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ABSTRACT

Secure multi-party computation is a technology that allows computation on private
data without revealing any secrets. If the data is processed in an encrypted form,
then this means that at no stage of the computation is the data ever decrypted. As a
theoretical concept the technology has been around since the 1980s, but the first
practical implementations arose a bit more than a decade ago. Since then, secure
multi-party computation has been used in practical applications, and has been
established as an important method of data protection.

When developing any application, the choice of programming language is
dictated by many considerations: personal preference, performance requirements,
hardware characteristics, and security constraints. Similar criteria apply when
choosing a language for developing an application that makes significant use of
secure multi-party computation methods. Unfortunately, regular general-purpose
languages are not perfectly suitable. First, there is the need to tightly control what
data is kept private and what can be revealed. Second, parallelism needs to be
exploited even at the very basic level in order to make performance acceptable. In
this thesis we present SECREC 2—a high-level programming language meant for
secure multi-party computation algorithm development that satisfies these goals.

High-level secure multi-party computation applications invoke operations that
execute network communication protocols. Developing applications that call these
protocols is a different task from developing the protocols themselves. Secure multi-
party platforms can be viewed as distributed computers offering instructions that
can be invoked to perform general computation. When specifying and implementing
secure multi-party computation operations, we can take similar approaches as to
how computer hardware is designed. For designing low-level electronic and digital
logic circuits highly-specialized hardware description languages are used. In this
thesis we introduce a new domain-specific programming language for specifying
low-level multi-party computation protocols.

We claim that domain-specific programming languages, such as the ones we
introduce in this thesis, enable the building of secure multi-party applications and
frameworks that are at the same time usable, efficient, maintainable, trustworthy,
and practically scalable.



CHAPTER 1

INTRODUCTION

1.1 Secure multi-party computation

Secure multi-party computation (SMC) is a set of cryptographic techniques that
allows participants to securely process data. It is a distributed computation model
where some of the participants may supply data and some are involved in com-
putation that may involve multiple interactive communication rounds. During the
computation, at no stage are secret values revealed. Theoretical protocols for SMC
appeared in the 1980s but practical implementations surfaced much later in the
early 21st century. The field is still rapidly developing.

SMC has been around for a while but very few practical applications use
the technology. Performance results for many prototype applications have been
published but none of them process real data for a non-academic purpose. The
first real application of SMC was the Danish sugar beet auction in 2008 [24]. The
largest scale application has thus far been a social study conducted in 2015 [[17]
where tax payments from the Estonian Tax and Customs Board were linked with
higher education events from the Ministry of Education and Research. The study
processed ten million privacy sensitive tax records and half a million education
records in a privacy-preserving manner.

For SMC to become more commonplace the technology itself and the frame-
works have to improve. Unfortunately, when it comes to usability, performance, and
scalability, SMC has a long way to go. Currently only cryptography experts develop
SMC applications and these perform too poorly for many practical problems.

1.2 Programming secure multi-party computation

We vision that SMC applications should be as easy to develop for regular program-
mers as public computation application are. This thesis looks to improve the state
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of the art in this regard by offering a better high-level application development
language for SMC.

SMC applications are usually developed using specialized programming lan-
guages [87) 1581 159, 84 [85] 191}, 118l 199] I53]]. General-purpose languages are not
perfectly suitable for SMC. One problem is that in SMC applications we want to
control the flow of information very carefully. At no stage should private information
be revealed unless it is explicitly intended by the programmer. Information flow
control is usually achieved at the level of types: values are classified into public and
private. Public data can be implicitly converted to private data but conversion in
the other direction has to be explicit. While type systems of some general-purpose
programming languages are powerful enough to restrict information flow, they can
be quite difficult to use in this regard.

Another aspect where developing SMC applications differs from regular public
applications is performance. Even the best SMC schemes are still many orders of
magnitude slower than normal computations. In many schemes individual operations,
such as multiplying two secure numbers, take multiple network communication
rounds. This means that a single secure integer multiplication can take tens
of milliseconds due to network latency whereas a public multiplication can be
performed in nanosecondq’} The difference in efficiency can be seven or even
more orders of magnitude. Fortunately, the situation can be drastically improved
by executing many instructions at the same time. Because computer networks are
optimized for high-bandwidth throughput, we can perform millions if not tens
of millions of multiplications per second, reducing the overhead compared to
public computations to only a few orders of magnitude. This means that for SMC
applications to be reasonably fast, parallelism has to be exploited at a very basic
level and application development languages have to facilitate this kind of coding
style.

SMC platforms can be viewed as distributed computers that offer instructions
that can be called to perform general computation. It is extremely important that
these instructions are efficiently implemented. For SMC platforms that have a
wide range of specialized primitive operations, this poses an implementation and
maintenance problem. Often the low-level protocols are written in a general-
purpose language such as C++ or Java. This kind of highly-optimized low-level
networking code is very difficult and error-prone to write. It is hard to trust that
these implementations are correct and do not contain security errors. In this thesis
we introduce a new domain specific language (DSL) for specifying low-level SMC
protocols. The language aims to make the development of complicated protocols
easier and to increase trust that the operations are correct and secure.

I'This is ignoring the possibility of multiple cores, instruction-level parallelism and SIMD
operations.
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1.3 The claims of this thesis

We claim that the use of domain-specific languages enables building secure multi-
party applications and frameworks that are at the same time usable, efficient,
maintainable, trustworthy, and practically scalable.

We demonstrate usability by SECReC 2 [20] applications that have been
developed. SEcCrREC 2 is a high-level SMC applications development language
designed and implemented by the author of this dissertation. While there are many
other languages with similar goals, very few of them provide comparable reusability
and none have been tested in large-scale real-life applications. SECReC 2 is by far
the most used SMC language with the largest standard library to make application
development easier.

