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Abstract

Liu, Yaoqing. Ph.D. The University of Memphis. Reducing router forwarding table
size using aggregation and caching. Major professor: Dr. Lan Wang.

The fast growth of global routing table size has been causing concerns that the

Forwarding Information Base (FIB) will not be able to fit in existing routers’

expensive line-card memory, and upgrades will lead to a higher cost for network

operators and customers. FIB Aggregation, a technique that merges multiple FIB

entries into one, is probably the most practical solution since it is a software

solution local to a router, and does not require any changes to routing protocols or

network operations. While previous work on FIB aggregation mostly focuses on

reducing table size, this work focuses on algorithms that can update compressed

FIBs quickly and incrementally. Quick updates are critical to routers because they

have very limited time to process routing updates without impacting packet delivery

performance. We have designed three algorithms: FIFA-S for the smallest table size,

FIFA-T for the shortest running time, and FIFA-H for both small tables and short

running time, and operators can use the one best suited to their needs. These

algorithms significantly improve over existing work in terms of reducing routers’

computation overhead and limiting impact on the forwarding plane while

maintaining a good compression ratio.

Another potential solution is to install only the most popular FIB entries into

the fast memory (i.e., an FIB cache), while storing the complete FIB in slow

memory. In this paper, we propose an effective FIB caching scheme that achieves a

considerably higher hit ratio than previous approaches while preventing the
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cache-hiding problem. Our experimental results using data traffic from a regional

network show that with only 20K prefixes in the cache (5.36% of the actual FIB

size), the hit ratio of our scheme is higher than 99.95%. Our scheme can also

efficiently handle cache misses, cache replacement and routing updates.
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Chapter 1

Introduction

1 Routing Scalability Issue

The global routing table size has been increasing faster than ever in a super-linear

trend, due to a variety of factors such as an increasing number of edge networks,

increased use of multihoming, and finer-grained traffic engineering practices [57].

This is the so-called routing scalability problem, which has raised concerns in

both industry and research communities, as documented in the report from the IAB

Workshop on Routing and Addressing. Several solutions have been proposed under

the IRTF RRG [6] and IETF GROW working groups [5]. A direct consequence of

this problem is the rapid growth of the forwarding table (FIB: Forwarding

Information Base) size. Although both trends are disturbing, ISPs are more

concerned about the FIB size [36], because the FIB memory in line cards costs much

more than the memory in router processors as the former needs to support much

higher lookup speed at the line rate (e.g., hundreds of millions of packets per second

or higher). Moreover, as the size of FIB memory increases, the FIB lookup time

may also increase [76] and the line card may become more power-hungry as

well [57]. Once the FIB becomes so large that it can no longer fit in the fast

memory of routers’ line cards, ISPs will have to upgrade their line cards, eventually

making Internet services more expensive. To address the root cause of the
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scalability problem, fundamental changes to the Internet routing architecture and

protocols are called for. However, deploying architectural changes is likely to take a

long time, as illustrated by past examples like IPv6. While architectural changes

may benefit the Internet in the long run, short-term solutions are needed as the

problem is serious and imminent. In particular, ISPs urgently need to reduce their

forwarding table size. Forwarding tables are derived from routing tables and router

configurations, thus their size increases as routing tables grow. However, forwarding

tables use high performance memory that is more expensive and more difficult to

scale than the memory used to hold routing tables. Therefore, their size is a more

immediate concern to ISPs and vendors. While a number of solutions

(e.g., [20] [42] [41] [45] [31] [34] [21]) have been proposed to solve the routing table

scalability problem by changing the routing architecture in the long run, ISPs need

practical solutions soon, and FIB aggregation is considered one of the most practical

solutions [83]. This work investigates two solutions to reduce the routing forwarding

table size: FIB aggregation and FIB caching.

2 Solution 1: FIB Aggregation

FIB aggregation, exploring the feasibility of a purely local solution, combines

multiple entries in the forwarding table without changing the next-hops for data

forwarding. This approach is particularly appealing because it can be done by a

software upgrade on a router, therefore, its impact is limited within the router. It

does not require changes to routing protocols or router hardware, nor does it affect

multi-homing, traffic engineering, or other network-wide operations. It is important

to note that FIB aggregation is not a replacement for long-term architectural

solutions because it does not address the root causes of the routing scalability

problem. Instead, FIB aggregation is a local solution that can be quickly
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implemented and deployed in the short-term, and it can co-exist and complement

architectural solutions in the long run. The idea of FIB aggregation is rather

intuitive, but to our best knowledge, no study has systematically evaluated its

potential benefits or costs. FIB aggregation is an opportunistic technique-its

effectiveness depends on what prefixes are present in the table, how many of them

can be numerically represented by a single prefix, and how many of them share the

same next-hop. The benefits of FIB aggregation come with certain costs, such as

extra CPU cycles. The costs also depend on the actual aggregation algorithms and

how routing changes are handled to update the aggregated forwarding table. A

thorough understanding of FIB aggregation is needed in order to decide whether it

is a viable solution.

FIB aggregation reduces FIB size by combining entries whose prefixes are

numerically aggregatable and whose next-hops are the same. It is a software

solution that can be applied to a single router without upgrading the hardware,

changing the control plane, or affecting packets’ forwarding paths. Thus it can be

deployed incrementally and selectively in a network at operators’ discretion. One of

the fundamental tradeoffs in FIB aggregation is between aggregated table size and

computational overhead. Spending too many CPU cycles aggregating the table will

delay it from being downloaded into the line cards, which may lead to packet loss or

incorrect forwarding. Existing work (e.g., [29] [82] [53] [79]) has demonstrated that

FIB aggregation can reduce table size by as much as 70% with moderate

computation, but these efforts have not focused on reducing routers’ overhead in all

aspects.

The most challenging problem in FIB aggregation is to quickly apply updates to

the already aggregated table and still maintain a good compression ratio. When a

router receives a routing update, it has a very limited amount of time to process the

update and install the new FIB. When the FIB is already aggregated, one routing
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table change may lead to updating multiple FIB entries, because it may change the

aggregatability of those entries. In some cases, there can be thousands or even tens

of thousands of FIB entries to be updated, even if there is only a single routing

table change. Therefore in this work, we focus on reducing FIB aggregation’s

overhead in the following aspects: (1) reducing the overall time of processing a

stream of updates; (2) speeding up the process to re-aggregate an entire FIB, if a

scheme requires such re-aggregations; and (3) reducing the average and maximum

number of FIB changes caused by any individual routing table change, so as to

reduce the time it takes to push those changes to the line card.

To this end, we have designed three algorithms: FIFA-S for the smallest table

size, FIFA-T for the shortest running time, and FIFA-H for both small tables and

short running time. They take advantage of some intrinsic properties of an

aggregated FIB trie to speed up the incremental update process. Among them,

FIFA-S and FIFA-H do not need to run full re-aggregations, and FIFA-T performs

fast re-aggregation on the existing aggregated trie. Moreover, they use a prioritized

set of next-hop selection rules to improve the stability of the aggregated FIB thus

reducing the number of FIB changes per routing table change. Our evaluation

shows that they outperform state-of-art algorithms in both speed and FIB stability.

3 Solution 2: FIB Caching

As mentioned in Solution 1, modifying the current routing architecture and

protocols seems to be the best long-term solution to these problems [49]. However,

such proposals may take a long time to deploy due to the high costs associated with

them. Meanwhile, ISPs cannot afford to frequently upgrade all of their routers.

Zhao et al. investigated various possibilities to mitigate the routing scalability issue

and concluded that FIB size reduction would be the most promising solution from
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an operator’s view [83]. Two main solutions can lead to FIB size reduction, FIB

aggregation and FIB caching. FIB aggregation is to aggregate a large FIB table into

a smaller one with the same forwarding results. There has been a number of FIB

aggregation algorithms proposed in the last few years ( [29], [11], [82], [53], [79]).

The aggregation results show that the FIB size can be reduced to 1/3 of the original

table size, at most. According to [79], even with the state-of-the-art FIB lookup

algorithm, called Tree Bit Map [30], the actual saved memory is half of the original

FIB memory and reducing more than this seems impossible. Therefore, FIB caching

is another promising solution to reduce the routing forwarding table size. A router

stores the routes for the known destination prefixes in a routing table, known as a

Routing Information Base (RIB). The path selection algorithm uses the RIB to find

out the best route for a particular destination and pushes it to the Forwarding

Information Base (FIB), which is responsible for packet forwarding. All alternative

routes remain in RIB and can be used when the best route is unavailable. In recent

years, a tremendous growth in RIB, and consequently of FIB, has been observed,

which is concerning for ISPs as its implications include high management cost,

inefficient forwarding, and more power consumption, just to name a few. To scale

well with the increasing FIB size, a naive solution is to add more memory to the

routers. However, firstly, it is challenging to meet the continuously changing

memory requirement and secondly, as FIB memory is expensive, upgrading the

memory of all routers of an AS is not compelling for ISPs.

One approach to reducing the impact of large FIBs is to use high-speed memory

as a cache to store the most popular routes [19,46,50,81] while storing the full FIB

in lower-cost memory. The feasibility of this approach, which we call FIB Caching,

depends on how much locality is in the network traffic. In fact, previous

studies [37,46,67,81] have shown that a small number of popular prefixes contribute

to most of the observed traffic. The data trace from a regional ISP used in our
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evaluation also supports this observation. As such, a FIB cache needs to store only

a small set of popular prefixes thus saving a router’s high-speed memory, increasing

lookup speed, and reducing power consumption.

Although caching has been studied extensively in general, FIB caching has its

unique set of issues. First, network links forward a huge number of packets every

second, which means even a 1% miss ratio could lead to millions of lookups per

second in slow memory. To minimize this problem, an effective FIB caching scheme

must achieve an extremely high hit ratio with a modest cache size. Second, the

cache miss problem is especially serious when a router starts with an empty cache,

so a good scheme needs to quickly and effectively fill the cache even without prior

traffic information. Third, Internet forwarding uses longest-prefix matches rather

than exact matches. If designed poorly, a FIB caching scheme may cause a

cache-hiding problem, where a packet’s longest-prefix match in the cache differs

from that in the full FIB; thus the packet will be forwarded to the wrong next-hop

(Section 1). To prevent this problem, prefixes for the cache need to be carefully

selected from the full FIB or dynamically generated. Finally, prefixes and routes

change from time to time, therefore, any practical FIB caching scheme needs to

handle these changes efficiently without causing the cache-hiding problem.

We propose a FIB caching scheme that selects and generates a minimal number

of non-overlapping prefixes for the cache. Because the cached prefixes do not cover

any longer prefixes in the full FIB, we do not have the cache-hiding problem. Based

on this caching model, we developed a FIB caching update algorithm to

systematically handle cache misses, cache replacements and routing updates. Our

experimental results using data traffic from a regional network show that, for a

routing table of 372K prefixes, our scheme achieves a hit ratio higher than 99.95%

using a cache size of 20K prefixes (5.36% of the full FIB size) and outperforms

alternative proposals in term of hit ratio. In addition, we fill the initial cache with
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the shortest non-overlapping prefixes generated from the full FIB which significantly

increases the hit ratio for the initial traffic. Our evaluation results show that the

initialized cache has a hit ratio of 85% for the first 100 packets compared to 65% for

an uninitialized cache.

The remainder of the dissertation is organized as follows. Chapter 2 gives

background and related works on FIB aggregation and caching; Chapter 3 presents

the design, evaluation and implementation of FIB aggregation algorithms;

Chapter 4 presents the design, evaluation and implementation of FIB caching

architecture; and Chapter 5 concludes the dissertation.
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Chapter 2

Background

1 Background

1.1 Router

Routers [14] glue every small network into the global Internet and various types are

used at every level. For example, homes and small businesses utilize home routers or

access networks to connect with their Internet Service Providers (ISPs); enterprise

networks or campus networks utilize routers to connect tens, even thousands of

computers together; backbone networks utilize routers to link ISPs and enterprise

networks together which are sometimes called Wide Area Networks. The basic

functionalities for a router are route collection, route selection, and packet

processing. Packet processing includes packet receiving, packet buffering, packet

route searching, and packet forwarding [61,72,77,78,27]. In order to implement all

the functionalities, a router, especially for a backbone network, may contain

different types of memory, such as DRAM (Dynamic Random Access Memory),

SRAM (Static Random Access Memory) and TCAM (Ternary Content Addressable

Memory) [3]. DRAM is cheap but slow and can be used for route collection and

selection; SRAM is fast but expensive and can be used for packet buffering; TCAM

is the fastest but also the most expensive and generally can be used for packet route

searching and forwarding [15].

8



1.2 Routing Table and Forwarding Table

There are two types of tables used by routers: Routing Information Base (RIB) for

routing and Forwarding Information Base (FIB) for forwarding. RIB is stored in

the main memory of a route processor. The route processor receives and processes

routing update messages and runs routing protocols, e.g., OSPF [59] and BGP [65],

to compute the RIB. Each RIB entry contains the destination IP prefix and

associated route information. For example, BGP maintains full AS path and many

other attributes for each prefix in RIB. FIB is derived from RIB and router

configurations and is stored in line cards, which forward data packets. Therefore,

FIB usually uses high performance memory, which is more expensive and more

difficult to scale. For each destination IP prefix, the FIB has an entry to store the

next-hop IP, next-hop MAC address and outgoing interface for fast data forwarding.

Figure 2.1 illustrates these different components in a router.

Routers use their routing protocols, e.g. OSPF [59] and BGP [65], to compute

their routing table or Routing Information Base (RIB). Each entry in a RIB

includes an address prefix, e.g. 3.0.0.0/8, and the corresponding route information,

e.g. the next-hop’s IP address. RIB is usually stored in the memory of a route

processor. While the route processor is responsible for computing routing

information, routers use dedicated processors in line cards to forward packets. Each

line card has its own or shared forwarding table (also called the Forwarding

Information Base or FIB) which is derived from the RIB and router configurations.

For each address prefix, the FIB contains the outgoing interface, the next-hop’s IP

address, and the next-hop’s MAC address for fast forwarding. Whenever a change

to the RIB results in a different next-hop for an address prefix, the FIB has to be

updated accordingly. Figure 2.1 illustrates these different components in a router.

Despite growth constraints such as strict address allocation policies [57], the
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Figure 2.1: RIB and FIB

routing tables in the default free zone (DFZ) have been growing at an alarming rate

in recent years. Currently, a DFZ router stores hundreds of thousands of routes or

even a million in tier-1 ISPs. This is due in part to the sheer growth of the Internet,

as well as lack of aggregation. When a customer network multi-homes to multiple

providers for resilient Internet connectivity, the customer’s address prefix(es) must

be visible in the global routing table in order to be reachable through any of its

providers, thus breaking down provider-based aggregation [24]. Traffic engineering is

another contributing factor. For example, a network may try to influence the paths

of specific incoming traffic flows by splitting its prefix into several longer ones and

injecting them at different network attachment points. Splitting prefixes is also used

as a defense mechanism against prefix hijacking, since hijacking longer prefixes is

less effective than hijacking shorter prefixes due to router’s longest-match routing

lookup. Growing table size leads to increasing FIB tables, RIB tables, and routing

churns. Among these problems, ISPs and vendors are more concerned about the

FIB size than RIB size, because it is more difficult to scale up the memory in line
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cards than in route processors [36]. Due to this, the price of a line card in a high

performance backbone router is very expensive, the price of a state-of-the-art router

line card has been over 200, 000 dollars per piece.

The conventional way of reducing routing table size is to aggregate the RIB,

which will also reduce FIB size. However, RIB aggregation has very limited

adoption in the Internet. At a prefix’s origin network, there is little incentive to

aggregate the prefix, because the gain of aggregating a small number of

self-originated prefixes does not make much difference to the table size. At the same

time, the origin network actually has incentives, such as multi-homing and traffic

engineering, to split the prefix. At a remote site, aggregation opportunity is limited

since two prefixes must have the same path attributes in order to be aggregated in

RIB. Otherwise, their path information will be lost and protocol functions may be

affected. Forcing aggregation of prefixes that have different paths would also defeat

multi-homing and traffic engineering intended by the prefix origin networks.

Definition 1. A FIB (F ) contains a set of forwarding entries, i.e., F = {(p, h)},

where h is a set of next-hops for forwarding packets to any IP address in prefix p.

