1,129 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Performance Comparison of Terrestrial DVB Detection using LDPC and Turbo Codes

    Get PDF
    Last-generation and future wireless communication standards, such as DVB-T2 or DVB-NGH, are including multi-antenna transmission and reception in order to increase bandwidth efficiency and receiver robustness. The main goal is to combine diversity and spatial multiplexing in order to fully exploit the multiple-input multiple output (MIMO) channel capacity. Full-rate full-diversity (FRFD) space-time codes (STC) such as the Golden code are studied for that purpose. However, despite their larger achievable capacity, most of them present high complexity for soft detection, which hinders their combination with soft-input decoders in bit-interleaved coded modulation (BICM) schemes. This article presents a low complexity soft detection algorithm for the reception of FRFD space-frequency block codes in BICM orthogonal frequency division multiplexing (OFDM) systems and gives the performance comparision using Ldpc and Turbo codes. The proposed detector maintains a reduced and fixed complexity, avoiding the variable nature of the list sphere decoder (LSD) due to its dependence on the noise and channel conditions. Complexity and simulation based performance results are provided which show that the proposed detector performs close to the optimal log-maximum a posteriori (MAP) detection in a variety of DVB-T2 broadcasting scenarios
    corecore