We say that SMC framework is sufficiently usable if non-trivial applications
can be developed with its help in a reasonable effort by someone who is not
knowledgeable in secure computing or cryptography in general. It is not possible
to prove so informal claim but we hope that a reader is convinced by the many
SecreC 2 code examples. Many applications and prototypes have been developed
using SHAREMIND on top of SEcReC 2 language.

We demonstrate that efficiency is enabled by both SEcrReC 2 and the protocol
DSL. The DSL facilitates building efficient primitives: SHAREMIND is one of the
most competitive generic platforms when it comes to performance. We also show
that SEcreC does not restrict the programmer when it comes to performance: the
language facilitates SIMD vectorization, enables the programmer to make trade-offs
between performance and security, and, if all else fails, allows the programmer to
implement specialized protocols in C++ or the DSL and invoke them from SEcreC.
We also perform extensive benchmarking to demonstrate efficiency. We can show
speedups of orders of magnitude over many of our previous protocols.

We achieve maintainability via the use of the protocol DSL. Protocols can be
implemented in a compositional style where larger protocols call simpler ones. When
some of those simpler protocols are modified the larger ones require no changes.
Protocol implementers do not have to think as much about manual optimizations.
Changes to the underlying platform (such as the networking layer) do not require
modifications to protocols.

For SMC framework to be maintainable new functionality has to be easy to
add. The system must not be fragile in the sense that modifying existing function-
ality should not need overarching changes to the entire system. To demonstrate
maintainability, we show how we re-implemented the entire protocol stack of
SHAREMIND, and later modified many of the underlying protocols and implemented
new optimizations. These modifications were easy to make which instills confidence
that we have made correct language design choices.

Language-based tools enable trustworthiness in a multitude of ways: the type
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system of SECREC catches trivial misuses but also enables program analysis for
more fine-grained checks. Additionally, SECREC 2 has been designed with security
in mind and does not contain loopholes that let high-level application developer
execute unsafe code. The protocol DSL guarantees the security of the underlying
protocols via the use of a static analysis tool. The majority of SHAREMIND protocols
have now been verified with the tool. The formalization of SEcrReC instills extra
confidence: we know that the program is secure if the underlying protocols are
secure and remain secure under composition.

For SMC system to be scalable it must be able to process realistic data volumes
in the scale of at least 107 records. The system must also tolerate long up time
to be able to execute non-trivial algorithms on so much data. We postulate that
scalability, while not impossible to achieve and surpass without language-based
tools, is enabled by the languages we have introduced. We demonstrate both vertical
and horizontal scalability by extensively benchmarking individual operations. We
see that SHAREMIND platform is capable executing large applications that process
tens of millions data records.

1.4 Outline and the author’s contributions

The author has designed and implemented a high-level programming language
called SEcreC 2 for developing SMC data mining algorithms. The usefulness of the
language has been validated through many in-house and third-party applications
and prototypes that rely on the language. The author has also been heavily involved
in the development of the standard library components of SEcrReC 2.

The author has designed and implemented a domain-specific language for
implementing low-level SMC protocols. The design choices have been validated,
firstly, by implementation of protocols, and performance results demonstrating
significant speedups over previous implementation, and, secondly, by added value
in the form of automatic optimizations and security proofs.

Chapter 2] gives an overview of secure (multi-party) computation and looks
at some of the most common ways SMC can be implemented. The overview of
secure computation covers Yao’s garbled circuits, homomorphic encryption, trusted
execution and secret sharing. We also give a short overview of how the security of
secure computation is usually defined via the concept of universal composability.

Chapter[3| describes the SECREC 2 language. The overview is very informal and
is aimed at developers who want to see the language in action. The tutorial is largely
based on code examples and does not assume the reader to be closely familiar with
secure computation. We start by giving a gentle introduction to how SEcreC 2 is
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used for secure computation and introduce the concept of protection domains. We
follow by describing its more complex features like array processing capabilities
and domain-polymorphism.

Because efficiency is very important in SMC, we also give some tips on how to
write SECREC code that performs well. This largely focuses on data parallelization,
exploiting the properties of the specific schemes, and optimizing algorithms by
revealing information when it is deemed acceptable. Most of these techniques
apply to any SMC application development framework. However, the examples
demonstrate the capabilities of SEcReC and are useful for learning purposes.

We also discuss the implementation of the SECREC compiler and its integration
with the SHAREMIND framework. Finally, we discuss some upcoming and possible
future improvements of the language.

Chapter @ gives formal semantics to the core of the SECReC 2 language. We
present the syntax of the core language, specify its type system and formalize its
dynamic behavior. Using the language semantics we can state the security theorem:
if the underlying protocols are universally composable then SEcReC programs are
secure. Finally, we formalize how to convert domain-polymorphic programs to
monomorphic programs and show that the translation preserves semantics and
security. This chapter is based on a previous publication of the author [20]:

* Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of
privacy-preserving applications. In: Proceedings of the Ninth Workshop on
Programming Languages and Analysis for Security, PLAS@ECOQOP 2014,
Uppsala, Sweden, July 29, 2014. pp. 53-65 (2014).

The author of this work designed SEcrReC 2 and was the main implementer of
its compiler. The author also formalized the core of SEcCReC 2 in collaboration with
Peeter Laud.