Definition 2. Given an IP address d and a FIB F , let LPM(F, d) denote d’s

Longest Prefix Match, an address prefix p = a/l in F is the Longest Prefix

Match (LPM) for d, i.e., p = LPM(F, d), if and only if the following conditions

hold: (1) d = a{0, 1}∗, and (2) for any address prefix p′ = a′/l′ 6= p in F , if

d = a′{0, 1}∗, then l′ < l. and nexthop(F, p) denote the next-hops for prefix p. We

define nexthop(F, d) = nexthop(F,LPM(F, d)). It is possible that d does not have

any match in the FIB, i.e., LPM(F, d) = NULL, and packets destined to d will be

dropped.

As an example, Table 2.1(a) shows a FIB F with five entries. For address

141.225.48.7, this address matches 141.225.0.0/16, 141.225.32.0/19 and
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Table 2.1: FIB entries before and after aggregation

(a) Original FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
B 141.225.64.0/18 1
C 141.225.32.0/19 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2

(b) Aggregated FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2

141.225.48.0/20, among which 141.225.48.0/20 is the longest prefix match, i.e.,

LPM(F, 141.225.48.7) = 141.225.48.0/20, and

nexthop(F, 141.225.48.7) = nexthop(F, 141.225.48.0/20) = {2}.

1.3 FIB Aggregation and Forwarding Correctness

FIB aggregation eliminates and aggregates entries in a FIB based on the next-hop

router information while ensuring forwarding correctness. For example, it can

remove prefix P1 from the FIB if its super-prefix P2 uses the same next-hop as P1.

It may also introduce a new entry to the FIB after removing multiple entries that

share the same next-hop. FIB aggregation may be more effective than RIB

aggregation since it only requires prefixes to have the same next-hop in order to be

aggregated. For example, considering that a Los Angeles router connects to a Tokyo

router, which in turn connects to a Beijing router and a Shanghai router. The Los

Angeles router may reach prefixes announced by China Telecom via different paths,

some via Beijing and some via Shanghai. However, in its FIB, most of these prefixes

take the Tokyo router as the next-hop, making them aggregatable.

The effectiveness of FIB aggregation depends on how prefixes are distributed

over next-hop routers. Generally speaking, the fewer neighbors a router has, the

better aggregation it may achieve. In the extreme case that all prefixes share the

same single next-hop, aggregation is maximized. According to Li et al. [47],
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although some routers have high degrees up to a few hundreds, most connections

are with their end-customers, which represent only a small percentage of the address

space. The routers still use a small number of transit neighbors to reach most

address prefixes. Besides sharing the same next-hop, prefixes also need to be

numerically aggregatable. This is possible due to two factors. First, in IP address

allocation, large blocks of Internet addresses are first allocated to Regional Internet

Registries and then they further allocate the addresses to networks within the same

region. Thus prefixes announced out of the same regions tend to be numerically

aggregatable. Second, for prefixes split for traffic engineering or other purposes, a

router near the origin network is likely to take different next-hops, but a router

further away from the origin network is more likely to have the same next-hop

towards these numerically aggregatable prefixes.

Therefore, although FIB aggregation is opportunistic and the aggregation degree

varies from router to router, there are inherent properties of the Internet that can

make FIB aggregation effective. If FIB aggregation is indeed effective in reducing

table size, its most appealing feature is that the impact is limited within a router’s

data plane. It does not change any routing protocols, or any router’s routing

decisions. Data traffic still flows on the same router paths. Therefore, it can co-exist

with almost any new routing protocols, including long-term architectural solutions

to the routing scalability problem.

In a FIB, there are hundreds of thousands of prefixes but only, at most,

thousands of next-hops as shown in Table 2.1(a). That means many prefixes share a

common next-hop. This fact results in the possibility to do FIB aggregation without

affecting the original forwarding behavior. Table 2.1(b) illustrates the prefixes and

next-hops after aggregation with the same forwarding behavior as that before

aggregation. FIB aggregation is to aggregate a FIB into one with fewer number of

entries while ensuring “forwarding correctness”, i.e., the aggregated FIB should not
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change the next-hops that packets take to reach their destinations. All the FIB

aggregation algorithms proposed in this paper satisfy strong forwarding correctness

as defined below. Note that even if two algorithms satisfy the same type of

forwarding correctness, they may reduce a FIB into different sizes depending on

what aggregation opportunities they exploit.

Definition 3. Given a FIB F , another FIB F ′ satisfies Strong Forwarding

Correctness with respect to F if and only if the following conditions hold: (1) any

non-routable address in F will remain non-routable in F ′, i.e., if

LPM(F, d) = NULL, then LPM(F ′, d) = NULL; (2) the next-hop of any routable

address in F will remain the same in F ′, i.e., if LPM(F, d) 6= NULL,

nexthop(F ′, d) = nexthop(F, d). If only the second condition holds, we say that F ′

satisfies Weak Forwarding Correctness with respect to F (this means a

non-routable address in F can become routable in F ′).

In the simplest case, when several consecutive prefixes share a common next-hop,

they can be combined into a shorter prefix with the same next-hop. Another simple

case is when a prefix and its nearest ancestor prefix share the same next-hop, this

prefix can be removed from the FIB. In both cases, the longest prefix match will

return the shorter prefix, but the returned next-hop will still be correct. The second

case is illustrated in Table 4.1(a), where the entries B and C can be removed from

the original FIB – they share the same next-hop as the entry A, and A’s prefix

141.225.0.0/16 is their nearest ancestor prefix. There are more complex cases where

aggregation can be applied.

1.4 Optimal Routing Table Constructor (ORTC)

Our algorithms are based on the Optimal Routing Table Constructor (ORTC) [29],

a one-time aggregation algorithm that minimizes the FIB size with strong
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(a) Initial Tree (b) After pass 1

(c) After pass 2 (d) After pass 3

Figure 2.2: ORTC Aggregation Algorithm. There are four fields for each node
from left to right: original next-hop, selected next-hop, FIB status (Y: IN FIB, N:
NON FIB), and next-hop set. A bold font denotes a field updated in the current step.
A solid rectangle denotes a real node from the unaggregated FIB. A dashed rectan-
gle denotes an auxiliary node generated either as a glue node or for optimization
purposes. A grey node denotes a node with IN FIB status.
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forwarding correctness. The basic ORTC algorithm uses a binary tree to store FIB

entries and traverses the tree three times to produce the aggregated FIB. As we will

show in Section 1.1, ORTC can be implemented using a patricia trie [9] with two

tree traversals. However, for ease of illustration, we describe the basic ORTC

algorithm using a binary tree and three passes.

We use the FIB in Table 2.1(a) as our example. Figure 2.2(a) shows the initial

binary tree with seven nodes. Five of the nodes, A, B, C, D, and E, correspond to

the FIB entries in Table 2.1(a). We call them “real” nodes, while the other two

nodes, F and H, are called “auxiliary” nodes. Note that some of the nominal nodes

may appear in the aggregated FIB, while some of the real nodes may not.

The first pass is a depth-first traversal in pre-order to normalize the tree, so that

all the nodes have zero or two children. The expanded nodes have the same

next-hops as their nearest ancestors that are real nodes. Figure 2.2(b) depicts the

process for pass 1. Node G, I, J and K are the expanded leaf nodes, and they have

the same next-hops as their nearest real ancestors A, C, A, and B, respectively.

The second pass is a depth-first traversal in post-order to merge next-hops, in

which two children merge their next-hop sets to form their parent’s next-hop set. If

the two children have one or more common next-hops, the merging uses an

intersection operation, otherwise, it uses a union operation. Figure 2.2(c) depicts

the merging process. For example, E and I have no common next-hops, so their

parent C’s next-hop set is {1,2}, the union of {1} and {2}. Another example is H,

whose next-hop set {1} is the intersection of C’s next-hop set {1,2} and G’s

next-hop set {1}.

The third pass is a depth-first traversal in pre-order to select each node’s

next-hop and form the aggregated FIB. The root node’s next-hop is randomly

selected from its next-hop set (the original next-hop may be preferred for stability).

Starting from the tree root, first pick any next-hop from the merged next-hop set as
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the selected next-hop of the root. Then execute the following procedure recursively:

from then on, if a node’s selected next-hop h appears in its child’s next-hop set,

then the child should have h as its selected next-hop, so that the child will not be

loaded into the FIB. Otherwise, the child’s next-hop is randomly selected from its

next-hop set, and the child will be loaded into the FIB.

Figure 2.2(d) shows the results after pass three. Root A has 1 as its selected

next-hop. Since its children F and H have 1 in their next-hop set, they also have 1

as their selected next-hops and, as such, they will not appear in the aggregated FIB.

On the other hand, D’s selected next-hop (2) is different from that of its parent B

(1), so it must be put into the aggregated FIB. Table 2.1(b) shows the final prefixes

and their next-hops.

2 Related Work

2.1 Aggregation Algorithms

Optimal Routing Table Constructor(ORTC) [29] was proposed by Draves et al.

1997. It aggregates a routing table into its optimal size using three passes over a

binary tree, while maintaining strong forwarding correctness. However, this

algorithm does not include any update handling mechanism. Moreover, it uses a

binary tree as the data structure.

Zhao et al. proposed four aggregation algorithms (Level1 - Level4) [82]. Level1

and Level2 algorithms maintain strong forwarding correctness, but they do not

optimize the FIB size. Level3 and Level4 achieve weak forwarding correctness by

introducing extra routable space. Also, it needs to do a Full Tree Re-aggregation

when a threshold is reached.

In 2009, Karpilovsky proposed an incremental FIB update algorithm [43] based

on ORTC. This algorithm is similar to FIFA-S. However, it needs three passes to
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handle an update, and it normalizes all affected ancestors of an updated node, both

of which introduce considerable computational overhead.

In 2010, we proposed two incremental FIB aggregation algorithms [53] using a

Patricia Trie data structure [9] based on ORTC. We showed that FIFA-S and

FIFA-T outperform these algorithms in Section 2. The optimal size update scheme

will always keeps optimal FIB size, but needs a full subtree aggregation for each

update, and the process is time consuming. The minimal time update algorithm

does a full tree re-aggregation by destroying the old aggregated FIB tree and

rebuilding a new FIB tree after the threshold has been reached. The Full Tree

Aggregation will trigger large scale number of FIB downloads and very heavy FIB

burst to FIB, the detailed results comparison has been illustrated in Section 2.

Another very relevant work is SMALTA [79], in which Uzmi et al. implemented a

different update handling algorithm based on ORTC. The algorithm is very similar

to our original minimal time update algorithm in [53]. The main differences from

ours are that they utilize a binary tree rather than a Patricia Trie and update only

affected nodes without optimizing the subtree rooted at the updated node. Also,

after a certain number of updates (every a few hours), they need to do a Full Tree

Re-aggregation to keep FIB table size small and FIB burst light.

Li et al. proposed an FIB aggregation scheme with multiple selectable

next-hops [48], which is geared toward FIBs with multiple selectable next-hops for

each prefix. The scheme can potentially introduce path stretch issue.

FIB aggregation can reduce the FIB size by aggregating a large FIB table into a

smaller one with the same forwarding results. There has been a number of FIB

aggregation algorithms [29,82,53,79]; their results show that the FIB size can be

reduced to at most 30% of the original table size. FIB caching is complementary to

FIB aggregation. In fact, the full FIB can be aggregated first and then serve as the

basis for caching, which can further reduce the required cache size.
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The Virtual Aggregation (VA) scheme [34] tries to install some virtual prefixes

which are shorter than real prefixes, such as /6, /7 and /8, to legacy routers to

control FIB size growth. It can reduce the FIB size on most routers while the

routers that announce the virtual prefixes still need to maintain many more specific

prefixes. Our FIB caching scheme can be applied to those routers with a larger FIB

size in a network deploying VA.

Simple Virtual Aggregation [64] installs virtual prefixes which are shorter than

real prefixes, such as /6, to legacy routers to control FIB size growth. It can reduce

the FIB size on most routers, while the routers that announce the virtual prefixes

still need to maintain many specific prefixes.

2.2 Compact Data Structures

Regarding more broad concerns about FIB compression, a heavily researched area

was to find efficient FIB representations with compact data structures. Trie-based

data structures were proposed, such as Patricia Tries [69], Multi-bit Tries [25,40,73],

Path-compact tries [62], Lulea [28], Tree Bitmaps [22,30,71]. Other approaches

include theoretical research on compressed data

structures [68,32,33,39,54,60,63,84], labeled tree folding into

DAG [44,23,26,70,74,66], hash-based compression [80], dynamic pipelining [38],

CAMs [55] and so forth. Our FIB aggregation work could combine with all of these

works to achieve a smaller usage of line card memories, which may further reduce

the costs that ISPs have to pay to replace or upgrade their equipment.

2.3 FIB Caching

Liu proposed Routing Prefix Caching for network processors [50], which employs

three prefix expansion methods, NPE, PPTE and CPTE. These solutions can

eliminate the inter-dependencies between prefixes in the cache, but they will either
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increase the FIB size considerably or have a high miss ratio. CPTE expands the

prefix tree into a complete binary tree, in which there are either two children, or no

child for a node; this method increases the binary tree size dramatically. NPE does

not do prefix expansion and any parent prefix in the cache will be marked as

non-cachable. The cache missed IP addresses will be installed in the cache, this

method increases the cache miss ratio. PPTE only expands the tree on the first

level and other nodes follow the same way as NPE. Then the cache missed IP

address will be installed in the cache for other nodes. The advantage of the

proposed solution is that they remove inter-dependent prefixes issue if there is a

sub-prefix for a super-prefix. However, expanding a prefix tree to a complete binary

tree will increase the size of routing table significantly; using non or partial binary

tree expansion will cause a high cache missing ratio and a large FIB cache by using

IP addresses as the replacement elements.

Akhbarizadeh et al. proposed RRC-ME [19]. This solution can also solve the

cache-hiding problem through using disjoint prefixes, but it has significant update

handling overhead, especially in the worst cases. RRC-ME has a very similar

mechanism to our proposal. First, they expand the tree partially based on the

destination IP address and only cache disjoint popular prefixes to save memory.

However, they use a binary tree structure to generate prefixes, simply pick i+1 bits

of the address as prefix (i is the bit length of last visited node). Moreover, in

absence of control plane information, any prefix to be updated needs to search the

cache several times to find the matching prefix and perform corresponding

operations. Furthermore, a withdrawal prefix may result in the deletion of all of its

children in the cache. Our proposal uses both control and data plane information,

and thus has two sets of schemes to handle both normal update messages and

update messages from the cache.

Kim et al. proposed route caching using flat and uniform prefixes of 24 bits
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long [46]. It can achieve fast access speeds using a flat hash data structure for

lookup. However, this approach leads to prefix fragmentation and thus has a lower

hit ratio than our approach as shown in our evaluation results. Moreover, no

systematic update handling scheme was present in the work.
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Chapter 3

FIB Aggregation

1 Design

We aim to develop FIB aggregation algorithms that are practical to use in a real

production network. First, they should reduce the FIB size sufficiently to postpone

the upgrading of FIB memory in line cards by several years. Second, they should

handle route changes quickly as a router may need to handle a large number of

routing changes during routing convergence. Third, they should not incur a large

number of FIB changes per routing update. According to Francois et al. [35], the

time required to update a FIB entry in a real router is about 100µs. Since one route

change may result in multiple FIB changes on an aggregated FIB, it would be

desirable to minimize such FIB changes. Finally, we would like to maintain strong

forwarding correctness (see Section 1) to avoid potential looping problems

associated with weak forwarding correctness.

When a router starts up, FIFA uses our improved version of ORTC ( [29] and

Section 1) to build the initial aggregated FIB. When a new routing update arrives,

the routing protocol will first update the RIB and then FIFA will apply each

resulting route change to the aggregated FIB, which may generate one or more FIB

changes. FIFA then installs these FIB changes in the line card. Figure 4.3

illustrates this process.
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Figure 3.1: Relationship between FIFA and other router components

FIFA is composed of three algorithms: FIFA-S, FIFA-T and FIFA-H; ISPs can

choose one based on their concerns. FIFA-S keeps the FIB size the smallest

amongst the three, with very light FIB bursts and no FIB re-aggregation. FIFA-T

is the fastest amongst the three, with relatively small number of FIB changes and

fast re-aggregation. FIFA-H is a hybrid approach combining the advantages of

both FIFA-S and FIFA-T. It has medium time cost compared to the other two

schemes, and much lighter FIB burst than FIFA-T. Moreover, it does not perform

any re-aggregations.

