5,291 research outputs found

    A Cryptographic Moving-Knife Cake-Cutting Protocol

    Full text link
    This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife achieves simple fairness, all players must execute the protocol synchronously. Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be executed asynchronously by a discrete protocol using a secure auction protocol. The number of cuts is n-1 where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Economic FAQs About the Internet

    Get PDF
    This is a set of Frequently Asked Questions (and answers) about the economic, institutional, and technological structure of the Internet. We describe the history and current state of the Internet, discuss some of the pressing economic and regulatory problems, and speculate about future developments.Internet, telecommunications, congestion pricing, National Information Infrastructure

    Programmeerimiskeeled turvalise ühisarvutuse rakenduste arendamiseks

    Get PDF
    Turvaline ühisarvutus on tehnoloogia, mis lubab mitmel sõltumatul osapoolel oma andmeid koos töödelda neis olevaid saladusi avalikustamata. Kui andmed on esitatud krüpteeritud kujul, tähendab see, et neid ei dekrüpteerita arvutuse käigus kordagi. Turvalise ühisarvutuse teoreetilised konstruktsioonid on teada olnud juba alates kaheksakümnendatest, kuid esimesed praktilised teostused ja rakendused, mis päris andmeid töötlesid, ilmusid alles natuke enam kui kümme aastat tagasi. Nüüdseks on turvalist ühisarvutust kasutatud mitmes praktilises rakenduses ning sellest on kujunenud oluline andmekaitsetehnoloogia. Turvalise ühisarvutuse rakenduste arendamine on keerukas. Vahendid, mis aitavad kaasa arendusprotsessile, on veel väga uued, ning raamistikud on sageli liiga aeglased praktiliste rakenduste jaoks. Rakendusi on endiselt võimelised arendama ainult krüptograafiaeksperdid. Käesoleva töö eesmärk on teha turvalise ühisarvutuse raamistikke paremaks ning muuta ühisarvutusrakenduste arendamist kergemaks. Väidame, et valdkon- naspetsiifiliste programmeerimiskeelte kasutamine võimaldab turvalise ühisarvu- tuse rakenduste ja raamistike ehitamist, mis on samaaegselt lihtsasti kasutatavad, hea jõudlusega, hooldatavad, usaldusväärsed ja võimelised suuri andmemahtusid töötlema. Peamise tulemusena esitleme kahte uut programmeerimiskeelt, mis on mõeldud turvalise ühisarvutuse jaoks. SecreC 2 on mõeldud turvalise ühisarvutuse rakendus- te arendamise lihtsustamiseks ja aitab kaasa sellele, et rakendused oleks turvalised ja efektiivsed. Teine keel on loodud turvalise ühisarvutuse protokollide arenda- miseks ning selle eesmärk on turvalise ühisarvutuse raamistikke paremaks muuta. Protokollide keel teeb raamistikke kiiremaks ja usaldusväärsemaks ning lihtsustab protokollide arendamist ja haldamist. Kirjeldame mõlemad keeled nii formaalselt kui mitteformaalselt. Näitame, kuidas mitmed rakendused ja prototüübid saavad neist keeltest kasu.Secure multi-party computation is a technology that allows several independent parties to cooperatively process their private data without revealing any secrets. If private inputs are given in encrypted form then the results will also be encrypted, and at no stage during processing are values ever decrypted. As a theoretical concept, the technology has been around since the 1980s, but the first practical implementations arose a bit more than a decade ago. Since then, secure multi-party computation has been used in practical applications, and has been established as an important method of data protection. Developing applications that use secure multi-party computation is challenging. The tools that help with development are still very young and the frameworks are often too slow for practical applications. Currently only experts in cryptography are able to develop secure multi-party applications. In this thesis we look how to improve secure multy-party computation frame- works and make the applications easier to develop. We claim that domain-specific programming languages enable to build secure multi-party applications and frame- works that are at the same time usable, efficient, maintainable, trustworthy, and practically scalable. The contribution of this thesis is the introduction of two new programming languages for secure multi-party computation. The SecreC 2 language makes secure multi-party computation application development easier, ensuring that the applications are secure and enabling them to be efficient. The second language is for developing low-level secure computation protocols. This language was created for improving secure multi-party computation frameworks. It makes the frameworks faster and more trustworthy, and protocols easier to develop and maintain. We give give both a formal and an informal overview of the two languages and see how they benefit multi-party applications and prototypes

    The Cord (March 25, 2015)

    Get PDF

    SEAL: Sealed-Bid Auction without Auctioneers

    Get PDF
    We propose the first auctioneer-free sealed-bid auction protocol with a linear computation and communication complexity O(c), c being the bit length of the bid price. Our protocol, called Self-Enforcing Auction Lot (SEAL), operates in a decentralized setting, where bidders jointly compute the maximum bid while preserving the privacy of losing bids. In our protocol, we do not require any secret channels between participants. All operations are publicly verifiable; everyone including third-party observers is able to verify the integrity of the auction outcome. Upon learning the highest bid, the winner comes forward with a proof to prove that she is the real winner. Based on the proof, everyone is able to check if there is only one winner or there is a tie. While our main protocol works with the first-price sealed-bid, it can be easily extended to support the second-price sealed-bid (also known as the Vickrey auction), revealing only the winner and the second highest bid, while keeping the highest bid and all other bids secret. To the best of our knowledge, this work establishes to date the best computation and communication complexity for sealed-bid auction schemes without involving any auctioneer