Chapter[5| introduces the protocol DSL. We first give a gentle overview of the
language, heavily relying on example code. We use the protocol DSL to implement
a large set of additive three-party secret sharing protocols. While not a complete
reference, the language overview section is intended for the users of the language.
The author of this work designed the language, designed its intermediate form, was
the principal developer of the DSL compiler and evaluated the performance of all
the protocols.

We also discuss the implementation of the language and how it integrates into
the SHAREMIND framework. We describe its intermediate arithmetic-circuit form,
and show how we use it for security analysis. We benchmark the protocols written
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in the DSL very thoroughly and compare their performance against our previous
protocol set. Finally, we discuss possible future directions.
This chapter is based on the previous publications of the author [77, 64]:

* Laud, P, Randmets, J.: A Domain-Specific Language for Low-Level Se-
cure Multiparty Computation Protocols. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015. pp. 1492-1503 (2015).

* Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable
integer and floating-point arithmetic. In: Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING, and
WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected
Papers. pp. 271-287 (2016).

The author of this work designed the protocol DSL and formalized its data
type system and dynamic behavior. The author also designed the intermediate
protocol representation. The author was the principal developer of the protocol
language compiler and contributed to the development of additive three-party
integer protocols. All performance benchmarks have been performed by the author.

Chapter|[6] gives an overview of applications and prototypes that have used and
benefited from either SECREC 2 or the protocol DSL. For each application we
describe to what degree SECREC was used and if the application benefited from the
protocol language.

Chapter[7] gives an overview of the most notable programming languages that are
used in SMC and are related to our work. We have included both languages for low-
level protocol specification and languages for high-level application development.
We have categorized them roughly into ones that are targeted for Yao’s garbled
circuits, ones that are targeted for secret sharing, and ones that allow a mixture of
different SMC techniques to be used.
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CHAPTER 2

PRELIMINARIES

2.1 Secure computation

The goal of secure multi-party computation (SMC) is for parties to jointly compute
a function over their inputs while every party keeps their inputs private. This is
formalized as secure function evaluation where n parties compute a function

f(x17$27"';$n) = (y17y27"'7yn) )

such that each party P;, where 1 < ¢ < n, provides its input z; and learns its output
y;. Usually we want the computation process to be input private meaning that a
party can only learn about other parties’ inputs that which can be derived just from
the party’s own input and output. It is also desirable for the computation scheme to
be correct.

There are multiple different ways of implementing secure function evaluation.
Each scheme and its variations offer different trade-offs between security, perfor-
mance and usability. In the following we will give a short introduction to four secure
function evaluation schemes: garbled circuits, (fully) homomorphic encryption,
secure hardware, and secret sharing.

2.1.1 Roles in secure computation

We classify secure computation participant into three roles to help explain how
they manipulate data and what is visible in plain text to which party. Some of
the participants act as input parties. They secret share or encrypt data and send
the hidden values to computing parties who perform operations without revealing
private inputs. After that secret shared or encrypted results are sent to result parties
who can declassify or decrypt the resulting values.

A participant can have multiple roles. A computing party can act as an input
party if it has data to share data and also result party if it needs to see the results.
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One such example is the classic millionaires’ problem where two participants want
to learn which of them is richer. Both participants supply data, both are involved in
computing and both learn the public result. In some SMC deployments roles might
not overlap at all. For example in survey systems anonymous participants can supply
data through web interface, computing parties perform statistical analysis on their
hidden inputs and only statistician sees the final result. In her dissertation [60] Liina
Kamm discusses participant roles in more detail and gives examples of various
different deployment models.

2.1.2 Garbled circuits

The garbled circuits (GC) approach was introduced by Yao [[113,[114]. In a GC
scheme two parties securely compute f(z,y) where f is a known functionality
represented as a Boolean circuit. The protocol operates asymmetrically. Party
P, is known as the garbler and Ps is known as the evaluator. They respectively
provide inputs x and ¥ as bit strings and P, learns the output. Intuitively, the garbler
encrypts the Boolean circuit f(-,-), and sends the garbled truth tables, and keys
corresponding to x to the evaluator. The evaluator then uses an oblivious transfer
(OT) protocol to obtain the keys corresponding to its input to decrypt the garbled
circuit and evaluate the encrypted f(z, -) on y. During this process the evaluator
remains completely oblivious and only learns the intermediate random keys. Finally,
the evaluator sends the keys corresponding to the output wires to the garbler who
knows which key corresponds to which value. In this setting both parties supply
input, both are involved in computation and P; acts as the only result party.

The gates are garbled by looking at all the possible inputs and encrypting the
output key with the keys that correspond to the input values. More formally, for
each wire in the circuit, denoted with label 7, the garbler encodes inputs 0 and 1 as
randomly generated keys k:? and k:zl Let g be a gate with input wires ¢ and j, and
output wire w. The gate g is garbled as follows: for every combination of input
bits b; and by and the corresponding output bit b we encrypt the output wire key
k% using the combined key (k:ﬁ”, /{:;’2) This way, only by knowing the appropriate
input keys is it possible to learn the output key. In the case of binary gates a total of
four ciphertexts are stored, each corresponding to one combination of input values.

The garbled circuits approach has some very attractive properties. For one, it
is a two-party protocol which simplifies deployment compared to schemes with
more parties. In addition to that, evaluating arbitrarily large circuits requires only
a few communication rounds. Third, the scheme is generic and can evaluate any
Boolean circuit. Boolean circuits are a very convenient format. Much research has
been done on how to efficiently represent functions with Boolean circuits.

However, there are also a few challenges to overcome. Boolean circuit rep-
resentations of functions are often very large, and garbling and evaluation are
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computation-heavy operations. If the whole circuit is constructed and stored in the
memory then evaluating it can require excessive amounts of memory. GC schemes
are also not as communication-efficient as some secret sharing schemes are. For
example, addition does not require any network communication in additive secret
sharing schemes but requires significant communication with the (Boolean) GC
approach.