In the rest of this section, we describe our improved version of ORTC and the

three FIFA algorithms.

1.1 Improving ORTC Efficiency

FIB size can be aggregated optimally after applying the ORTC aggregation

algorithm (The authors proved the optimality and strong forwarding correctness of
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the algorithm in [29]). FIFA is based on the ORTC algorithm, but it addresses two

inefficiencies in the latter: (1) the basic ORTC algorithm traverses the FIB tree

three times, so it can be quite slow for a large FIB; and (2) ORTC uses a binary

tree structure that could consume more memory than necessary when there are

large gaps between address prefixes and the large number of tree nodes means

slower tree traversals. We improved ORTC using two passes on a Patricia Trie [9].

A Patricia Trie is a space-optimized tree in which a child prefix can be longer than

its parent prefix by more than one, thus eliminating unnecessary internal nodes. For

example, Figure 3.2(a) shows the Patricia Trie representation of Table 2.1(a) – node

C has a prefix length 19 while its parent F has a prefix length of 17. We tested

both implementations using RouteView’s data [18]. For the routing table of router

4.69.184.193 on 1/1/2011 (332,588 entries), our implementation is 2.5 times faster

and uses only 44% of the memory consumed by the original implementation.

In order to distinguish the patricia trie-based ORTC algorithm from the basic

ORTC, we use Round One (Figure 3.2(b)) and Round Two (Figure 3.2(c)) to

represent its new passes. Round One is a depth-first traversal in post-order to

merge next-hops (as in pass two) without normalizing the tree (otherwise we get a

complete binary tree). Round Two is a depth-first traversal in pre-order to select

next-hops (as in pass three) and it adds new tree nodes to maintain forwarding

correctness.

In a Patricia Trie, we only use round one to obtain the same results as pass one

and pass two of ORTC binary tree implementation. The task is challenging since it

requires us to avoid expanding leaf nodes but be able to conduct the merge process

correctly. Under this condition, we have to think of a way to simulate the merge

process like running in a binary tree. Imagine in a complete binary tree after pass

one, any internal node has two children and each of them has a merged next-hop

set. The pass two recursively merges the two children sets into their parents until
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(a) Initial Trie (b) After round one

(c) After round two

Figure 3.2: Improved ORTC Aggregation Algorithm using Patricia Trie
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reaching the tree root. Here we combine pass one and two together and emulate the

same scenario. For Round One, in order to merge the next-hops correctly without

expanding the trie, we compute a node’s next-hop set by merging what would be

the next-hop sets of its imaginary children if there is a complete binary tree. Let

S(n) be the next-hop set of node n, Sl(n) and Sr(n) be the next-hop set of n’s

imaginary left and right child, respectively. Then S(n) = merge(Sl(n), Sr(n)). In

Figure 3.2(b), S(n) is the last value associated with each node.

Below we explain how to compute Sl(n). Let H(n) be the original next-hop of n,

and d be the difference between the prefix length of a node and that of its actual left

child. There are four possible cases: no left child, d = 1, d = 2, and d > 2. In each

case, the calculation follows a simple rule explained below (all the examples refer to

the FIB tree in Figure 3.2(b)). The Sl value is assigned based on the following rules.

The rules can be proven by expanding the part of a trie that includes the parent

and the child into a complete binary structure and applying the merging rules to it.

1. No left child: Sl is derived from the original next-hop of the parent node, since

the child was to be created from tree normalization. For example, C has no

left child, so Sl(C) = {H(C)} = {1}.

2. d = 1: Sl is the next-hop set of the actual left child. For example, d = 1 for A

and F , so Sl(A) = S(F ) = {1}.

3. d = 2: Sl is the merged next-hops of the parent’s original next-hop and the

actual left child’s next-hop set. For example, d = 2 between F and C, so

Sl(F ) = {H(F )} ∩ S(C) = {1} ∩ {1, 2} = {1}. Figure 2.2(c) depicts it clearly

in a binary tree.

4. d > 2: Sl is a set containing only the original next-hop of the parent node. If

the length difference is greater than two, then the dominated next-hop is the

parent original next-hop.
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(a) Initial Trie (b) After round one

(c) Create V in round two (d) Create Z in round two

Figure 3.3: Create New Nodes Under Certain Conditions

We then obtain Sr(n) using the same procedure, and calculate S(n) by merging

Sl(n) and Sr(n). From bottom leaf nodes, we apply the merge rules all the way to

root node of the trie, and will obtain identical merged next-hop sets as in a

complete binary tree(except those unnecessary internal nodes) as shown in

Figure 3.2(b) and Figure 2.2(c). For example, since d = 1 between F and B,

Sr(F ) = S(B) = {1, 2}. Therefore, S(F ) = Sl(F ) ∩ Sr(F ) = {1} ∩ {1, 2} = {1}.

Round Two goes through similar steps as pass three to select the next-hop of

each node. In addition, it creates a new node when H(n) 6= H ′(n), where H(n) and

H ′(n) are the original and selected next-hop of node n, and one of the following two

conditions is satisfied:

1. d ≥ 2: if n has a left (right) child with prefix length greater than n’s length by

at least 2, then a left (right) child under n is created. For example, in
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Figure 3.3(b), H(U) = 3 6= H ′(U) = 1 and d = 2 between node U and X, then

we need to create a new node V as a left child of U .

2. One child is missing: if n has no left (or right) child, then a left (or right) child

under n is created. For example, in Figure 3.3(c), H(V ) = 3 6= H ′(V ) = 1 and

V has no right child, so we create a new node Z as a right child of V , as

shown in Figure 3.3(d). So after this step, only prefixes on node U with

next-hop 1 and Z with next-hop 3 will be placed into FIB.

Otherwise, we do not need to create new nodes. After the two rounds, we obtain the

same set of aggregated FIB entries as the original ORTC does with much fewer

nodes in general. For example, in Figure 3.2(c), we did not create any new node

because H(n) = H ′(n) for all the nodes, and only six nodes are created compared to

11 nodes in Figure 2.2(d). But the Trie implementation in Figure 3.2(c) saves a lot

of space through not using unnecessary internal nodes.

1.2 FIFA-S

FIFA-S keeps the aggregated FIB size optimal after every update. A naive way to

do so is to perform the ORTC aggregation on the entire FIB trie upon every

update, but this would be too time-consuming. A better approach is to update only

those parts of the FIB trie that may have been impacted by the update. We follow

this approach in both the optimal size update handling algorithm (BasicOptSize) we

proposed in 2010 [53] and FIFA-S, but FIFA-S is eight times faster than

BasicOptSize (see Section 2) and its heaviest FIB burst (i.e., number of FIB changes

caused by a single route change) is only 1/10 of that in BasicOptSize. Below we

first describe how BasicOptSize works and then show FIFA-S’ improvements.

The BasicOptSize algorithm goes through the following steps, after applying the

update to the corresponding node:
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Figure 3.4: Updating node H upon receiving a new route

Table 3.1: Unaggregated and aggregated FIB entries after an update

(a) Original FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
B 141.225.64.0/18 1
C 141.225.32.0/19 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2
H 141.225.0.0/18 3

(b) Aggregated FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2
G 141.225.0.0/19 3

1. Step A: on the subtree rooted at the updated node, merge the next-hops using

a depth-first traversal in post-order. This is basically a Round One operation

on a subtree;

2. Step B: for each ancestor node above the updated node, merge its next-hops

until the node’s new next-hop set is the same as its old next-hop set. We call

this node the “highest changed node”;

3. Step C: on the subtree rooted at the highest changed node, select the

next-hops using a depth-first traversal in pre-order. This is a Round Two

operation on a subtree.
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(a) Step A (b) Step B

(c) Step C

Figure 3.5: Steps in BasicOptSize

To illustrate BasicOptSize, we add a new entry to our example FIB (H in

Table 3.1(a)). Figure 3.4 shows the FIB trie after updating node H (its type is

changed to REAL and its next-hop from 1 to 3). Figure 3.5 shows Steps A, B and

C. After Step C, the aggregated FIB contains three of the five original entries, A, D,

and E, and a new entry G (Table 3.1(b)).

Figure 3.5 shows that Step B and C need to update the entire subtree rooted at

H and F , respectively. To reduce the number of nodes visited on these subtrees,

FIFA-S takes advantage of the following two properties (see the appendice for their

proofs):
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Property 1: The result of Step A will be the same without updating any subtrees

rooted at REAL nodes.

Property 2: The result of Step C will be the same without updating any subtree

with these properties: (1) the next-hop sets did not change in any nodes on the

subtree in Step A; and (2) the selected next-hop of the subtree root did not change.

Moreover, FIFA-S adopts the following rules and it has considerably fewer FIB

changes than BasicOptSize (Section 2).

Property 3: In Step C, selecting a node’s next-hop from its next-hop set using

the following prioritized rules can reduce the number of FIB changes: (a) the

next-hop selected by the nearest ancestor with IN FIB status (this is for FIB size

optimization); (b) the old selected next-hop; (c) the original next-hop; and (d) if

none of those are found in the next-hop set, sort the set and pick the first one

instead of random selection.

We call the improved procedures Step A’, B’ and C’. Figures 3.5 and 3.6 show

that (1) BasicOptSize and FIFA-S have the same aggregation results; (2) E was

skipped in Step A’; and (3) D and E were skipped in Step C’.

We present the pseudo code of FIFA-S in Procedures 1 - 6. Function

mergeNexthopsBelowNode is Step A’, mergeNexthopsAboveNode is Step B’ and

selectNexthop is Step C’. Note that we associate a flag optimal with each node to

indicate whether Step C’ is needed in the subtree of this node.

In the next two sections, we show how Properties 1-3 can be used in FIFA-T and

FIFA-H to reduce computation overhead and keep the aggregated trie stable.

1.3 FIFA-T

FIFA-T aims to shorten the FIB update time by localizing the changes on the FIB

trie while maintaining strong forwarding correctness. The trade-off is that the FIB

size will not be optimal. As more updates come, the FIB size will increase until it
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Procedure 1 main(type) function

1: Build initial FIB trie based on unaggregated FIB
2: Run improved ORTC on the FIB trie to obtain aggregated FIB
3: for each update do
4: if Announcement then
5: Lookup the corresponding node and create it if non-existent
6: Update the next-hop of the current node
7: node.type← REAL
8: else
9: Lookup the corresponding node and return if non-existent

10: Remove the next-hop of the current node
11: node.type← AUXILIARY
12: if (type = ALG FIFA T ) ∨ (type = ALG FIFA H) then
13: node.optimal← 0 for all ancestors of the current node
14: switch (type)
15: case ALG FIFA S:
16: FIFA S(node)
17: case ALG FIFA T :
18: FIFA T (node)
19: case ALG FIFA H:
20: FIFA H(node)
21: end switch

Procedure 2 FIFA S(node) function

1: realAncestor ← nearestRealAncestor(node)
2: mergeNexthopsBelowNode(node, realAncestor)
3: highestNode← mergeNexthopsAboveNode(node, ALG FIFA S)
4: infibAncestor ← nearestINFIBAncestor(highestNode)
5: selectNexthop(highestNode, infibAncestor)

Procedure 3 mergeNexthopsBelowNode(node, realAncestor)

1: node.optimal← 0
2: l← node.l
3: r ← node.r
4: if (l 6= NULL) ∧ (l.type 6= REAL) then
5: mergeNexthopsBelowNode(l, realAncestor)
6: if (r 6= NULL) ∧ (r.type 6= REAL) then
7: mergeNexthopsBelowNode(r, realAncestor)
8: if (node.type 6= REAL) then
9: node.originalNexthop← realAncestor.originalNexthop

10: node.mergedNexthops← merge(l, r)
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Procedure 4 mergeNexthopsAboveNode(node, type)

1: parent← node.parent
2: while parent do
3: if (type = ALG FIFA H) ∧ (parent.length ≤ CAP ) then
4: Return node
5: old← parent.mergedNexthops
6: new ← merge(parent.l, parent.r)
7: if old = new then
8: Return node
9: node← parent

10: parent← node.parent
11: if type = S then
12: node.optimal← 0
13: Return node

Procedure 5 selectNexthop(node, ancestor)

1: oldStaus← node.status
2: oldNexthop← node.selectedNexthop
3: if ancestor.selectedNexthop ∈ node.mergedNexthops then
4: node.selectedNexthop← ancestor.selectedNexthop
5: node.staus← NON FIB
6: else
7: if oldNexthop ∈ node.mergedNexthops then
8: node.selectedNexthop← oldNexthop
9: else if node.originalNexthop ∈ node.mergedNexthops then

10: node.selectedNexthop← node.originalNexthop
11: else
12: node.selectedNexthop← node.mergedNexthops[0]
13: node.staus← IN FIB
14: updateFIB(oldStatus, oldNexthop, node)
15: if (oldNexthop = node.selectedNexthop) ∧ (node.optimal = 1) then
16: Return
17: if node.status = IN FIB then
18: ancestor ← node
19: if (node.l = NULL) ∧ (node.r = NULL) then
20: Return
21: if node.selectedNexthop 6= node.originalNexthop then
22: generateNewNode(node)
23: if node.l 6= NULL then
24: selectNexthop(node.l, ancestor)
25: if node.r 6= NULL then
26: selectNexthop(node.r, ancestor)
27: node.optimal← 1
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(a) Step A’ (b) Step B’

(c) Step C’

Figure 3.6: Steps in FIFA-S

reaches a threshold, e.g., 90% of the FIB memory in the line card. At this point, a

re-aggregation is performed on the FIB trie from the root to optimize the FIB size.

On the surface, FIFA-T is very similar to the minimal time update handling

algorithm (BasicMinTime) we proposed [53]. However, there are two important

differences that make FIFA-T more efficient: (a) FIFA-T utilizes the three

properties described in Section 1.2; and (b) FIFA-T’s re-aggregation is performed on

the aggregated FIB trie, but BasicMinTime has to destroy the old aggregated FIB

trie, and build a new one from the unaggregated FIB. Our results show that it uses

40% less time than BasicMinTime and generates only 1.1 FIB changes per routing
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Procedure 6 updateFIB(oldStatus, oldNexthop, node)

1: if oldStatus 6= node.status then
2: if node.status = NON FIB then
3: Delete the prefix and next-hop from FIB
4: else
5: Add the prefix and next-hop to FIB
6: else if oldNexthop 6= node.selectedNexthop then
7: if node.status = IN FIB then
8: Update the corresponding next-hop to FIB

update.

FIFA-T works as follows: (1) before the threshold is reached, perform the

following (the less efficient procedures in BasicMinTime are called Step X and Y ) –

• Step X’: on the subtree rooted at the updated node, merge the next-hops using

a depth-first traversal in post-order, skipping REAL nodes and their subtrees

(based on Property 1);

• Step Y’: on the subtree rooted at the updated node, select the next-hops

(following rules based on Property 3) using a depth-first traversal in pre-order,

skipping REAL nodes with optimal flag set to 1 as well as their subtrees

(based on Property 2).

(2) when the threshold is reached, re-aggregate the trie from its root incorporating

the three properties to obtain an optimal trie. The pseudo code is in Procedures 1,

7, and 3 - 6.

Procedure 7 FIFA T (node) function

1: if Threshold then
2: Do re-aggregation on the FIB trie from the root
3: else
4: realAncestor ← nearestRealAncestor(node)
5: mergeNexthopsBelowNode(node, realAncestor)
6: infibAncestor ← nearestINFIBAncestor(node)
7: selectNexthop(node, infibAncestor)
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(a) Step X in BasicMinTime (b) Step Y in BasicMinTime (c) Step X’ in FIFA-T

(d) Step Y’ in FIFA-T

Figure 3.7: Steps in BasicMinTime and FIFA-T. Step X and Y are steps for Ba-
sicMinTime, while Step X’ and Y’ are steps for FIFA-T.

Figure 3.7 illustrates the differences between BasicMinTime and FIFA-T, e.g.,

node E was skipped in Step X’ and Y’.