    Efficient radio resource management for the fifth generation slice networks

    Get PDF
    It is predicted that the IMT-2020 (5G network) will meet increasing user demands and, hence, it is therefore, expected to be as flexible as possible. The relevant standardisation bodies and academia have accepted the critical role of network slicing in the implementation of the 5G network. The network slicing paradigm allows the physical infrastructure and resources of the mobile network to be “sliced” into logical networks, which are operated by different entities, and then engineered to address the specific requirements of different verticals, business models, and individual subscribers. Network slicing offers propitious solutions to the flexibility requirements of the 5G network. The attributes and characteristics of network slicing support the multi-tenancy paradigm, which is predicted to drastically reduce the operational expenditure (OPEX) and capital expenditure (CAPEX) of mobile network operators. Furthermore, network slices enable mobile virtual network operators to compete with one another using the same physical networks but customising their slices and network operation according to their market segment's characteristics and requirements. However, owing to scarce radio resources, the dynamic characteristics of the wireless links, and its capacity, implementing network slicing at the base stations and the access network xix becomes an uphill task. Moreover, an unplanned 5G slice network deployment results in technical challenges such as unfairness in radio resource allocation, poor quality of service provisioning, network profit maximisation challenges, and rises in energy consumption in a bid to meet QoS specifications. Therefore, there is a need to develop efficient radio resource management algorithms that address the above mentioned technical challenges. The core aim of this research is to develop and evaluate efficient radio resource management algorithms and schemes that will be implemented in 5G slice networks to guarantee the QoS of users in terms of throughput and latency while ensuring that 5G slice networks are energy efficient and economically profitable. This thesis mainly addresses key challenges relating to efficient radio resource management. First, a particle swarm-intelligent profit-aware resource allocation scheme for a 5G slice network is proposed to prioritise the profitability of the network while at the same time ensuring that the QoS requirements of slice users are not compromised. It is observed that the proposed new radio swarm-intelligent profit-aware resource allocation (NR-SiRARE) scheme outperforms the LTE-OFDMA swarm-intelligent profit-aware resource (LO-SiRARE) scheme. However, the network profit for the NR-SiRARE is greatly affected by significant degradation of the path loss associated with millimetre waves. Second, this thesis examines the resource allocation challenge in a multi-tenant multi-slice multi-tier heterogeneous network. To maximise the total utility of a multi-tenant multislice multi-tier heterogeneous network, a latency-aware dynamic resource allocation problem is formulated as an optimisation problem. Via the hierarchical decomposition method for heterogeneous networks, the formulated optimisation problem is transformed to reduce the computational complexities of the proposed solutions. Furthermore, a genetic algorithmbased latency-aware resource allocation scheme is proposed to solve the maximum utility problem by considering related constraints. It is observed that GI-LARE scheme outperforms the static slicing (SS) and an optimal resource allocation (ORA) schemes. Moreover, the GI-LARE appears to be near optimal when compared with an exact solution based on spatial branch and bound. Third, this thesis addresses a distributed resource allocation problem in a multi-slice multitier multi-domain network with different players. A three-level hierarchical business model comprising InPs, MVNOs, and service providers (SP) is examined. The radio resource allocation problem is formulated as a maximum utility optimisation problem. A multi-tier multi-domain slice user matching game and a distributed backtracking multi-player multidomain games schemes are proposed to solve the maximum utility optimisation problem. The distributed backtracking scheme is based on the Fisher Market and Auction theory principles. The proposed multi-tier multi-domain scheme outperforms the GI-LARE and the SS schemes. This is attributed to the availability of resources from other InPs and MVNOs; and the flexibility associated with a multi-domain network. Lastly, an energy-efficient resource allocation problem for 5G slice networks in a highly dense heterogeneous environment is investigated. A mathematical formulation of energy-efficient resource allocation in 5G slice networks is developed as a mixed-integer linear fractional optimisation problem (MILFP). The method adopts hierarchical decomposition techniques to reduce complexities. Furthermore, the slice user association, QoS for different slice use cases, an adapted water filling algorithm, and stochastic geometry tools are employed to xxi model the global energy efficiency (GEE) of the 5G slice network. Besides, neither stochastic geometry nor a three-level hierarchical business model schemes have been employed to model the global energy efficiency of the 5G slice network in the literature, making it the first time such method will be applied to 5G slice network. With rigorous numerical simulations based on Monte-Carlo numerical simulation technique, the performance of the proposed algorithms and schemes was evaluated to show their adaptability, efficiency and robustness for a 5G slice network

    Soothers

    Get PDF
    When a meticulous chef, who can\u27t eat anything without throwing it up, discovers the cure for his ailment in a recalled antacid from the 1970s, he solicits the help of his in-house taster to hunt down more of the tablets and in the process discovers that she was the cure all along

    The Logic of Scarcity: Idle Spectrum as a First Amendment Violation

    Get PDF
    The Supreme Court has distinguished the regulation of radio spectrum from the regulation of printing presses, and applied more lenient scrutiny to the regulation of spectrum, based on its conclusion that the spectrum is unusually scarce. The Court has never confronted an allegation that government actions resulted in unused or underused spectrum, but there is good reason to believe that such government-created idle spectrum exists. Government limits on the number of printing presses almost assuredly would be subject to heightened scrutiny and would not survive such scrutiny. This article addresses the question whether the scarcity rationale ,or any other reasoning, supports distinguishing spectrum from print such that government actions constricting the supply of spectrum would pass muster. I argue that the scarcity rationale does not support, and instead undercuts, government actions that limit the use of the spectrum. Government decisions that exacerbate the problems that gave riseTechnology and Industry, Regulatory Reform
    corecore