Scalability challenges have been tackled by VMCrypt software architecture [|86]]
and by Huang et al. [57] with the so-called pipelining approach. In this approach,
instead of garbling the entire circuit, parts of circuits are sent to the evaluator
immediately when they are ready. This way, the evaluator does not have to wait for
the whole circuit to be garbled and can start with evaluation and oblivious transfers
as soon as possible. Parts of the circuit that have already been evaluated can be
discarded to reduce the memory footprint.

Much research has been done on GC protocols since their invention. Com-
munication and computation efficiency has since been greatly improved by many
optimizations. Some of these are: the free-XOR technique [[68] for allowing XOR
gates to be evaluated without networking overhead or much computation overhead,
the point and permute technique [90] for reducing the number of decryptions
the evaluator has to perform, and garbled row reduction [90] and the half-gate
approach [115]] that both reduce the size of garbled tables. Many pratical garbled
circuit implementations exist now, for example, Fairplay [87], FairplayMP [/,
TASTY [33]], FastGC [57], ABY [40] and ObliVM [83]].

2.1.3 Homomorphic encryption

Homomorphic encryption (HE) allows computations to be carried out on encrypted
ciphertexts without revealing the underlying secrets. HE is usually set up in the two-
party model where the client holds the secret key and the server is able to perform
computations on data encrypted by the client. For example, Paillier [94], lifted
ElGamal [45]] and Damgérd—Jurik [36] cryptosystems are additively homomorphic,
allowing to compute arbitrary linear functions on ciphertexts. The method for
evaluating quadratic multivariate polynomials (with a limited range) was introduced
by Boneh, Goh and Nissim [25]] (BGN). All these systems are for evaluating only
small classes of functions. Despite this, additively, multiplicatively and somewhat
homomorphic systems are useful for many specialized applications, such as schemes
for tallying encrypted votes [33]]. Mostly they are used as a part of other cryptographic
primitives.

The first fully homormorphic encryption (FHE) scheme was proposed by
Gentry [46]47]]. Like BGN, the scheme alone was initially only able to evaluate
low-degree multivariate polynomials. This was due to noise added by operations
on encrypted texts. When sufficiently many operations are performed, the level of
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noise becomes so great that decryption is no longer possible. To lower the noise
Gentry proposed bootstrapping where ciphertexts are encrypted for the second
time, and the underlying initial cryptotext is decrypted homomorphically. The
inner decryption requires that the scheme can evaluate its own decryption function.
Gentry showed that after bootstrapping, the scheme could safely apply one extra
operation. The resulting scheme is truly fully homomorphic, being able to evaluate
arbitrarily complex functions on ciphertexts.

Initial FHE implementations were impractically slow for even basic bit oper-
ations. In [48] it is reported that, the re-encryption (bootstrapping) step takes up
to 30 minutes for large security parameters. Modern schemes can evaluate large
circuits in reasonable time. For example, later works, such as [42]], report less than
a second for every bootstrapping step on a personal computer. Progress has been
fast but not all challenges have been resolved. Efficiency is not yet competitive with
other SMC schemes. Secret keys are still hundreds of megabytes large, and security
parameters are numerous and difficult to understand.

2.1.4 Trusted execution environment

The trusted execution environment (TEE) is a secure area of a computer, or another
electronic device (smart phone, tablet, television), that guarantees that the code
and data inside are protected with respect to confidentiality and integrity. Modern
incarnations of secure hardware include Intel SGX, ARM TrustZone and AMD
Secure Processor. An overview of the research on secure hardware applications and
security guarantees can be found in [96]. Applications of TEEs and secure hardware
include secure authentication to protect the user of the device against malicious
apps, secure key storage, digital rights management, secure boot, securing financial
transactions, and even preventing cheating in online games.

Trusted computing in general has been subject to controversy by digital rights
groups such as the Electronic Frontier Foundation| and the Free Software Founda-
tion?] but also by security expert{’] One of the criticisms is that trusted computing
can be used to heavily restrict users’ freedoms by securing devices against their
owners. For example, a device can strictly limit which documents it can access and
what applications can be used.

Remote attestation is a process that allows verification of a running software
configuration on a device. Provisioning is a process of securely sending secrets and
code to the TEE of the target device.

In SMC, secure hardware can be used to improve the security of existing schemes
by executing them in isolation. This provides protection against a compromised

thttps://www.eff.org/issues/trusted-computing|(April 2017)
2https://www.gnu.org/philosophy/can-you-trust.en.html (April 2017)
3https://www.schneier.com/crypto-gram/archives/2002/0815.html#1 (April 2017)
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operating system and allows parties to validate each others’ software integrity via
remote attestation. This can improve security guarantees of SMC schemes that
are otherwise secure only against honest-but-curious adversaries. In [[109]] authors
envision a cloud-assisted malware checking service. To protect users’ privacy, they
use a private membership test where users communicate with trusted hardware via
secure channels.

2.1.5 Secret sharing

Secret sharing is a set of methods that allows for a secret value x to be split between
n participants as x1, . . ., &, so that each party P; gets a random-looking share x;.
The secret value x can only be reconstructed when at least ¢ (f < n) of the shares
are combined. Schemes with n participants, of which a threshold of ¢ are required
to reconstruct the original value, are called (¢, n)-threshold schemes. The concept
was independently discovered by Shamir [[104] and Blakley [8]].