1.4 FIFA-H

In addition to FIFA-S and FIFA-T, we propose FIFA-H, a hybrid scheme that

achieve a good balance among aggregation speed, FIB size and number of FIB

changes. In this approach, a FIB size threshold and a CAP are set at the beginning.

For each update, FIFA-H performs three steps - U, V, W (or W’) as follows

(Figure 3.8):
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• Step U: merge the next-hops below the updated node (same as Step A’ in

FIFA-S and Step X’ in FIFA-T);

• Step V: merge the next-hops above the updated node up to the highest

changed node whose prefix length is less than or equal to CAP, called the

CAP node, which limits the computation overhead and the number of FIB

changes compared to FIFA-S;

• Step W or W’: if the threshold is not reached, this step (W) performs

next-hop selection on the subtree rooted at the current updated node

(SaveTime mode). Otherwise, this step (W’) will start from the CAP node for

next-hop selection (ReduceSize mode).

FIFA-H incurs less computation time and fewer FIB changes than FIFA-S, and

has smaller FIB bursts than FIFA-T (Section 2). It has no lengthy re-aggregations,

thus avoiding potential problems during re-aggregation, e.g., packet losses.

Procedure 8 FIFA H(node) function

1: realAncestor ← nearestRealAncestor(node)
2: mergeNexthopsBelowNode(node, realAncestor)
3: capNode← mergeNexthopsAboveNode(node, ALG FIFA H)
4: if ThresholdReached then
5: node← capNode
6: infibAncestor ← nearestINFIBAncestor(node)
7: selectNexthop(node, infibAncestor)
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(a) Step U (b) Step V

(c) Step W (d) Step W’

Figure 3.8: FIFA-H: the first two steps are Step U and V. The third step is Step W
before reaching the threshold and Step W’ after reaching the threshold.

2 Evaluation

In this section, we evaluate the performance improvement of FIFA over

BasicOptSize, BasicMinTime, as well as SMALTA [79], another ORTC-based FIB

aggregation scheme. We also compare the three FIFA algorithms so that users can

choose the right algorithm based on their own needs. We verified the correctness of

our results by checking that every address has the correct next-hop after

aggregation.
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2.1 Methodology

We used RIBs and routing updates from 01/01/2011 to 12/31/2011 in the

Routeviews [18] route-views2 data archive. Since the routing updates do not contain

next-hop IP address information, we use next-hop ASes to approximate next-hop

routers (as in [82,53]) and we have used internal routing information from a tier-1

ISP to verify that our approach closely approximates the results using IGP

next-hops. In order to show the worst-case performance, we present the results from

4.69.184.193, a router in the tier-1 ISP Level 3, because this router has the most AS

neighbors (2876 and 3151 on 01/01/2011 and 12/31/2011, respectively) among all

36 routers. In general, more neighbors mean more next-hops the prefixes can have,

which may lead to lower FIB aggregation performance. We also tested another

router, 216.218.252.164, from Hurricane Electric with 1549 AS neighbors, and

obtained similar results. In practice, a router has tens or at most hundreds of

interfaces.

Before running the update handling, we filtered out all duplicate update

messages because in practice the duplicate message will be filtered out and

prevented from entering main RIB and FIB updates. Before the filtering, there were

155,425,645 updates, and the number was reduced to 54,095,965 after the

preprocessing. Thus any update handling algorithm which is comparable to ours

should filter out the duplicate messages first. Also we use Next AS Hop as the

next-hop to evaluate the performance of update handling.

In the results, the forwarding correctness was guaranteed by our own

implemented forwarding equivalence verification algorithm, in which we used an

efficient method to go through the whole 32-bit IPv4 space to do the comparisons

between original FIB and aggregated FIB. We use the following four performance

metrics: (1) FIB Size: total number of entries in FIB; (2) Time Cost: time to apply
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routing changes to the FIB including re-aggregation time, if any; (3) FIB Changes:

total number of FIB updates caused by all routing updates; and (4) FIB burst:

number of FIB changes caused by one route change. The evaluation was done on a

machine with an Intel Core 2 Quad 2.83GHz CPU.

2.2 Summary of Findings

First, notice that in year 2001, there were about 54 million updates, and on average

1.7 updates per second, however, FIFA algorithms could handle 500 updates (2

µs/update) in the worse case, which indicates that our algorithms are far good

enough to handle normal updates, even FIB bursts with hundreds or thousands of

updates. Second, FIFA algorithms have significantly enhanced the performance over

existing ones. FIFA-S improves the time efficiency of BasicOptSize by 8.22 times

and keeps the FIB size optimal. It is mostly useful when the FIB memory size is

close to its optimal aggregated size, when FIFA-T will trigger too many

re-aggregations. FIFA-T is the fastest among the three schemes; it is suitable when

the FIB memory is much larger than the optimal aggregated size. FIFA-H is a

well-balanced scheme with medium running time and FIB burst size. Compared

with SMALTA, all FIFA algorithms are faster and have smaller FIB

bursts . In addition, FIFA-T and FIFA-H incur smaller total number of

FIB changes than SMALTA. Technically, there are mainly three factors leading

to the fast FIB aggregation in FIFA. First of all, SMALTA requires rebuilding the

FIB aggregation tree from scratch during re-aggregation, which is time consuming.

In FIFA-T, the re-aggregations are very fast, because it does not require rebuilding

the FIB aggregation. In FIFA-S and FIFA-H, there is no re-aggregation. Secondly,

SMALTA uses a binary tree data structure, but we use a patricia trie. The binary

tree has many more nodes to traverse than the patricia trie, thus incurring more

computation overhead. Thirdly, FIFA has the two important features which are not
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Figure 3.9: FIFA-S vs. BasicOptSize (Normal refers to no aggregation)

applicable to SMALTA and they can further help reduce more redundant node

accesses but keep the same aggregated size.

2.3 FIFA-S vs. BasicOptSize

We first compare FIFA-S with BasicOptSize. Figure 3.9(a) shows the FIB size.

Since both schemes achieve optimal FIB size, their lines overlap with each other

ending below 150,000. The top line shows the unaggregated FIB size, which

increased from 332,588 to 378,728 during the year. In other words, either scheme

reduced the FIB size by about 60% . If the unaggregated FIB size increases at
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Table 3.2: FIB Burst Distribution Comparison between FIFA-S and BasicOptSize
Burst Size Min Max Median =0 ≤1 ≤10 All

BasicOptSize 0 6,226 1 6,914,934
(12.78%)

38,185,015
(70.58%)

52,795,683
(97,59%)

54,095,965
(100%)

FIFA-S 0 568 1 6,961,449
(12.87%)

38,645,578
(71.43%)

53,318,607
(98.56%)

54,095,965
(100%)

the current rate (about 13.9%), it will take 7.5 more years for the aggregated FIB

size to reach the current unaggregated FIB size (as of 12/31/2011). As

aforementioned, this is a conservative and underestimated ratio since we were using

around 3,000 distinct next AS hops as outgoing interfaces. In real practices, it may

be compressed much more than this peer.

Figure 3.9(b) shows that FIFA-S is more than 8.22 times faster (108s in

total or 2µs/update) than BasicOptSize (888s in total or 16.4µs/update). The

time cost of FIFA-S is very close to the bottom line, which corresponds to the time

cost to update an unaggregated FIB. This suggests that it is feasible to deploy

FIFA-S in an operational router.

Figure 3.9(c) shows that the total number of FIB changes in FIFA-S is only

about 1.8 times of that in an unaggregated FIB, and this ratio is very stable.

Table 3.2 shows the FIB burst distribution. In both schemes, about 98% of the

FIB bursts have no more than 10 FIB changes. Moreover, FIFA-S’ largest FIB

burst (568) is less than 10% of that in BasicOptSize (6,226).

2.4 FIFA-T vs. BasicMinTime

In Figure 3.10 and Table 3.3, we compare FIFA-T with BasicMinTime and observe

the following: (a) their FIB size oscillates between the optimal size and the

configured threshold, and FIFA-T triggers only 9 fast re-aggregations during the

entire year (Figure 3.10(a)); (b) FIFA-T uses 40% less time than
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Figure 3.10: FIFA-T vs. BasicMinTime (Normal refers to no aggregation)

BasicMinTime (Figure 3.10(b)); and (c) FIFA-T’s largest FIB burst is much

smaller than that in BasicMinTime (Table 3.3).

2.5 Comparison among FIFA Algorithms and with SMALTA

Below we compare FIFA algorithms and SMALTA.

a). FIB Size: Figure 3.11(a) shows that (1) FIFA-S has the smallest FIB size; (2)

FIFA-T and SMALTA oscillate between the optimal size and the threshold, and (3)

FIFA-H tends to stay around the threshold with no re-aggregation.

b). Time Cost: Figure 3.11(b) shows that (1) SMALTA takes the most time –

237.23s, which includes 11 full tree re-aggregations (158.62s or 14.3s per
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Table 3.3: FIB Burst Distribution Comparison between FIFA-T and BasicMinTime
Burst Size Min Max Median =0 ≤1 ≤10 All

BasicMinTime 0 149,815 1 6,080,983
(11.24%)

49,611,562
(91.71%)

53,913,320
(99.66%)

54,095,973
(100%)

FIFA-T 0 69,526 1 6,150,664
(11.36%)

49,704,177
(91.88%)

53,919,736
(99.67%)

54,095,965
(100%)

Table 3.4: FIB Burst Distribution Comparison among three FIFA schemes and
SMALTA

Burst Size Min Max Median =0 ≤1 ≤10 All
FIFA-S 0 568 1 6,961,449

(12.87%)
38,645,578
(71.43%)

53,318,607
(98.56%)

54,095,965
(100%)

FIFA-T 0 69,526 1 6,150,664
(11.36%)

49,704,177
(91.88%)

53,919,736
(99.67%)

54,095,965
(100%)

FIFA-H 0 1,182 1 6,232,328
(11.52%)

48,997,278
(90.57%)

53,784,161
(99.42%)

54,095,965
(100%)

SMALTA 0 72,856 1 4,456,410
( 8.23%)

48,297,973
(89.28%)

53,873,603
(99.58%)

54,095,976
(100%)

re-aggregation); (2) FIFA-T is the fastest – 66s, which includes 9 fast tree

re-aggregations with 0.2s for each (FIFA-T is 70 times faster than SMALTA in

re-aggregation efficiency); and (3) FIFA-S (108s) and FIFA-H (100s) have similar

time cost.

c). FIB Changes: Figure 3.11(c) shows that (1) FIFA-T and FIFA-S have the

lowest and highest total number of FIB changes, respectively; (2) SMALTA has a

slightly higher number of FIB changes than FIFA-H.

d). FIB Bursts: Table 3.4 shows that (1) most route changes cause zero or one

FIB change, and about 99% of FIB bursts have less than 10 FIB changes; (2)

FIFA-T usually has small FIB bursts, but they can get very large (69,526); (3) with

FIFA-S and FIFA-H, the FIB bursts have at most 568 and 1,182 FIB changes,

respectively; and (4) SMALTA has the largest FIB burst (72,856).
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Figure 3.11: FIFA Algorithms vs. SMALTA (Normal refers to no aggregation)

2.6 Comparisons with Different Thresholds

Table 3.5 shows different performance results for different thresholds for all schemes

and obtains similar results as above. We make the following observations: (a) The

BasicMinTime update scheme is very sensitive to threshold change for its running

time. (b) The BasicMinTime update scheme always has more FIB changes than

FIFA-T for different thresholds. (c) The BasicMinTime update scheme always has

longer running time than FIFA-T for different thresholds. (d) FIFA-T has slightly

higher number of fast re-aggregations than the number of slow re-aggregations in

the BasicMinTime update scheme. (e) The running time of FIFA-H is more
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Table 3.5: Performance comparisons for different thresholds
Scheme FIB Size Time

Cost (s)
FIB Down-
loads

Heaviest
FIB Burst

Re-aggregation
times

Normal Update 378,728 52.04 54,090,000 1 0
BasicOptSize
Update

148,998 888.20 108,692,712 6,226 0

FIFA-S 148,998 108.49 98,088,041 568 0
BasicMinTime
Update

160,000 135.37 67,173,411 149,834 51 slow

FIFA-T 160,000 76.70 60,673,484 40,234 57 fast
FIFA-H 160,000 105.13 77,823,595 667 0
SMALTA 160,000 981.52 67,826,947 51,329 62 very slow
BasicMinTime
Update

180,000 93.60 61,112,373 149,815 8 slow

FIFA-T 180,000 66.34 59,999,817 69,526 9 fast
FIFA-H 180,000 100.00 64,504,256 1,182 0
SMALTA 180,000 237.23 67,003,405 76,941 11 very slow
BasicMinTime
Update

200,000 83.86 60,337,631 149,341 2 slow

FIFA-T 200,000 64.84 59,863,910 97,959 3 fast
FIFA-H 200,000 97.10 60,735,995 1,768 0
SMALTA 200,000 138.36 66,697,953 111,986 4 very slow

sensitive to threshold change than FIFA-T. (f) FIFA-H has longer running time,

higher total FIB changes, and smaller FIB burst than FIFA-T.

Also we tested different thresholds to compare the performance between FIFA

and SMALTA. As expected, FIFA schemes outperforms SMALTA on all metrics

with the exception that FIFA-S has more FIB changes because it always keeps the

FIB size optimal for each update. However, FIFA-S always runs faster than

SMALTA. For example, SMALTA needs to take 981.52s to finish all updates with

62 very slow full tree re-aggregations when the threshold is set as 160,000. However,

our FIFA-T, FIFA-H and FIFA-S schemes only need to use 76.70s, 105.13s and

108.49s, respectively, to accomplish the same task. Notice that as the threshold is

set lower, SMALTA takes much longer to do full tree re-aggregations, and its

performance thus degrades sharply. On the contrary, FIFA schemes keep very stable

running performance compared with the normal update handling.
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2.7 FIB Lookup Performance and Memory Saving Efficiency

We use the software reference design of Tree Bit Map [30] to obtain the FIB memory

access times and memory usage. The reference implementation uses an initial 8K

entries with stride 13, and following stride 4 to create a 13, 4, 4, and 4 multi-bit

trie. Each TBM node with stride 4 uses 8 bytes to store internal and external bit

map, and an additional 32 bits to store the pointer to its children and results array.

The lookup memory access times include trie lookup memory access and data access

times. For lookup memory access times, each trie node access is considered as one

memory access. The data access was postponed to the last step, and the value is

one if there is a matching prefix in the trie(otherwise the data access time is 0).

We assume the traffic has a uniform distribution pattern. Figure 3.12

demonstrates the ratio of FIB size, FIB lookup memory access times, and real FIB

memory usage after and before aggregation using 33 peers on 12/31/2011. All the

RIB sizes for these peers are more than 360,000, with minimum FIB size 364,729,

maximum 389,562, and median 381,188. For example, each point of the triangle line

represents the value of FIB memory usage after aggregation over the one before

aggregation. We make the following observations from the figure: (a)The

aggregation can mainly reduce FIB memory usage, as well as FIB lookup memory

access times. (b) The overall memory saving ratio of aggregation(triangle line,

ranging from 21.29% to 52.24% with median 49.60%) is less than the FIB entry

saving ratio (rectangle line, ranging from 13.28% to 39.57% with median 36.74%)

ranging from 8.00% to 13.96% with median 12.62%, these results are very similar

with SMALTA results [79]. (c) The overall FIB lookup memory access times (round

circle line) after aggregation do not improve much, and are slightly less than that

before aggregation. Compared with SMALTA results, ours are very different,

because SMALTA does not count the data (results array) memory access times as
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Figure 3.12: FIB Lookup Performance Improvement

well as the memory access times of non-matching prefixes in the TreeBitMap trie, as

confirmed with SMALTA authors.

3 Forwarding Correctness Verification

In order to guarantee the forwarding correctness for aggregation and update

handling, we implemented an efficient verification algorithm, in which the whole

IPv4 space will be checked with prefixes rather than individual IP addresses.

Through different settings, we can verify both strong and weak forwarding

correctness for any two routing tables. Given any two router tables with prefixes

and corresponding next-hops, the verification algorithm can not only tell if the two

routing tables have forwarding equivalence, but also output the forwarding

difference if they have different forwarding behaviors.

