet classification algorithms; (5) the Adaptive Binary Cutting algorithm used for general multi-dimensional packet classification. In addition to the algorithmic solutions, we also consider the TCAM hardware solution. In particular, we address the TCAM filter update problem for general packet classification and provide an efficient algorithm. Building upon the previous work, these algorithms significantly improve the performance of packet classification systems and set a solid foundation for further study

    Reducing Router Forwarding Table Size Using Aggregation and Caching

    Get PDF
    The fast growth of global routing table size has been causing concerns that the Forwarding Information Base (FIB) will not be able to fit in existing routers\u27 expensive line-card memory, and upgrades will lead to a higher cost for network operators and customers. FIB Aggregation, a technique that merges multiple FIB entries into one, is probably the most practical solution since it is a software solution local to a router, and does not require any changes to routing protocols or network operations. While previous work on FIB aggregation mostly focuses on reducing table size, this work focuses on algorithms that can update compressed FIBs quickly and incrementally. Quick updates are critical to routers because they have very limited time to process routing updates without impacting packet delivery performance. We have designed three algorithms: FIFA-S for the smallest table size, FIFA-T for the shortest running time, and FIFA-H for both small tables and short running time, and operators can use the one best suited to their needs. These algorithms significantly improve over existing work in terms of reducing routers\u27 computation overhead and limiting impact on the forwarding plane while maintaining a good compression ratio. Another potential solution is to install only the most popular FIB entries into the fast memory (e.g., an FIB cache), while storing the complete FIB in slow memory. In this paper, we propose an effective FIB caching scheme that achieves a considerably higher hit ratio than previous approaches while preventing the cache-hiding problem. Our experimental results using data traffic from a regional network show that with only 20K prefixes in the cache (5.36% of the actual FIB size), the hit ratio of our scheme is higher than 99.95%. Our scheme can also efficiently handle cache misses, cache replacement and routing updates

    MLET: A Power Efficient Approach for TCAM Based, IP Lookup Engines in Internet Routers

    Full text link
    Routers are one of the important entities in computer networks specially the Internet. Forwarding IP packets is a valuable and vital function in Internet routers. Routers extract destination IP address from packets and lookup those addresses in their own routing table. This task is called IP lookup. Internet address lookup is a challenging problem due to the increasing routing table sizes. Ternary Content-Addressable Memories (TCAMs) are becoming very popular for designing high-throughput address lookup-engines on routers: they are fast, cost-effective and simple to manage. Despite the TCAMs speed, their high power consumption is their major drawback. In this paper, Multilevel Enabling Technique (MLET), a power efficient TCAM based hardware architecture has been proposed. This scheme is employed after an Espresso-II minimization algorithm to achieve lower power consumption. The performance evaluation of the proposed approach shows that it can save considerable amount of routing table's power consumption.Comment: 14 Pages, IJCNC 201
    corecore