Secret sharing based secure computation schemes are flexible in the sense that
they easily scale to arbitrary number of input and output parties. Anyone can easily
secret share their data and send it securely to computing parties. Similarly, results
are easy to share with output parties through secure communication channels.
Usually both secret sharing and reconstruction are inexpensive operations requiring
only random number generation and small amount of network communication.

In [104] Shamir proposed a t-out-of-n secret sharing scheme based on the
fact that ¢ points are required to uniquely determine a (¢ — 1)-degree polynomial.
To share a secret value x, a random (¢ — 1)-degree polynomial f over a finite
field Z,, such that satisfying f(0) = z is chosen. Shares are computed as z; =
f(),z2 = f(2),...,z, = f(n). Given t of those points, the polynomial f can
be reconstructed via Lagrange interpolation and the secret is reconstructed as f(0).
For general secure computing share construction and reconstruction protocols are
not enough. Chaum, Crépeau and Damgérd [31]] showed that general computation
that is information theoretically secure can be done on values shared with Shamir’s
scheme. Shared values are straightforward to add by summing the respective shares
locally. Multiplication is more involved and requires parties to communicate with
each other.

Additive secret sharing

In this section we give a brief overview of the n-out-of-n additive secret sharing
scheme. We present the scheme in more detail because much of this thesis is based
on SMC built on 3-out-of-3 additive and bitwise additive schemes. To share an
integer x € Z additively between n parties we pick n — 1 random integers from
Zpy . All but one of the participants are given a randomly generated value and one
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of the parties is given the secret x minus the sum of the random values

$
(xl,...,xn,l) < ZNX...XZN
Ty — T — 2?2_11 z; mod N .

The original value can be reconstructed by summing all of the shares. Note that the
additive scheme can also be instantiated when [V is 2. This is a useful case as it
allows for secret sharing of single-bit integers. We can lift this scheme to operate
on bit vectors of length k, yielding bitwise or XOR sharing over Z’Qf.

In the following we will use [z] to denote a secret shared value that recon-
structs to x. A shared value [x] is an n-tuple with each computing party holding
exactly one component of the tuple. The individual shares of [x] are denoted with
[«]y, ..., [#],, and individual values v; € Zy can be combined to form a shared
value (vi,...,v,) = [>_i; v;]. Reconstruction of x is as easy as computing
> [«],- Binary operations on shared data are denoted as [z] x [y] and may use
communication protocol between parties. For example, addition is denoted with
[«] + [y] and multiplication with [z] - [y]. Addition can be performed locally in
the additive scheme:

[2] + [yl = (I=]y + [oly, [=]y + [odas - Bl + T9d,)

One must be careful with the notation. We write [z + y] to denote a secret shared
value that reconstructs to = + y and not the addition operation between shared
values. It is correct to say that the aforementioned scheme for addition implements
[x + y]. Also, note the placement of indices: by [Z;] we do not mean i-th share of
the vector & but instead secret shared i-th component of the vector Z.

Multiplication of additively secret shared values requires network communi-
cation. Let us consider only the three-party case. One possible implementation is
based on the idea that

(x1+ 22 +23)(y1 + Y2 + y3)

(T1y1 + z1Yy3 + 23Y1)

(nyQ + xoy1 + T1Y2) 2.1
(r3y3 + T3y2 + T2Y3)

Z?:l TiYi + TilYp(i) T Tpi)¥Yi >

_l’_
+

where p(i) denotes the index previous to i, wrapping back to 3 if ¢ = 1. The
index of the next party n(7) is defined in a similar way. Equation (2.1) provides
the scheme for the multiplication protocol [z] - [y] as proposed by Bogdanov et
al. [23]]. Every party P; sends their shares of x and y to the next party P,;) and
computes [w]; = [2];[y]; + [=];[v],q) + []5(;)[v];- From Equation @2.1) it is
clear that w = x - y. This multiplication scheme generalizes to a larger number of
parties but does not scale well with respect to communication when n > 3.
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One alternative implementation of multiplication uses Beaver triples [6]]. We
say that the triple of shares ([a], [b], [c]) is a Beaver triple when a and b are
uniformly randomly generated and a - b = c. Assume that parties have such a triple.
First, compute [d] = [z] — [a] and [e] = [y] — [6] locally and then reveal both
d and e. Revealing these shares does not compromise security as a and b have
been randomly generated and thus mask the secret values. Next, each party locally
computes

[wl,=1lcl;, +e-[bl, +d-[a], +e-d .
It is straightforward to verify that w = z - y for any choice of a and b.

This scheme has various strengths. First, Beaver triples are independent of x
and y and can be pre-computed, and stored for future use. The online part of the
multiplication protocol is very simple and communication-efficient. Second, the
scheme generalizes to an arbitrary number of parties n > 1, including the important
case when n = 2. The Beaver triple scheme, like the additive scheme, also uses a
single round of interaction, but when also considering how to generate Beaver triples
(such as [40])) it is significantly more communication- and computation-heavy.

There are several practical applications built upon secret sharing based multi-
party computation [24} (107, [17]. Many maturing SMC frameworks that use secret
sharing exist. Examples of such frameworks include VIFF [35], SEPIA [27],
SHAREMIND [22,[11]], FrREsco [105]], SPDZ [38]], ABY [40] and WysTtERIA [100].

The GMW protocol

Goldreich, Micali and Wigderson [50] (GMW) proposed a protocol for evaluating
arbitrary Boolean functions securely. Whereas Yao’s protocol requires a constant
number of rounds and uses oblivious transfers only for the inputs of the garbler,
the GMW protocol uses OT for each AND gate and the number of communication
rounds depends on the depth of the circuit. For scalar operations, Yao’s protocol is
more efficient because of the constant round cost, but for large inputs GMW protocol
offers better performance due to small communication overhead (see Demmler et
al.[39] for performance evaluation of both GMW and Yao on various input sizes).