We noticed that Ahsan et al. proposed a similar approach to check semantic

equivalence of IP prefix tables [75]. However, their scheme needs to do

normalization and leaf pushing for two routing tables to build two complete binary

trees. Moreover, the two binary trees have to mutually check each other for the
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longest prefix using a complicated process and handle comparisons for different

scenarios. We use a more efficient and straightforward way to accomplish the same

task. Specifically speaking, one complete binary tree (each node either has no child

or two children) and two Patricia Trie structures will be used.

Firstly, one complete binary tree is built to generate covering prefixes for the

whole IP space based on the union of prefixes from the two routing tables, and each

Patricia Trie stores information of one exact routing table including prefixes and

next-hops. Secondly, the algorithm picks the prefix from each leaf node on the

complete binary tree, and uses it to lookup the corresponding next-hop on the two

Patricia Tries with the longest prefix match rule. Thirdly, it does a comparison

between the two next-hops, if they are the same for all prefixes coming from the

complete binary tree, then the two routing tables have the same forwarding

behavior, and the forwarding correctness is guaranteed. Otherwise, they have

different forwarding behaviors. The approach will always pick the longest prefix and

cover all of the IP space holes the two routing tables have. Also it will generate the

same results as the brute-force way to search the entire IP space one by one ranging

from 0.0.0.0-255.255.255.255.

We proved the correctness of the algorithm and omit it here due to space

constraint. This algorithm eliminates massive computational overhead compared

with the brute-force way. For example, the original routing table without

aggregation and incremental update handling has 378,668 entries, and the

aggregated routing table has 179,993 entries. The built binary tree has 577,253 leaf

nodes all together, thus we only need to do 577,253*2 = 1154,506 lookups on the

two Patricia Tries to obtain the final results. However, the brute-force way will use

about 4 billion IP addresses to do 4*2=8 billion lookups to achieve the same goal.

We improved the verification performance speed by 7440.355 times.
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4 Implementation

Figure 3.13: FIB Aggregation in Quagga

From the offline analysis results, we can see that FIFA is able to do handle

incremental FIB updates quickly while still maintaining very good compression

ratios. At the meeting of NANOG 56 [4] in October 2012, many network

operators/vendors, such as Brocade, Juniper, and Cisco, expressed their interest in

our FIB aggregation results. However, they also expressed their concerns regarding

the processing overhead under their realistic network environment. For example,

what is the aggregation ratio when applied to a FIB using IGP next-hops and what

is the implementation cost to incorporate the algorithm into their own router

software suite. People in general agree that the idea is great, but are uncertain

about how many benefits it can bring compared with the costs.

Also we obtained feedback from other conversations and concluded that FIB

aggregation has great commercial potential, but its effectiveness needs to be
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Figure 3.14: Real-time FIB Aggregation Architecture Design

demonstrated and verified quantitatively under realistic network environment.

Therefore, we propose to build a real-time demonstration system of FIB aggregation

as the next step towards the realization of its commercial potential. First, we

implemented FIFA algorithms in Quagga [13], a widely used open-source routing

software suite. This demonstrated the feasibility of FIFA. Second, we used a

dedicated server to build a virtual network. The server ran multiple virtual

machines, with each virtual machine configured as a router running an instance of

Quagga. These virtual routers are connected to form a virtual network. The virtual

network will have the same topology as a real network such as Internet2 and can be

reconfigured easily. Third, we received real-time routing updates from Colorado

State Universitys BGPMon project [51], and fed them into the virtual routers which

run regular routing protocols and perform FIB aggregation at the same time.

Through this system, we can monitor FIB size and CPU overhead of the virtual

routers, which demonstrate the effectiveness and performance of FIFA algorithms

under realistic network environment.
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Ideally, our FIB aggregation algorithm should be implemented on a commercial

router to test its effectiveness with the processing overhead. However, commercial

router software suites such as from Cisco [2] or Juniper [7], are not open source due

to business confidentiality and proprietary issue. Fortunately, Quagga is a widely

used open-source routing software suite and architecturally similar to many

proprietary router implementations. A system installed with Quagga acts as and

has all the TCP/IP functionalities of a dedicated router. A machine with Quagga

can exchange routing information with other machines with Quagga or other normal

routers using routing protocols, such as BGP, OSPF and so forth.

Quagga [13] was made from a collection of several daemons that work together to

build the routing table, which is different from traditional routing softwares which

use one process program to provide all routing protocol functionalities. More

specifically, in Quagga, all routing protocols such as OSPF, RIB, BGP, and the like,

are implemented as daemons and these daemons exchange routing information with

the Zebra daemon, which is responsible for maintaining and communicating with

the kernel table, namely, FIB. Actually, the Zebra daemon uses a netlink socket to

communicate with the kernel table. If there is a new route or a route needs to be

updated, then the function rib install kernel() will be called. Otherwise, if there is a

withdrawal message, then the function rib uninstall kernel() will be called. In our

design, we first intercept the update messages from Zebra and feed these messages

to our FIB aggregation module. Second, our FIB aggregation module handles the

updates using FIFA algorithms and output the necessary messages to Zebra. At this

point, Zebra calls the two functions for kernel table updates or withdrawals

according to the returned message types. Figure 3.13 illustrates the FIB aggregation

module in Quagga.

In order to show the effectiveness of our FIB aggregation, we utilized real-time

BGP routing information. Different from other existing BGP monitoring software
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such as Zebra and Quagga, BGP Monitoring System (BGPMon) [51] was designed

to monitor BGP updates and routing tables from BGP routers in real time.

Therefore, we can take advantage of BGPMon to access real-time BGP data.

However, BGPMon only provides live BGP data stream in XML format and cannot

serve as a BGP speaker to announce the routes to other BGP peers. This fact

introduces challenges in applying real-time BGP updates to a BGP table

implemented in Quagga. Therefore, we have to find or implement a customized

BGP speaker which can read data from the BGPMon XML stream, convert the

data to BGP messages, and announce the BGP messages to its peers. Figure 3.14

illustrates the real-time FIB aggregation demonstration system architectural design.

After careful investigation, we found BGPSimple [1], a simple customized BGP

speaker which was implemented in Perl and can set up BGP adjacency with a BGP

peer. BGPSimple is also able to monitor messages and updates received from the

peer and send updates from a predefined set of NLRIs/attributes. In our

experiment, we can feed the converted BGP messages from BGPMon XML stream

to BGPSimple. However, we have made some modifications to BGPSimple. First,

the original BGPSimple reads all predefined BGP messages from a local file and we

changed it to read data from a pipeline. Also, the BGPSimple does not implement

BGP withdrawal functionality and we adapted it to work for BGP withdrawal

messages.

The input format for BGPSimple is TABLE DUMP V2 format [16], this means

we have to convert the BGP XML messages to individual TABLE DUMP V2

messages. Thanks to the BGPMon team, they have developed some tools to convert

XML messages to TABLE DUMP V2 messages. However, their tool does not

convert all BGP message attributes so we added the necessary ones for our use and

we are now able to obtain real-time TABLE DUMP V2 messages. After feeding

them into the customized BGPSimple speaker, we are able to inject and withdraw
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routes from the routing table maintained by Quagga.

Finally, after connecting all the required components together, we ran a few

Quagga instances with aggregation functionalities and others which did not have the

aggregation functionalities. Through comparing their aggregation results, we

demonstrated that our FIB aggregation schemes could be hooked up to existing

router operating systems with small overhead.
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Chapter 4

FIB Caching

1 Design Overview

Figure 4.1 illustrates a router architecture with the proposed FIB caching scheme.

The control plane contains the RIB, while the Slow FIB and Cache reside in the

data plane. The Slow FIB memory contains a copy of the full forwarding table with

all prefix entries and next-hop information. The Cache contains only the most

popular prefixes driven by data traffic. We place the Slow FIB in the data plane (in

the line card) rather than the control plane (in the route processor) so that a cache

miss/replacement can be quickly handled. The Slow FIB handles four events A, W ,

M and O representing Route Announcement, Route Withdrawal, Cache Miss and

Cache Replacement, respectively. The Route Announcement and Route Withdrawal

events are generated as a result of RIB updates, which need to be propagated to the

FIB. Cache Miss and Cache Replacement are events from the cache. The former

happens when an incoming packet does not have a matching prefix in the Cache.

The latter occurs when the Cache is full. In the remainder of this paper, full FIB or

FIB refers to the Slow FIB, and operations occur in the Slow FIB unless the

location is explicitly stated. Before discussing the operations that take place in the

Slow FIB and Cache, we explain the cache-hiding problem and outline our solution

for handling it in the following section.
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Figure 4.1: Design Architecture for FIB Caching

1.1 Cache-Hiding Problem

FIB caching is different from traditional caching mechanisms – even if a packet has

a matching prefix in the cache, it may not be the correct entry for forwarding the

packet if there is a longer matching prefix in the full FIB. Below we use a simple

example to illustrate this cache-hiding problem. For ease of illustration, we use 8-bit

addresses and binary representations of addresses in our examples.

Suppose a FIB table contains three prefixes as shown in Table 4.1(a), and the

corresponding cache is empty (not shown). Assume a data packet destined to

10011000 arrives at a router. The router then looks for the longest prefix match in

the cache, which has no matching entry (the cache is empty). The router then looks

up the full FIB in slow memory and loads the matching entry 1001/4 with the

next-hop 2 to the cache (Table 4.1(b)). Now, suppose another data packet destined

to 10010001 arrives; the router will first check the cache to see if there is a prefix

matching the destination IP address. It finds the matching prefix 1001/4 in the

cache and thereby sends the packet to next-hop 2. This is, however, incorrect

because the real matching prefix for IP address 10010001 should be the more

specific prefix 100100/6 with the next-hop 1. In other words, the cached prefix
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Table 4.1: FIB entries and Cache Entries (The cache is initially empty and it receives
one entry upon the first cache miss.)

(a) FIB Entries

Label Prefix Next Hop
A 10/2 4
B 1001/4 2
C 100100/6 1

(b) Cache Entries

Label Prefix Next Hop
B 1001/4 2

1001/4 “hides” the more specific prefix 100100/6 in the full FIB.

1.2 Our Solution to Cache-Hiding

To illustrate our solution, we use Patricia Tries (i.e., Radix Tree) [58] to store the

slow FIB and cached prefixes. A Patricia Trie is a space-optimized tree where the

child prefix can be longer than the parent prefix by more than one. It is commonly

used to store routing tables in a compact manner. Note, however, that our solution

can be applied to any tree based structures.

We cache the most specific non-overlapping prefixes that do not hide any longer

prefixes in the full FIB to avoid the cache hiding problem. In Table 4.1(a), C’s

address space is covered by B, so they are not non-overlapping prefixes (see

Figure 4.2(a)). As such, we cannot simply load the prefix B (1001/4) into the cache,

because it will cause a problem for the next packet destined to the address

10010000. Instead, we need to generate a leaf prefix D (10011/5) to represent the

address space under B that does not overlap with C (Figure 4.2(a)) and put it into

the cache (Figure 4.2(b)). D (10011/5) has the next-hop 2, same as its covering

prefix B (1001/4). The next packet destined to 10010000 causes a cache miss again

and correctly finds a matching prefix C (100100/6) with the next-hop 1 in the slow

FIB (Figure 4.2(c)), which is then loaded into the cache (Figure 4.2(d)). We call our

approach FIB Caching using Minimal Non-overlapping Prefixes because we select or

generate only the shortest leaf prefixes needed by the data traffic to minimize the
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(a) Generated prefix D (b) Cached prefix D (c) Selected prefix C

(d) Cached prefix C

Figure 4.2: Selection or generation of a leaf prefix

number of cached prefixes.

1.3 Slow FIB Operations

Upon receiving an announcement or withdrawal event from the RIB, the slow FIB

updates the corresponding entry and updates the cache if necessary. The specific

operations to update the cache are described in Section 2.5 and 2.6.

Upon a cache miss event, the FIB returns to the cache a leaf prefix that matches

the data packet that caused the cache miss. A new leaf prefix may need to be

dynamically generated if the existing leaf prefixes in the FIB do not match the data

packet (Section 2.3). Upon receiving a cache replacement message, the FIB will
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either delete or update an entry according to different scenarios which will be

discussed in Section 2.3 and 2.4 in detail.

1.4 Cache Operations

Cache operations include cache initialization, cache-miss traffic handling, and cache

replacement.

Cache Initialization. Handling the initial traffic is a major concern for

deploying cache mechanisms [83]. To address this issue effectively, we fill up the

initial empty cache with a set of leaf prefixes from the FIB that cover the most IP

addresses. More specifically, breadth-first search is employed to find the shortest

leaf prefixes from the slow FIB Trie (up to the cache size). This way we achieve a

high hit ratio while avoiding the cache-hiding problem.

Cache Miss Traffic Handling. Packets experiencing cache misses can be

stored in a separate queue and forwarded once the prefixes from slow FIB memory

are installed into the cache.

Cache Replacement. We use the LRU (Least Recently Used) replacement

algorithm when a new prefix needs to be installed into a full cache. Our decision is

based on the study conducted by Kim et al. [46], which shows that the LRU

algorithm performs almost as well as the optimal cache replacement algorithm.

2 Design Description

2.1 Workflow for Handling Data Traffic

Figure 4.3 shows how our cache handles an incoming packet. In the ‘Init’ or

initialization phase, we load all FIB entries into the slow FIB . Subsequently, we fill

up the entire cache with the leaf prefixes that have the shortest length. For any
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Figure 4.3: Workflow for Handling Incoming Data Traffic (the dotted line means
that during Cache Replacement, the slow FIB needs to be updated but the flow of
operation does not continue beyond that point.)

incoming packet, a longest prefix match is performed on the Patricia Trie of the

cache. In the case of a prefix match, the packet is forwarded accordingly and the

prefix’s status becomes the “latest accessed” to facilitate the cache replacement

policy later.

In the case of a cache miss, a lookup is performed in the slow FIB and the packet

is discarded if the lookup returns no matching prefix. On the other hand, if the

longest matching prefix is a leaf node in the Patricia Trie, it is pushed to the cache.

Otherwise, i.e., the prefix is an internal node, a more specific prefix is created and

pushed to the cache (Section 3.3). The packet is then forwarded to the

corresponding next-hop. When pushing any prefix to a full cache, the cache

replacement mechanism removes the least recently used prefix from the cache and

installs the new one.

60



2.2 Data Structure

Each node in the Patricia Trie of the slow FIB is one of four types, which may

change upon an update. These types help us keep the cache, slow FIB and the RIB

consistent with each other. The four types are as follows (note that this

classification does not apply to the cache): (a) CACHE ONLY : a leaf node that is

created on demand as a result of the cache miss event; (b) FIB ONLY : a node

derived from the original routing table or RIB update, but the prefix is not in the

cache; (c) FIB CACHE: a leaf node derived from the routing table and the prefix

is in the cache; and (d) GLUE NODE: any other auxiliary node except the above

three types.

2.3 Handling Cache Misses

In the case of a cache miss, we perform a longest prefix matching in the slow FIB

and may encounter the following three cases: (1) if there is no matching node, then

drop the packet; (2) if there is a matching leaf node with the type FIB ONLY ,

then set the type to FIB CACHE, and install the prefix with the corresponding

next-hop into the cache; and (3) if there is a matching internal node with the type

FIB ONLY , generate a CACHE ONLY node as described below and install it

into the cache.

Suppose PL and PR are the left and right child of a node P , respectively, and X

is the destination IP address. We generate a CACHE ONLY node with the same

next-hop as its parent on the trie and a prefix containing the first l + 1 bits of X,

where l is defined as follows: (a) if PL is NULL, then compare PR with X to get the

common portion Y with length l; (b) if PR is NULL, then compare PL with X to get

the common portion Y with length l; and (c) if PL and PR are not NULL, compare

X with PL and PR separately, and get the common portion YL and YR, then find the
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longer prefix Y with length l from YL and YR.