In GMW protocol inputs and intermediate values are secret shared with each
party P; holding a share v; such that value v = v; ®vo. XOR gates of the circuit can
be evaluated locally by XOR-ing the respective shares. AND gates can be evaluated
using either 1-out-of-4 OT or precomputed multiplication triples. Note that every
layer of the circuit can be evaluated in parallel. For performance considerations it is
important to both size- and depth-optimize the circuits, whereas for Yao’s protocol
only size optimization is relevant.

The GMW protocol has not seen such widespread use as Yao’s protocol. How-
ever, ABY [40] uses the GMW protocol for Boolean sharing and Wyster1a [[100]
uses an n-party generalization of GMW.
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2.2 SHAREMIND framework

While the ideas presented in this work are applicable to many different secure
computation settings, this work focuses on the SHAREMIND framework. Both of the
programming languages created by the author integrate with SHAREMIND framework.
In this section we give an overview of SHAREMIND, its history, and its applications.

SHAREMIND [10, [11] is a framework for analyzing and storing data in a
privacy-preserving manner. Initially, SHAREMIND was envisioned as a library and
privacy-preserving applications had to be written in C++. SHAREMIND offered the
interface necessary to invoke protocols on secret shared data. Security was achieved
via SMC based on three-party additive secret sharing. The protocol suite and its
UC security properties were formally described in [22].

The next major revision of SHAREMIND introduced the first version of the
SEcreC 1 language by Jagomigis [59] and improved the three-party protocol
suite [23l]. SEcreC 1 simplified the development of privacy-preserving algorithms
and made secure computing more approachable to developers with otherwise little
knowledge of cryptography. The language also enabled more rapid application
development by transitioning away from a low-level assembly-like programming
language to one tailored for the specific domain. In SECrReC 1 types are classified
into public and private. Operations on private data, such as multiplication and
divisions, invoke additive three-party protocols. Implicit information flow from
private to public is not allowed but can be done explicitly via declassification.

The first version of SECreC is limited in its features. It only supports a single
data type for 32-bit integers, and private computations are strictly limited to the
additive three-party scheme. The language lacks polymorphic procedures. For
example, to compute Hamming distance of both private and public data either
two versions of the algorithm need to be implemented or, alternatively, the private
procedure can be used after public data is converted to private. Neither solution is
ideal. The first solution means that the programmer has to duplicate code and the
second solution is significantly slower.

Older SHAREMIND applications used SECREC 1, or a low-level assembly language,
or even implemented the applications directly in C++.

* Bogdanov, Jagomigis and Laur [13}[14] developed privacy-preserving fre-
quent itemset mining algorithms in SECrReC 1.

* Bogdanov etal. [23] implemented k-means clustering in C++ using SHAREMIND
as a library.

* Talviste [[107]] developed a web-based questionnaire application for the Esto-
nian Association of Information Technology and Telecommunications (ITL)
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where the data analysis algorithms and various scripts were implemented in
SEcreC 1.

e Kamm et al. [[61] demonstrated that large-scale genome-wide association
studies are possible without violating the privacy of individuals. The core
algorithms were developed in SECReC 1.

* Bogdanov et al. [[12] developed a secure genetic algorithm for the subset
cover problem. The algorithm was implemented in SEcrReC 1.

The third version of SHAREMIND was a complete rewrite of the platform. The
new version allows the use of multiple security schemes and the platform is no
longer strictly tied to three computing parties. For example, in [[110] a prototype
security domain based on Shamir’s scheme [[104] was implemented, and in [98] a
security domain that combined secret sharing and garbled circuits was developed.
To further simplify application development and enable the use of the platform’s
new features the SECREC language has been revised. The second version of SECREC
is one of the contributions of this thesis and an overview of it is given in Chapter 3]
Performance of primitive integer and floating-point operations has also been greatly
improved in the third version of SHAREMIND. Much of the improvement has resulted
from the new protocol implementation language created by the author of this thesis.
The protocol language is the second major contribution of this dissertation and a
thorough overview of it can be found in Chapter[5] We give overview of applications
and prototypes that use SECREC 2 and the protocol language in Chapter [6]

Later, Bogdanov et al. [9] proposed RmMIND as an user-friendly tool for secure
data analysis. RMIND is syntactically similar to the R programming environment for
statistical computing. A major goal of the language is to offer a familiar interface
to statisticians who are used to working with tools such as R, SAS or SPSS. RminD
has been used to conduct a real-life secure statistical study [17] for which individual
tax records were securely linked with education records.

2.3 Security of secure computation

The additive secret sharing protocols that this work is focused on are secure in the
universal composability security framework by Canetti [28]. A protocol is said to
be universally composable (UC) if it maintains its security properties when run
together with any other secure or insecure protocols. Notably, UC protocols can
be composed either sequentially or in parallel with other universally composable
protocols and the result will also be a UC protocol. This property allows us to take
individual UC protocols and build larger protocols or even applications out of them.
We have to emphasize that this is a very strong guarantee that allows even people
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not familiar with cryptography to build secure applications from secure building
blocks.

In the following section we will present an informal overview of the universal
composability framework. This work does not present a comprehensive overview.
For a more formal and detailed presentation please refer to either the original
framework [28]] or a version simplified for SMC [29]]. A slightly gentler introduction
to universal composability framework and SMC can also be found in [32].

2.3.1 The universal composability framework

The security of a protocol 7 is given with respect to some ideal functionality F that
describes what the protocol 7w computes and how it interacts with adversary. In order
for 7 to UC securely implement F it has to behave like F in any environment. The
real functionality 7 can have a complicated internal structure and is often composed
of simpler protocols that communicate with each other. The ideal functionality F
usually has no internal structure. It only models the correct input-output behavior
such that & and m would have compatible interfaces for providing input and
requesting output.

In this framework, a protocol is modeled as a collection of interactive agents.
An agent is a computational device that sends and receives messages on named
ports, and holds an internal state. In a closed collection, each port has a single
agent writing it, and a single agent reading it. Only closed collections of agents
are executable. The interface of a collection of agents is the set of named ports
occurring in it that lack a reader or writer.

Security is specified against classes of adversaries. Some restriction is necessary
because an adversary with unlimited power can break nearly every cryptosystem.
In SMC setting an adversary is allowed to corrupt only a limited number of parties.
For example, in three-party additive setting, an adversary is allowed to corrupt
a single party. There are different kinds of corruption modes. If a protocol is
secure against an adversary that is only allowed to eavesdrop on communication
(honest-but-curious), we call this protocol passively secure. If a protocol is secure
against adversaries that may have complete control over the corrupted parties we
say that this protocol is actively secure. In most cases adversaries are required to
be efficient, limiting their computational power to that of nonuniform probabilistic
polynomial-time algorithms. We denote adversaries with A.

Notice that while the input-output interface of the real-functionality 7 is
compatible with its corresponding ideal functionality F, it is not possible to just
replace 7 with F in an arbitrary context. The protocol 7 is generally executed by
some number of parties P1, . . ., P,, and evaluation can take multiple communication
rounds. To make ideal functionality behave in a way that looks similar to the real
protocol we need a simulator Sim to emulate the internal structure of 7 without
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knowing the inputs of F. In other words, the task of the simulator is to make the
ideal functionality F look like protocol  to adversary .A. We write Sim” to denote
that the simulator uses the adversary in a black-box manner. In practice Sim and A
are actors that communicate with each other via ports. We denote the composition
Sim” (alternatively Sim||A) as A° for the adversary in the ideal world.

Protocol inputs are given by an environment Z. In fact, the environment supplies
inputs to parties, reads all outputs and interacts with the adversary in arbitrary ways.
If a party has been corrupted, its inputs are also given to the simulator (otherwise
the simulator is not given inputs).

Definition 1 (Universal Composability). We say that a protocol m UC securely
implements ideal functionality F if there exists a simulator Sim such that for any
adversary A the view of Z in the real world Z||7||A and in the ideal world Z || F||.A°,
where the ideal world adversary A° is defined as Sim*, are indistinguishable. The
views can be either statistically or computationally indistinguishable.

2.3.2 Security and privacy for SMC protocols

Given the definition of universal composability we can more formally define
security, privacy and the class of passive adversaries. Ideal functionality for a
(probabilistic) function f is an agent fgec that communicates with participants and
the adversary A. We start by describing this interaction.

The agent F1,. first receives the set of corrupted parties from the adversary and
then sends corruption message to each of the corrupt parties. Next, .stec receives
input x; from party P; and if the party is corrupted then z; is also forwarded to the
adversary. For corrupt parties P; adversary sends z to .stec and for non-corrupt
parties Fiec sets x, = x;. The agent Floc computes (Whs-oyyh) = flah, ... x))
and sends v/} to the adversary if P; is corrupt. The adversary can either reply with
a value y; or respond with a message (stop, j) indicating that a corrupt party P;
stopped execution. In the latter case F1,. forwards the stop-message (stop, j) to
all participants and halts. For non-corrupt parties P; the agent ]-'SJ;C sets y; = y..

Finally, Floc sends y; to every party P; and stops.

Definition 2 (Security). We say that a protocol 7 securely implements function f
if 7w is a UC secure implementation of the ideal functionality Fi..

Definition 3 (Passive adversary). We say that A is a passive adversary for the ideal
functionality ]—"sfec if it defines ; = 2 and y} = y; for each party P;.

Sometimes it is difficult to achieve security against stronger than passive
adversaries. Privacy is a weaker property that is easier to achieve but still guarantees
that private inputs are not revealed. For a function f let agent F. /. work exactly

priv
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like Fioc until computing (y1,...,yn) = f(, ..., x}). After that the agent stops
and does not send the resulting y; to parties P;.

Definition 4 (Privacy). We say that a protocol 7 privately implements function f
if m UC secure implementation of the ideal functionality JF d

priv-

The three-party additive secret sharing based protocol set (Section [2.1.5)
provides security against one passive (honest-but-curious) party. Security is in the
sense of statistical indistinguishability of the actual execution of the protocol from
a simulated one as defined previously. Security implies that the protocol preserves
the privacy of honest parties’ inputs, and the protocol delivers correct outputs to
all honest parties. For passive adversaries, the correctness property trivially holds.
We have constructed most of the protocols of SHAREMIND in such a way that they
provide privacy [18,97]], but not correctness, against one maliciously corrupt party.

2.3.3 Hybrid model

Consider an SMC protocol 7 that uses some other simpler universally composable
protocols. We might have a difficult time directly showing that 7 is also universally
composable. To simplify security proofs we often use the hybrid world approach. In
this model the UC sub-protocols of 7 are replaced with calls to their ideal function-
alities. If we can show that the hybrid world and ideal world are indistinguishable
then from the UC property of sub-protocols we also know that the ideal and real
world are indistinguishable too.

This is a particularly useful technique when showing UC security of protocols
that are purely composed of UC secure sub-protocols and do not perform any
communication apart from what the sub-protocols perform. In the hybrid world
such protocols collapse down to only local computation, giving us security for free,
and we only need to show correctness.