Now we provide a detailed example of Case c mentioned above. In Figure 4.4(a),

the matching node B with prefix 1001/4 has both a left child (C) and a right child

(D). So YL = (X & C) = (10010100 & 100100/6) = 10010/5 and YR = (X & D) =

(10010100 & 10011/5) = 1001/4. Therefore, we pick the longer one, Y=YL=10010/5

and l=5. The prefix of the imaginary parent or glue node (E) is 10010/5 as shown

in Figure 4.4(b) and the new leaf node (F ) is X/(l+1)=100101/6 as shown in

Figure 4.4(c). F ’s node type is CACHE ONLY , as it is generated on demand and

will be installed into the cache. Figure 4.4(d) and 4.4(e) show the cache entries

before and after the update.

2.4 Handling Cache Replacement

When the cache becomes full, some prefixes in the FIB cache need to be evicted

according to the LRU replacement strategy. We first remove the prefix from the

cache and then update the slow FIB. Two cases may happen:

(1) If the corresponding node type is CACHE ONLY , it means that the node

was created on-demand and there would be no such entry in the RIB, so we can

remove it directly.

(2) If the corresponding node type is FIB CACHE, it means that this node was

originally from the RIB or RIB update, so we cannot remove it completely from the

FIB. Therefore, we change the type to FIB ONLY .

Figure 4.5 shows a Cache Replacement event on prefix 100100/6 (the

FIB CACHE case). Figure 4.5(a) and 4.5(b) show the cache operations.

Figure 4.5(c) and 4.5(d) show the slow FIB operations.
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2.5 Handling Route Announcements

In this section and Section 2.6, we discuss the handling of route announcements and

withdrawals, respectively (the complete workflow for both is depicted in Figure 4.6).

A route announcement may add a new prefix or update an existing entry in the slow

FIB. Below we describe each scenario in detail.

When adding a new node to the FIB trie, we need to handle the following two

cases.

1. The new node is added as a leaf node: if its direct parent node type is

CACHE ONLY (i.e., the prefix of this node was generated on demand and is

in the cache), then we remove the parent node from both the FIB and the

cache, in order to avoid the cache-hiding problem. If the direct parent of the

new node is a FIB ONLY , nothing needs to be done, because the parent

node must not be in the cache. If the direct parent of the new node is

FIB CACHE (i.e., the prefix attached to the parent node is in the cache,

and needs to be removed from there), then we set the parent node type as

FIB ONLY and remove the prefix from the cache.

2. The new node is added as an internal node: all the CACHE ONLY nodes

whose next-hops are derived from this node should have the same next-hop as

this one, so we update these nodes with the new next-hop and update the

cache accordingly to synchronize the next-hop information. We do not update

the FIB CACHE nodes because their next-hops are directly from the

corresponding real prefixes in the RIB, not derived from their ancestors.

Similarly, we need to handle two cases when updating an existing FIB entry to

change its next hop value (see below).

1. The existing node is a leaf node: if the node type is FIB ONLY (i.e., the

prefix is not in the cache), we simply update it with the new next-hop.
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Otherwise, we update it with the new next-hop, set its type as FIB CACHE,

and update its next-hop in the cache accordingly.

2. The existing node is an internal node: we update all the CACHE ONLY

nodes whose next-hops are derived from this node with the new next-hop, and

update the cache accordingly.

Figure 4.7 depicts an Announcement example, in which an update with the

next-hop 3 comes for an existing node (E) with the prefix 10010/5. As the update

is for an internal node, the node type will be changed to FIB ONLY . Moreover,

we update those CACHE ONLY nodes whose next-hops are derived from this

node, in order to keep the forwarding behavior correct. For example, in

Figure 4.7(a), node F with the prefix 100101/6 is a CACHE ONLY node that

inherited its next-hop from E, so its next-hop is changed to 3 in Figure 4.7(b), and

we update the corresponding entry in the cache as shown in Figure 4.7(c) and

Figure 4.7(d). As a subsequent, the data packet destined to 100101/6 will be

forwarded correctly to the new next-hop 3.

2.6 Handling Route Withdrawals

For a route withdrawal, we need to process it only if it matches an existing node in

the FIB, since the corresponding prefix is supposed to be in the FIB in order to be

“withdrawn”. The matching node can be either a leaf node or an internal node, and

we process it as follows. (1) Leaf node: If the node type is FIB CACHE, we delete

it from both the FIB and the cache. If the node type is FIB ONLY , we delete it

from the FIB only, since it is not in the cache.

(2) Internal node: we delete its next-hop and change the node type to

GLUE NODE (it is still useful in the FIB trie to connect the other nodes). Since

our algorithm puts only leaf nodes in the cache, this internal node cannot be in the
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cache and therefore no cache update is needed. Then, we update the next-hop field

of those CACHE ONLY nodes whose next-hops are derived from this node.

Finally, we update the cache accordingly.

Figure 4.8 shows an example of removing the prefix 1001/4 (the internal node

case). First, the type of node B (1001/4) is set to GLUE NODE. The next step is

to update the affected CACHE ONLY nodes. In this example, node D (10011/5)

is the only affected CACHE ONLY node. It is updated with the next-hop (4) of

its nearest ancestor A as shown in Figure 4.8(b). Subsequently, the cache entry D′

with prefix 10011/5 is updated with the new next-hop 4 as shown in Figure 4.8(d).

2.7 Pseudo Code

Algorithm 9 contains the main functions to perform FIB and cache update upon

any update message, including cache miss and age-out handling. There are four

types of updates: A, W, M, and O for Announcement, Withdrawal, Cache Miss and

Age Out, respectively. They are handled separately through different type values.

Message contains both prefix and next-hop information if the update type is an

announcement; otherwise, it only contains prefix information if the update type is

withdrawal or an age-out. The function LookUp, given a prefix, conducts lookup

operations according to the longest prefix match rule (LPM), and returns the node

if found, otherwise, it returns NULL. The function MakeNode adds a node with

type FIB ONLY to a trie given a prefix and next-hop. Given the corresponding

prefix from a trie, the function RemoveNode removes a node. The function

UpdateCache updates the corresponding node value in the cache given a prefix and

next-hop information. The function UpdateSubtree recursively goes through a

subtree of the given node in the slow FIB trie to find all nodes with type

CACHE ONLY , and updates the cache counterpart with the given next-hop value.

Notice that the function CacheMissUpdate uses an IP address as one of its
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arguments. It is the destination IP address for the data packet on which the cache

miss occurs. The function needs to use the address to generate on-demand the leaf

node with type CACHE ONLY in the slow FIB memory and install it into the

cache. The new prefix generation process has been described in detail in Section 2.3.

Procedure 9 UPDATE(FIB,Cache,Message, Type)

1: if Type = A(Announcement) then
2: AnnouncementUpdate(FIB,Cache,Message)
3: else if Type = W (Withdrawal) then
4: WithdrawalUpdate(FIB,Cache,Message)
5: else if Type = M(CacheMiss) then
6: CacheMissUpdate(FIB,Cache, IPAddress)
7: else if Type = O(AgeOut) then
8: AgeOutUpdate(FIB,Cache,Message)
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Procedure 10 AnnouncementUpdate(FIB,Cache,Message)

1: P ←Message.prefix
2: N ←Message.next− hop
3: node← LookUp(FIB, P )
4: if node = NULL then
5: node←MakeNode(FIB, P,N)
6: if node.l = NULL&node.r = NULL then
7: if node.parent.type = CACHE ONLY then
8: RemoveNode(FIB, node.parent.prefix)
9: RemoveNode(Cache, node.parent.prefix)

10: else if node.parent.type = FIB CACHE then
11: node.parent.type← FIB ONLY
12: RemoveNode(Cache, node.parent.prefix)
13: else
14: UpdateSubtree(FIB,Cache, P,N)
15: else
16: node.next− hop← N
17: if node.l = NULL&node.r = NULL then
18: if node.type = CACHE ONLY then
19: node.type← FIB CACHE
20: UpdateCache(Cache, P,N)
21: else if node.parent.type = FIB CACHE then
22: UpdateCache(Cache, P,N)
23: else
24: node.type← FIB ONLY
25: UpdateSubtree(FIB,Cache, P,N)
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Procedure 11 WithdrawalUpdate(FIB,Cache,Message)

1: node← LookUp(FIB,Message.prefix)
2: if node! = NULL then
3: ancestor ← getAncestor(node)
4: if node.l = NULL&node.r = NULL then
5: if node.type = FIB CACHE then
6: node.type← CACHE ONLY
7: node.next− hop← ancestor.next− hop
8: P ← node.prefix
9: N ← node.next− hop

10: UpdateCache(Cache, P,N)
11: else if node.type = FIB ONLY then
12: RemoveNode(FIB, Message.prefix)
13: else
14: P ← node.prefix
15: N ← ancestor.next− hop
16: UpdateSubtree(FIB,Cache, P,N)
17: RemoveNode(FIB,Message.prefix)

Procedure 12 AgeOutUpdate(FIB,Cache,Message)

1: RemoveNode(Cache,Message.prefix)
2: node = LookUp(FIB,Message.prefix)
3: if node 6= NULL then
4: if node.type = CACHE ONLY then
5: RemoveNode(FIB, node.prefix)
6: else if node.type = FIB CACHE then
7: node.type = FIB ONLY
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Procedure 13 CacheMissUpdate(FIB,Cache, IPAddress)

1: node = LookUp(FIB, IPAddress)
2: if node 6= NULL then
3: P ← node.prefix
4: N ← node.next− hop
5: if node.l = NULL&node.r = NULL then
6: node.type← FIB CACHE
7: updateCache(Cache, P,N)
8: else
9: if node.l = NULL then

10: C ← P ∧ node.r
11: else if node.r = NULL then
12: C ← P ∧ node.l
13: else
14: C1 ← IPAddress ∧ node.l
15: C2 ← IPAddress ∧ node.r
16: C ← (C1.length > C2.length)?C1 : C2

17: Px = IPAddress/C.length
18: nd← GenerateLeafNode(FIB, Px)
19: nd.type = CACHE ONLY
20: updateCache(Cache, nd.prefix,N)
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(a) FIB before update (b) FIB during update

(c) FIB after update (d) Cache before update

(e) Cache after update

Figure 4.4: Example of Cache Miss Update. There are three fields for each node
from left to right: prefix, next-hop and node type (F: FIB ONLY, H: FIB CACHE,
C: CACHE ONLY and G: GLUE NODE) in the FIB trie. A bold font denotes a field
updated in the current step. A solid rectangle denotes a node with a prefix from the
original routing table or an update. A dashed rectangle denotes a generated node
due to cache miss update. A grey node denotes a node in the cache.
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(a) Cache before update (b) Cache after update

(c) FIB before update (d) FIB after update

Figure 4.5: Example of Cache Replacement Update
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Figure 4.6: Workflow for Handling Announcements and Withdrawals (loopbacks to
the ‘Listen’ state are not shown.)
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(a) FIB before update (b) FIB after update

(c) Cache before update (d) Cache after update

Figure 4.7: Example of Announcement Update
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(a) FIB before update (b) FIB after update

(c) Cache before update (d) Cache after update

Figure 4.8: Example of Withdrawal Update
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3 Evaluation

To evaluate our scheme, we used a 24-hour traffic trace of more than 4.1 billion

packets from a regional ISP collected from 12/16/2011 to 12/17/2011. We obtained

routing tables and updates of 30 different routers from the route-views2 data

archive [18] on 12/16/2011 and 12/17/2011. After the initialization of the slow FIB

and cache, we run our caching scheme with the data and updates. The updates and

data are also passed through an emulated router without the cache to verify the

forwarding correctness of our scheme. Our results are similar for all the 30 routers,

so we present the results from only one of them in most cases.

3.1 Traffic Distribution

Figure 4.9 shows the traffic distribution over the prefixes from the forwarding table

of one of the thirty routers. The x-axis represents the popular prefix rank, and the

y-axis represents the cumulative percentage of the IP packets covered by the

popular prefixes. We make two main observations: (a) the top 10, 100, 1K, 10K,

20K popular prefixes cover about 42.79%, 79.18%, 93.81%, 99.51%, and 99.87%,

respectively, of the traffic, which supports a common finding from several other

studies [37, 46,67,81], i.e., a very small number of popular prefixes contribute to

most of the traffic; and (b) most of the entries in the global routing tables are not in

use during this period. In fact, more than 70.18% of the FIB entries were not used

at all, which further suggests the feasibility of introducing an efficient caching

mechanism for the routers.

3.2 Hit Ratio

The hit ratio of a cache is the success rate of finding a matching entry in the cache.

It is considered one of the most important metrics for evaluating a caching scheme.
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Figure 4.9: Traffic Distribution On Non-overlapping Prefixes

For a given cache size, the higher the hit ratio is, the better the cache scheme would

be. In our experiments, we obtain the hit ratios for 30 routers with different cache

sizes ranging from 1K to 20K prefixes. Figure 4.10(a) shows different hit ratios for

one router with five different cache sizes over the 24-hour period. We observe that

on average the hit ratio is 96.83%, 98.52%, 99.25%, 99.84%, 99.95% for the cache

size of 1K, 2K, 3.5K, 10K and 20K, respectively. The dips around 870 million data

packets are due to the traffic pattern around 7:30am, which has the lowest traffic

rate but a similar number of distinct destination addresses. This leads to a high

miss ratio, as we are dividing roughly the same number of cache misses with a much

lower number of packets. Furthermore, we found that the hit ratio tends to be more

stable when cache size increases. Other routers have very similar results to this one.

We also compared our scheme with different cache-hiding approaches. The most

straightforward one is the Atomic Block approach, which loads not only a matching

prefix into the cache, but also finds all the sub-prefixes of the matching prefix in the

FIB and loads them into the cache, therefore, subsequent packets will not encounter

the cache-hiding problem. Another method Uni-class divides up a matching prefix
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Figure 4.10: Different Hit Ratios

into multiple fixed-length (24 bits) sub-prefixes on the fly and installs the one

matching the destination address into the cache [46]. This approach assumes that

24 is the longest prefix length in the FIB, therefore, the cached /24 prefixes will not

hide more specific prefixes in the FIB. This assumption is usually true as operators

filter out prefixes longer than /24 to prevent route leaks. Figure 4.10(b) compares

the hit ratios for the different caching approaches with a fixed cache size of 20K.

Our approach has a 99.95% hit ratio on average. The Atomic Block approach has a

99.62% hit ratio and Uni-class approach has a 97.19% hit ratio, on average.

Although the hit ratio of the Atomic Block approach is close to our approach, it

takes much more time to maintain the cache as shown in Section 3.5. The difference
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between the hit ratios of the Atomic Block approach and our scheme is due to the

fact that the Atomic Block approach fills the cache with all the sub-prefixes of a

matching prefixes, which may include many prefixes that will not match subsequent

packets. On the other hand, our scheme creates only the most specific prefix that

matches an arriving packet’s destination address and thus, for a given cache size, our

scheme covers more useful prefixes than the Atomic Block approach. The low hit

ratio of the Uni-class approach is due to its fixed long prefix length (24). Given the

same cache size, it can cover much fewer useful addresses than the other approaches.

Moreover, we compared our approach with three techniques proposed by Liu [50],

CPTE, NPE and PPTE, using a static routing table (the author did not specify

update handling algorithms). NPE does not increase the FIB size and has a 99.16%

hit ratio on average. PPTE increases the FIB size by 13,384 and has a 99.48% hit

ratio on average. CPTE expands the FIB trie into a complete binary tree and

installs disjoint prefixes into the cache, thus it has the same hit ratio as our scheme

(not shown in the figure), but it significantly increases the FIB size by more than

two times from 371,734 to 1,131,635 prefixes. In our scheme, we only increase the

full FIB size by 6,288 and reach a hit ratio of 99.95% on average. Finally, the

RRC-ME algorithm proposed by Akhbarizadeh et al. [19] uses a binary tree (with

no expansion) and only installs or generates a disjoint prefix into the cache on the

fly, and it will have the same hit ratio as our scheme (not shown in the figure), but

our update handling algorithm is much more efficient (Section 3.4).

3.3 Initial Traffic Handling

One of the biggest concerns for ISPs is how to handle the initial traffic when the

cache starts with an empty set [83]. Instead of a cold start, we fill the initial empty

cache completely with the shortest non-overlapping prefixes if there is no history of

popular prefixes available. Figure 4.10(c) shows the initial traffic hit ratios. We used
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the first 1 million packets to do the experiment. The top line represents the hit ratio

with cache initialization and the lower line represents the one without cache

initialization. After the first 100 packets, the initialized cache has a hit ratio of 85%

and the un-initialized one has a hit ratio of only 65%. Their hit ratios are very close

to each other once 100,000 packets are forwarded.

3.4 Routing Update Handling Performance

Figure 4.11 shows the routing update handling performance. The top curve

represents the total number of RIB updates. The middle curve represents the total

number of updates (8,348) pushed to cache including next-hop changes (8,251) and

prefix deletions, while the bottom curve shows the number of prefix deletions (97),

which is only 3.18% of the total number of RIB updates. Since very few updates are

pushed to the cache, the updates have minimal influence on the cache hit ratio. On

the other hand, in the RRC-ME approach [19], each updated prefix needs to be

converted into two IP addresses first which are then looked up in the cache to

discover the matching prefix. In the process, the cache will be interrupted twice if

there is no matching prefix; otherwise, it gets three interruptions. Specifically, in the

period of 24 hours, the previous work needs at least 523,754 (261,877 × 2) lookups

of the cache as compared to our scheme that needs only 8,251 lookups.

3.5 Time Cost

Figure 4.12 compares the time cost to process all of the routing updates and data of

the three approaches. We made two main observations: (a) the Atomic Block

approach takes about four times longer to finish the same task than the other two

approaches; (b) our approach takes almost the same time as the Uni-class approach,

but our approach has a much higher hit ratio as shown previously.
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4 FIB Caching Implementation Using OpenFlow

Implementing FIB caching requires a way to define and control the forwarding table

of a switch; OpenFlow provides an easy and powerful system for research and

experimentation in programmable, logic-based switches. As many switches have

similar methods for handling packets, the OpenFlow protocol allows us to program

switches which implement the OpenFlow interface and make it possible to specify

their forwarding table rules [56]. An OpenFlow switch maintains a flow table with

corresponding actions for each flow entry and processes any incoming, and matching

packets based on those actions. The OpenFlow switch communicates with an

external controller that can install, remove, and modify flows from the switch’s flow

table. The external controller allows us to define desired behaviors for the switch

without explicitly accessing or programming the switch.

The initial setup of our experiment’s environment stays close to the OpenFlow

Tutorial, which provides a step-by-step guide through the process of emulating an

OpenFlow style network [10]. We created a virtual machine (VM) to host a

simulation of a network topology and installed the VM image according to the

tutorial, which provides a previously created virtual machine disc image with much

of the software required for OpenFlow experimentation. The disc image included

Mininet [8], the software used for creating and managing the testbed virtual

network. Mininet is able to simulate multiple hosts and OpenFlow switches, as well

as allow OpenFlow protocol communication with a remote controller. A packet

inspector, Wireshark, and an OpenFlow packet dissector were also included with the

provided disc image [17]. Wireshark gives us a way to view and analyze OpenFlow

protocol messages for information and debugging purposes. Both our OpenFlow

switch and our OpenFlow controller reside on the same server; the switch and hosts

are simulated in Mininet, which runs on the virtual machine, and the controller runs
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on the server natively.

The logic required for FIB caching must be implemented on the external

controller; the controller handles any necessary decisions and modifies the switch’s

flow table accordingly. Our controller utilizes POX as its framework for interfacing

with the OpenFlow switch; POX [12] is an SDN (Software Defined Networking)

controller platform written in Python [12]. The FIB caching algorithm on which the

controller relies is written in C and so the Python-based controller requires a

method for interfacing with the C code. We use Boost.Python, a C++ library which

gives Python the ability to interact with C++ classes and functions, to interface

with our FIB caching code. By wrapping the necessary C code in a C++ interface,

the controller may use the defined interface to access the caching algorithm through

Python. The controller itself is programmed to use the FIB caching algorithm to

determine which flows to install, remove, or modify on the OpenFlow switch.

The C++ interface provides the OpenFlow controller with five functions for

interacting with the FIB caching C code. (1) Start Up: uses a text file containing

the full RIB to build the FIB and RIB patricia tries. (2) Cache Initialization: uses

the previously built FIB to create a list of prefixes that cover the most IP addresses;

the length of the list is provided as an argument. (3) Get Initialized Cache: returns

the initialized cache list. (4) Update: passes a route announcement to the FIB and

performs the necessary operations. (5) Generate Prefix: performs a lookup in the

FIB for the longest prefix which matches the packet provided as an argument. The

OpenFlow controller handles communication with the OpenFlow switch and uses

the C++ interface to make decisions on how it will interact with the flow table.

When the controller first connects with the switch, the FIB and RIB patricia tries

are built and an initialized cache is generated. After the initialized cache has been

created, the controller installs a flow for each prefix; the flow defines its match rule

so that any incoming packets which hit the initialized prefix are forwarded
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according to that flow’s actions. The controller also maintains an update file which

contains the announcement and withdrawal of routes; the controller passes these

updates to the interface for processing. On the event that a packet misses the

switch’s flow table, the switch notifies the controller by sending the packet which

caused the miss. The controller uses the packet’s network destination as an

argument for the interface’s generate prefix function and installs a flow using the

prefix returned by the interface.

The controller maintains a count of the number of flows installed in the switch’s

flow table and also defines a limit to the number of active flows allowed. When a

packet misses the switch’s flow table and the flow table is full, the controller must

choose the least useful flow to remove. Our controller is programmed with two

different algorithms that it may utilize to perform a cache replacement: an LFU

(Least Frequently Used) algorithm which inspects the packet count of the each flow

in the switch’s flow table and removes the flow with the lowest packet count and an

LRU (Least Recently Used) algorithm which removes flows based on the time since

a packet last matched the flow.

Our LFU algorithm depends on the statistics of the flows in the switch’s flow

table and so in the event of a full cache, the controller must request the full flow

table from the switch. Once the controller has received the flow stats from the

switch, it may request that the flow with the lowest packet count be removed from

the flow table. Since multiple packets may miss and request flow stats from the

switch before the controller has received a flow stat reply and chosen a suitable flow

to remove, duplicate copies of the flow table may be returned to the controller. As

the controller has no way to determine that two stat replies are the same, the

controller will request the removal of the same flow twice. When the controller

requests the removal of a flow from the switch’s flow table, it must keep a list of

flows queued for removal. The controller sorts the returned flows by packet count
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and searches for the flow under consideration, which is the head of the sorted list

initially, in the removal queue. If the flow under consideration is not found in the

removal queue, the controller requests for the flow to be removed and the flow is

added to the removal queue. If the flow under consideration is found to be in the

removal queue, the next flow in the sorted list is considered until a suitable flow is

found. When the flow is finally removed from the flow table, the switch sends a

notification informing the controller the flow has been removed, and the controller

may then remove the flow from the removal queue.

Our LRU algorithm depends on the idle time of each flow in the flow table and

thus is not handled directly by the controller. The controller installs flows with a

maximum idle time, the time a flow can be idle before it is removed from the flow

table, and the switch handles and removes any flows that exceed their idle time.

Since the controller is keeping a count of the number of flows in the flow table, it

can adjust the idle time before installing new flows and modify the idle time of

currently installed flows based on the installed flow count. As OpenFlow does not

provide a means besides idle flow timeout for cache replacement, the implementation

of our desired algorithms was difficult. While a switch does maintain the time a flow

has been idle, the controller does not have access to this information.

An LRU algorithm where the controller removes a single flow that has been used

least recently is therefore impossible. The controller is also unable to request

statistics or a single flow based on a specified flow variable. Our LFU algorithm

must request the entire flow table and sort the returned flows to choose a single flow

with the lowest packet count. It is also necessary for the controller to continue

installing flows even when the flow table is full because of the delay between a

statistics request and a statistics reply. In the case of a switch with 20K flows

installed in the flow table, a reply from the switch takes around five seconds; an

impractical time to wait because packets that have missed the flow table are still
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being sent to the controller to be processed. The usefulness of OpenFlow for

research and experimentation would be greatly increased with the inclusion of

switch-defined or controller-accessible cache replacement methods. We are doing

further experiments now.
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Chapter 5

Conclusion

FIB aggregation is a promising direction in controlling the growing FIB size. We

have proposed FIFA, a suite of three FIB aggregation algorithms with significant

performance improvement over existing algorithms in terms of time cost, total

number of FIB changes and FIB burst size. For our next step, we plan to

investigate how to automatically switch among the algorithms based on a set of

constraints, e.g., memory size, aggregated FIB size and maximum FIB burst size.

We presented an effective caching scheme to mitigate the problems caused by the

rapidly increasing size of the global forwarding table. This scheme allows ISPs to

keep their operational cost low by storing a fraction of the full FIB in the expensive

fast memory, while storing the full FIB in slow memory. Our results based on real

data show that we can use only 3.5K prefixes to reach a hit ratio of 99.25% and 20K

prefixes to reach a hit ratio of 99.95%. Moreover, we fill the initial empty cache with

the shortest non-overlapping prefixes and obtain a high hit ratio for the initial

traffic. Finally, our scheme includes a set of efficient algorithms to process both FIB

and cache update events, while preventing the cache-hiding problem. These results

are specifically for a regional network, we plan to try more datasets to justify our

conclusion.
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Appendix A

Proofs of Algorithms

1 Correctness Proof of Improved ORTC Imple-

mentation

1.1 Definitions

ORTC algorithm uses a binary tree B to implement the aggregation algorithm and

FIFA-S uses a Paricia Trie T to improve ORTC. Each node x (or prefix) on the

binary tree or Patricia Trie contains the following fields for aggregation computation.

Ot(x): the original next-hop of x for a trie or tree t.

Mt(x): the next-hop set of x for a trie or tree t.

St(x): the selected next-hop of x for a trie or tree t.

Len(x): the length of prefix x for a trie or tree t.

In ORTC, an operation was defined to obtain merged next-hops: X#Y , if the

next-hop set of X has a common element(s) with the next-hop set of Y , then do

intersection operation; otherwise, do union operation.

At beginning, for the binary tree B and Patricia Trie T , OB(x) = OT (x): B and

T have the same original next-hops for each prefix x. Also they use two passes to

finish the aggregation: merging next-hops and selecting next-hops(including

generating new nodes)
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First, we define merging next-hop operations as follows:

For both B and T , M(x) = O(x) for leaf nodes

For the Patricia Trie T , the operations on other nodes are defined as follows:

MT (x) = MT l(x) # MT r(x), MT l(x) and MT r(x) are not the directly connected

left and right child next-hop sets, but are imaginary sets. The method to obtain

MT l(x) and MT r(x) are as follows:

MT l(x):

• OT (x), if x has no left child.

• MT (y), if Len(y) = Len(x) + 1, y is the prefix of the left child.

• MT (y) # OT (x), if Len(y) = Len(x) + 2.

• OT (y), if Len(y) > Len(x) + 2.

MT r(x):

• OT (x), if x has no left child.

• MT (y), if Len(y) = Len(x) + 1, y is the prefix of the right child.

• MT (y) # OT (x), if Len(y) = Len(x) + 2.

• OT (x), if Len(y) > Len(x) + 2.

For the binary tree B, the operations on other nodes are defined as follows:

MB(x) = MB l(x) # MB r(x), here M l and M r are the directly connected left

and right child next-hop sets for B. MB l(x)=MB(y) and MB r(x)=MB(y), since

Len(y) = Len(x) + 1 and x is not a leaf node.

Second, we have the generating missing nodes and selecting next-hops process for

x (let w be INFIB ancestor of x) on T :
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• If x is the root. In this case, if O(x) in M(x), then S(x) = O(x); otherwise,

the first next-hop from M(x) will be picked as the selected next-hop.

• Otherwise (x is not the root)

– If S(w) is in M(x), then S(x) = S(w) and F (x) = 0; otherwise, S(x) =

M(x)[0] and F (x) = 1.

– If S(x) 6= O(x), then we need to generate a missing node. If the left or

right child is missing for x, then we generate a child y, where

Len(y) = Len(x)+1, and set O(y)=O(x), M(y)=O(y). if y exists and is

a child of x, in this case, two possible cases may happen. First If

Len(y) > Len(x) + 1, then we generate a child node z, where

Len(z) = Len(x)+1, O(z)=O(x), M(z)=O(z); second, if

Len(y) > Len(x) + 2, then we generate a node with M(z)=M(y)#O(z).

• We run the same procedure P (x,w) for all children of x.

We define the next-hop selection process for x (let w be INFIB ancestor of x) on

B:

• If x is the root, if O(x) is in M(x), then S(x) = O(x). Otherwise, the first one

from M(x) is picked as the selected next-hop.

• Otherwise (x is not the root). If S(w) is in M(x), then S(x) = S(w) and F (x)

= 0; otherwise, S(x) = M(x)[0] and F (x) = 1.

• We run the same procedure P (x,w) for all children of x.

1.2 Theorem 1.1

Theorem 1.1. The aggregation operations (bottom up merging next-hops and top

down selecting next-hop) on a T will obtain the same results as the ones from a B

using ORTC (two passes).
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Figure A.1: Lemma 1.2 Case a

1.3 Lemma 1.2

Lemma 1.2. For every node in a T with a prefix x must have the same merged

next-hop set as the one in a B with the same prefix, namely, MT (x) = MB(x) for

every prefix x on T .

proof :

We use induction to prove the lemma, first we assume bottom up from a T , the

level starts from 1 to n. Notice that the prefix length difference between two levels

may be greater than 1.

When n = 1, M(x) = O(x) in both Patricia Trie T and Binary Tree B, thus the

statement is true.

Assume n = k, the statement is true, namely, all y at level k, MT (y) = MB(y).

Now we need to prove when n = k + 1, the statement is still true, MT (x) = MB(x)

where x is the parent node of y.

There are four cases to consider as follows:

• Case a (one child is missing): we know MB l(x) = OB(x), MT l(x) = OT (x)

and OB(x) = OT (x) by definition, thus MB l(x) = MT l(x). See Figure A.1.
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Figure A.2: Lemma 1.2 Case b

Figure A.3: Lemma 1.2 Case c

Figure A.4: Lemma 1.2 Case d
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• Case b (Len(y)− Len(x)=1): y is at level k, we know MB(y)=MT (y) by

assumption, MB l(x) = MB(y) and MT l(x) = MT (y) by definition, thus

MT l(x) = MB l(x). See Figure A.2.

• Case c (Len(y) = Len(x)+2): we know MB l(x) = MB(y)#OB(x) by

definition and leaf pushing, MT l(x) = MT (y)#OT (x) by definition and

MT (y) = MB(y) by assumption, thus MT l(x) = MB l(x). See Figure A.3.

• Case d (Len(y) > Len(x)+2): we know

MB l(x) = MB(y)#OB(x). . . #OB(x) = OB(x) by leaf pushing definition,

MT l(x, T ) = OT (x) and OT (x) = OB(x) by definition, thus

MT l(x, T ) = MB l(x). See Figure A.4.

We proved for all cases MT l(x, T ) = MB l(x) and the same for

MT r(x) = MB r(x), therefore, MT (x) = MB(x), we proved Lemma 1.2.

1.4 Lemma 1.3

Lemma 1.3. The next-hop selection process of both T and B should output the

same prefixes and next-hops into FIB, namely, ST (x) = SB(x) and FT (x) = FB(x)

for every prefix x on T .

Proof :

we use induction approach to top down prove the statement from level 1 to level

n.

First, when n = 1, in Lemma 1.2, we proved MT (x) = MB(x) for every node in

T , and we apply the same selection rules P on both sets and the missing node

generation rules on T , then ST (x) = SB(x) . Now assume when n = k, Lemma 1.3

is true, we need to show when n = k+1, Lemma 1.3 is still true. We also assume if

a new node needs to be generated at a new level over level k, then the new node is

at level k+1.
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Figure A.5: Lemma 1.3 Case 1a

Figure A.6: Lemma 1.3 Case 1b

In the improved ORTC algorithms, we use the INFIB ancestor w to pick

selected next-hop. Actually we could use the selected next-hop of the directly

connected parent x, because ST (x) = ST (w) is always true, where w is the INFIB

ancestor of x. Here is the proof: if ST (x) is in FIB, then x = w; If ST (x) is not in

FIB, they must have the same selected next-hops, then ST (x) = ST (w).

• Case 1: S(x) = O(x)

– Subcase a (no left or right child): we know SB(x) = ST (x) by assumption

and MB(z) =OB(x) due to leaf pushing; also we know SB(z) is in MB(z)

because z is a leaf node and MB(z) = OB(z) = OB(x) = SB(x), thus
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Figure A.7: Lemma 1.3 Case 1c

Figure A.8: Lemma 1.3 Case 2a

Figure A.9: Lemma 1.3 Case 2b
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Figure A.10: Lemma 1.3 Case 2c

SB(z) = SB(x) and FB(z) = 0 by following the next-hop selection rules.

In this case, we do nothing for T and FT (z) = 0, thus we see that neither

prefix from B and T will be put into FIB. See Figure A.5.

– Subcase b (len(y) = len(x)+1): we know MB(y) =MT (y) by the proof of

Lemma 1.2; also we know SB(x) =ST (x) by assumption and OB(y) =

OT (y) by definition. If SB(x) is in MB(y), then SB(y) = SB(x) and

FB(y) = 0. In this case, ST (x) is also in MT (y), then ST (y) = ST (x) =

SB(x) = SB(y) and FT (y) = 0. Otherwise, SB(y) = MB(y) [0], FB(y) =

1. In this case, ST (x) is also not in MT (y), then ST (y) = MT (y) [0] =

MB(y) [0] = SB(y) and FT (y) = 1. See Figure A.6.

– Subcase c (len(y) > len(x)+1): We know SB(x) = ST (x) by assumption;

MB(z) contains OB(x) by leaf pushing; SB(x) = OB(x) and OB(x) is in

MB(z), thus we can obtain that SB(z) = SB(x) by the next-hop selection

rules and FB(z) = 0; MB(y) =MT (y) from Lemma 1.2; If SB(z) is in

MB(y), then SB(y) = SB(z) = SB(x), FB(y) = 0. In this case, MT (y)

=MB(y) by Lemma 1.2, ST (x) = SB(x) = SB(z), thus ST (x) in MT (y)

and then ST (y) = ST (x), and FT (y) = 0 = FB(y). If SB(z) is not in

MB(y) , then SB(y) = MB(y) [0], FB(y) = 1; In this case, ST (x) =SB(x)

=SB(z) and MB(y) =MT (y) , thus ST (x) is not in MT (y), thus ST (y) =
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MT (y) [0] = MB(y) [0] = SB(y) and FT (y) = 1 = FB(y) by following the

next-hop selection rules; thus SB(y) =ST (y) and FB(y) = FT (y). See

Figure A.7.

• Case 2: S(x) 6= O(x)

– Subcase a (Missing one child): We know SB(x) = ST (x) by induction, in

B, z is a leaf pushed node with MB(z) = OB(x); since SB(x) 6= OB(x),

by following the next-hop selection rules SB(y) = MB(x) [0] and FB(y) =

1; From Lemma 1.2, we know MT (z) = MB(z), thus by following the

node generating rules, y will be generated in T with OT (z) = OT (x) and

MT (z) = OT (x); ST (x) 6= OT (x), thus ST (z) = MT (z) [0] = MB(z) [0] =

SB(z) and FT (z) =1=FB(z) by following the next-hop selection rules,

accordingly SB(y) = ST (y) and FB(y) = FT (y). See Figure A.8.

– Subcase b (Len(y) = Len(x)+1): By Lemma 1, we know MB(y) =

MT (y) and SB(x) = ST (x) by assumption; Also we defined OB(y) =

OT (y). If SB(x) is in MB(y), then SB(y) = SB(x) and FB(y) = 0. In this

case, ST (x) is also in MT (y), then ST (y) = ST (x) = SB(x) = SB(y) and

FT (y) = 0. Otherwise, in B, SB(y) = MB(y) [0], FB(y) = 1. In this case,

ST (x) is also not in MT (y), then ST (y) = MT (y) [0] = MB(y) [0] = SB(y)

and FT (y) = 1. See Figure A.9.

– Subcase c (Len(y) > Len(x)+1): By induction, SB(x) = ST (x) and z will

be generated in T by the definition of generating node rules; also we

defined MB(z) =MB(y) #OB(x) if len(y) = len(x)+2, MB(z) =MB(y)

#OB(x) #OB(x) = OB(x) if len(y) > len(x)+2, MT (z) = MB(y)

#OT (x) if len(y) = len(x) + 2 and MT (z) = OB(x) if len(y) > len(x) +

2; thus we can prove that MB(z) = MT (z). If SB(x) is in MB(z) then

SB(z) = SB(x) and FB(z) = 0; in this case, SB(x) = ST (x) and OB(z) =

96



OT (z) and MB(z) =MT (z), then ST (z) = ST (x) = SB(x) = SB(z) and

FT (z) = 0 = FB(z); otherwise, if SB(x) is not in MB(z) , then SB(z) =

MB(z) [0] and FB(z) = 1; in this case, SB(x) = ST (x) and OB(z) =

OT (z) and MB(z) =MT (z), then ST (z) = MT (z) [0]=MB(z) [0] = SB(z)

and FT (z) = 1 = FB(z). Therefore, SB(z) =ST (z) and FB(z) = FT (z).

See Figure A.10.

Therefore, we proved Lemma 1.3 for all cases. Theorem 1.1 consists of Lemma

1.2 and Lemma 1.3, therefore, we proved Theorem 1.1 as well.

2 FIFA-S proofs

2.1 Lemma 2.1

Lemma 2.1. If an update does not affect the original next-hops of every node on a

subtree, the merged next-hop set of every node on the subtree will not change after

applying the first step of the patricia trie based re-aggregation.

Proof

Assume before update, next-hops are Oold, M old, M old l, M old r, Sold for an

original next-hop, merged next-hop, imaginary left merged next-hop, imaginary

right merged next-hop and selected next-hop. Before and after re-aggregation, two

tries have the same old next-hops. After update, they are Onew , Mnew , Mnew l ,

Mnew r , Snew for the same set of next-hops. For T , the merging next-hop process

will follow normal patricia trie merging next-hop process. In the subtrees with

unchanged original next-hops, the deepest level is at level 1 for T .

When level n = 1, all nodes are leaf nodes, Onew
T (x) = Oold

T (x) and Mnew
T (x) =

Onew
T (x) = Oold

T (x) = M old
T (x).
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We assume when n = k, Mnew
T (y) = M old

T (y), we need to prove that when n = k

+ 1, Mnew
T (x) = M old

T (x). There are four cases to cover as follows:

• Case a (One left child is missing): we defined Mnew
T l(x) = Onew

T (x) and we

assume Onew
T (x) = Oold

T (x) in the induction; also we know M old
T l(x) = Oold

T (x)

by definition; thus Mnew
T l(x) = M old

T l(x).

• Case b (Len(y) = Len(x) + 1): we assume Mnew
T (y) = M old

T (y) by induction

and defined Mnew
T l(x) = Mnew

T (y) and M old
T l(x) = M old

T (y); thus we can

obtain Mnew
T l(x) = Mnew

T (y) = M old
T (y) = M old

T l(x).

• Case c (Len(y) = Len(x) + 2): we can know Mnew
T l(x) = Mnew

T (y) # Onew
T (x)

by Lemma 1.2 and Mnew
T (y) = M old

T (y) by induction; also we know M old
T l(x)

= M old
T (y) # Oold

T (x) by by Lemma 1.2 and Onew
T (x) = Oold

T (x) by assumption;

as a result, Mnew
T l(x) = Mnew

T (y) # Onew
T (x) = M old

T (y) # Oold
T (x) =

M old
T l(x).

• Case d (Len(y) > Len(x) + 2): we know Mnew
T l(x) = Mnew

T (y) # Onew
T (x) #

# Onew
T (x) = Onew

T (x) by Lemma 1.2 and Oold
T (x) =Onew

T (x) by definition; also

we defined M old
T l(x) = M old

T (y) # Oold
T (x) # . . . # Oold

T (x) = Oold
T (x); as a

result, Mnew
T l(x) = Oold

T (x) =Onew
T (x) = Mnew

T l(x).

In all of the above cases, Mnew
T r(x) = M old

T r(x), thus Mnew
T (x) = Mnew

T l(x) #

Mnew
T r(x) = M old

T l(x) # M old
T r(x) = M old

T (x). Therefore, we proved Lemma. 2.1.

2.2 Lemma 2.2

Lemma 2.2. If an update does not affect the original next-hops of every node on a

subtree and the second step of the patricia trie based re-aggregation does not change

the selected next-hop of the subtree root, then the selected next-hop sets and FIB
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status of other nodes on the subtree will not change after applying the second step of

the patricia trie based re-aggregation.

Proof

We employ an induction approach to show the proof. We know the input is:

Snew(x) = M old(x) for the subtree root, Onew(x) = Oold(x) for all subtree nodes and

Mnew(x) = M old(x) by Lemma 2.1. We need to top down prove the lemma from

level 1 to level n.

First, when n = 1, in Lemma 2.1, we know Mnew
T (x) = M old

T (x) for every node in

T , and we apply the same selection rules P on Mnew
T (x) and M old

T (x) as well as the

same rules to create the missing nodes on T , then Snew
T (x) = Sold

T (x) and F new
T (x)

F old
T (x).

Now assume when n = k, Lemma 2.2 is true, we need to show when n = k + 1,

Lemma 2.2 is still true. We also assume if a new node needs to be generated at a

new level over level k, then the new node is at level k + 1.

In the FIFA algorithms, we use the INFIB ancestor w to pick selected next-hop.

Actually we could use the selected next-hop of the directly connected parent x,

because ST (x) = ST (w) is always true, where w is the INFIB ancestor of x, which

has been proved in Lemma 1.3.

• Case 1 (Snew(x) = Onew(x)):

– Subcase a (No left or right child): we know Snew
T (x) = Sold

T (x) by

assumption. we need to do nothing for the missing child for

re-aggregation in this case.

– Subcase b (len(y) >= len(x)+1): we know Mnew
T (y) =M old

T (y) by Lemma

2.1 and Snew
T (x) =Sold

T (x) and F new
T (x) = F old

T (x) by assumption, also

Oold
T (y) = Oold

T (y) by definition. If Snew
T (x) is in Mnew

T (y), then Snew
T (y) =

Snew
T (x) and F new

T (y) = 0. In this case, we could infer Sold
T (x) = Snew

T (x)
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by assumption and Mnew
T (y) = M old

T (y), thus Snew
T (y) = Sold

T (y) = Sold
T (x)

and F new
T (y) = 0. Otherwise, Snew

T (y) = Mnew
T (y) [0], F new

T (y) = 1. In

this case, we could infer Snew
T (x) = Sold

T (x) and Mnew
T (y) = M old

T (y), then

Snew
T (y) = Mnew

T (y) [0] = M old
T (y) [0] = Sold

T (y) and F new
T (y) = 1.

• Case 2 (Snew(x) 6= Onew(x)):

– Subcase a (Missing one child): we defined Snew(x) = M old(x) and

Onew(x) = Oold(x). Since M old(x) 6= Oold(x), then previous aggregation

will create a new node for this case. This will not happen during an

update.

– Subcase b (len(y)=len(x)+1): We know Mnew
T (y) = M old

T (y) by Lemma

2.1 andSnew
T (x) =Sold

T (x) and F new
T (x) = F old

T (x) by assumption; we also

defined Onew
T (y) = Oold

T (y). If Snew
T (x) is in Mnew

T (y), then Snew
T (y) =

Snew
T (x) and F new

T (y) = 0. In this case, Sold
T (x) = Snew

T (x) by assumption

and Mnew
T (y) = M old

T (y), then Snew
T (y) = Sold

T (y) = Sold
T (x) and F new

T (y) =

0. Otherwise, Snew
T (y) = Mnew

T (y) [0], F new
T (y) = 1. In this case, Snew

T (x)

= Sold
T (x) and Mnew

T (y) = M old
T (y), then Snew

T (y) = Mnew
T (y) [0] =

M old
T (y) [0] = Sold

T (y) and F new
T (y) = 1.

– Subcase c (len(y) > len(x)+1): This will not happen because the

previous aggregation creates a new node between x and y the same as

Subcase a.

Therefore, for all cases, Lemma 2.2 is true and we proved it.

2.3 Theorem 2.3

Theorem 2.3. FIFA-S yields optimal aggregation for each update, with the same

results as in re-aggregation from scratch.
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Figure A.11: Theorem 2.3
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2.4 Lemma 2.4

Lemma 2.4. The bottom-up next-hop merging process of FIFA-S will obtain the

same merged next-hops as re-aggregation

FIFA-S Merge Next Hop Definition

• Assume the highest changed node prefix h and the update prefix is u.

• If x is in the subtree rooted at a REAL node which is a prefix below u, no

need for merging on the subtree rooted at r (Area A).

• If x is a prefix between h and root R, no need to conduct merging (Area D).

• If x is on the subtree rooted at z, then no need to conduct merging (Area C).

• Otherwise, Mnew(x) = Mnew l(x) # Mnew r(x), same operations as

re-aggregation (Area B).

Proof

• h is the the highest changed node for merged next-hop set. In the bottom up

merging next-hop process, compare the old merged next-hop set and the

newly generated one, h is the last one with Mnew 6= M old; r is a REAL prefix

under update prefix u; z represents any prefix whose parent prefix is one node

between u and root (including root but not u).

• The whole tree can be partitioned into four areas. In area A and C, their

original next-hop do not change, thus Mnew = M old, therefore, re-aggregation

will lead to the same results as the FIFA-S without the merging process. In

area B, re-aggregation and FIFA-S have the same operations, thus their results

must be the same. In area D, re-aggregation will obtain the same results as

the one without any merging due to the highest change node definition.

Therefore, Lemma 2.4 has been proved.
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2.5 Lemma 2.5

Lemma 2.5. The top-down next-hop selection process of FIFA-S will obtain the

same selected next-hops as re-aggregation

• Assume the highest changed node prefix h and the update prefix is u; s is a

prefix under update prefix u satisfying conditions of Lemma 4 (selected

next-hop of the prefix does not change and all original and merged next-hops

of all subtree nodes do not change); z represents any prefix satisfying

conditions of Lemma 4.

• If x is in one subtree where it satisfies conditions of Lemma 4, no need to do

next-hop selection on the subtree (Area A and C).

• If x is a prefix between h and the root, then no need to do next-hop selection

(Area D).

• Otherwise, from h, follow the same rules of re-aggregation(Area B).

Proof

• In area D, since the merged next-hop set did not change before and after

bottom up merging next-hop process, the selected next-hops will not change

either, because they follow the same next-hop selection rules, therefore, no

need to perform re-aggregation operations in this area.

• In area A and C, by Lemma 4, the original next-hops do not change on the

subtree, thus no need to perform re-aggregation operations in these areas.

• In area B, re-aggregation and FIFA-S have the identical operations, therefore,

they will produce the same results.
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• Area A, B, C and D cover the entire tree, therefore, FIFA-S produces the

same optimal results as re-aggregation.

Therefore, Lemma 2.5 has been proved.

Theorem 2.3 has two steps which are Lemma 2.4 and Lemma 2.5, therefore, it

has been proved.

3 FIFA-T and FIFA-H proofs

3.1 FIFA-T proof

• FIFA-T includes bottom up merging next-hops to the update prefix and top

down selecting next-hop from the update prefix.

• The process above is exactly the same as improved ORTC over the subtree

rooted at the update prefix, thus the forwarding correctness can be

guaranteed. Once a threshold is reached, do re-aggregation and it will obtain

optimal results, the forwarding correctness can be guaranteed as well.

Therefore, FIFA-T has been proved.

3.2 FIFA-H proof

• Before a threshold is reached, FIFA-H includes bottom up to merging

next-hops to a CAP prefix (CAP prefix is always higher than or equal to the

update prefix) and top down to selecting next-hops from the update prefix.

The above process will obtain the same results as improved ORTC over the

subtree rooted at the update prefix and thus the forwarding correctness can be

guaranteed.
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• After a threshold is reached, it includes bottom up merging next-hops to a

CAP level and top down selecting next-hops from the CAP prefix. The above

process will obtain the same results as improved ORTC over the subtree rooted

at the CAP prefix and thus the forwarding correctness can be guaranteed.

Therefore, FIFA-H has been proved.
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