2.3.4 Arithmetic black box

To talk about the security of entire programs we use the concept of an arithmetic
black box (ABB) first proposed by Damgérd and Nielsen [37]. An ABB is an ideal
functionality Fagp that contains a mapping from public handles to private values
and allows the parties to perform secure arithmetic with the stored values. Values
can be provided to the ABB by the parties themselves or the ABB can be instructed
to obtain a value from the outside environment. To perform an operation, the ABB
is supplied with the name of the operation, and handles of the arguments and results.
Computing parties can also instruct the ABB to publish values stored under the
handles. An operation is only performed if a certain number of parties instruct the
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ABB to do so. The number of necessary parties depends on the specific security
scheme. We denote a concrete implementation of an ABB with magg.

The SHAREMIND framework allows for programs written in the high-level
imperative language SECREC to be executed on top of different arithmetic black
boxes. Code can be either specific to an Fagg or can be more generic. SECREC
takes the so-called duck typing approach where generic procedures can be executed
on data in any Fagp that offers a suitable interface. This facilitates code re-use
even across arithmetic black boxes that offer very different sets of operations. If the
protocols in the underlying ABB are universally composable, the programs that can
be written on top of them also admit strong security guarantees. We will elaborate
on the security guarantees of high-level programs in Section 4.6}
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CHAPTER 3

THE SECREC PROGRAMMING
LANGUAGE

SEcreC 2 is a programming language designed for implementing data analysis
algorithms on the SHAREMIND platform. The main goal of the language is to make
the process of implementing secure computation algorithms easy for programmers
who are not familiar with secure computation or cryptography in general. We
achieve this by

providing an imperative C-like syntax which is ubiquitous in data analysis
literature and is generally far more familiar to programmers than other
computing paradigms;

hiding that the program will be possibly run on multiple computers;

syntactically not differentiating secure computations from regular public
computations, when it is reasonable to do so;

offering generic programming facilities that enable code reuse across public
computations and different security schemes; and

providing a standard library that builds complex functionality on top of
simple primitives, thereby allowing security schemes to only implement a
small number of basic operations.

However, the language remains domain-specific. We found that general-purpose
languages are not a good fit for secure computation. Firstly, in SMC the programmer
has to indicate if the data is public or private and can implicitly convert data only
from public to private domain but not the other way around. Having only data that
is private can incur too great of a performance cost. Secondly, we facilitate intricate
array processing in order to make code vectorization easier, which, in turn, makes
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common performance optimizations easier. Performance has dictated the language
design in more than one way: we also do not support any implicit type conversions
because it can be extremely costly in non-public domains. There are many more
subtle differences relating to general security in programming: array accesses are
always dynamically checked, global state is shunned (but still supported), pointers
and references are not supported, and so on.

The SEcreC 2 language evolved from the experience with the first version
of SEcrReC. The second version is a more mature language that is richer in
features. It has more than one integer type, it can facilitate other security schemes
in addition to the additive three-party scheme, it has floating-point numbers, it
supports (domain) polymorphic functions (whereas the first version of SECREC
has strictly monomorphic functions), and array manipulation is more advanced,
supporting arbitrary-dimensional arrays. The author of this work designed and
implemented all of these features.

In Section[3.T] we describe SECREC to readers who are interested in learning
the language or only want a high-level overview. In Section [3.2] we talk how
to write efficient SECREC code. Due to very large constant factors and latencies,
performance is an extremely important consideration in secure computing. While we
talk about the SEcrReC language, the techniques are generally applicable to the secure
computation setting. In Section [3.3] we give an overview of the implementation
of SEcreC and talk about how the language fits into the SHAREMIND framework.
Finally, in Section [3.4] we talk about ongoing work on the language and possible
future directions.

3.1 Language overview

3.1.1 Familiar syntax

A major goal of SECreC is to offer a familiar syntax. It is infeasible to expect the
users to be fluent in functional languages or complex type systems that provide
strong security guarantees. For this reason SECREC has a C-like syntax which is
ubiquitous amongst popular programming languages. In fact, just by looking at a
complete “Hello, World!” program (Listing [3.1)) written in SEcreC it is impossible
to say that the language is somehow unique or related to SMC.

SecreC supports regular public computations the syntax of which is very close
to other C-like languages. Arithmetic, bitwise, logical and relational operations are
all supported. All integer data types are strictly sized from 8 to 64 bits and include
signed and unsigned variants. We also support Booleans, strings, floating-point
values and arrays of primitive data types. Basic support for user-defined structures
is also available. Listing [3.2] demonstrates simple arithmetics on signed 64-bit
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Listing 3.1: “Hello, World!” in SEcreC

// Simple "Hello, World!" program.
void main() {
print ("Hello,_World!");

3

Listing 3.2: Integer arithmetic in SECREC

void main() {
int64 x = 25;
int64 y = - 10;
print ("x_.t_oy.=_", x + y);
print ("x_*_y.=_.", X * y);
uint32 z = (uint32) (x - (x /7 y));

n

print ("z_.=.", 1 + 8 x z);

and unsigned 32-bit integers. Note that without explicit type conversion when
initializing variable z the code will not compile and will raise a type error.

A familiar C-like syntax for branching, looping and user-defined functions is
available. Function parameters are always passed by value. This includes structures,
arrays and non-public values. See Listing[3.3]for an example on defining and calling
functions. Note that the 27 :: uint32 syntax is used to specify that the constant
27 is of 32-bit unsigned integer type. We could have also used C-like (uint)27
but the former guarantees that there is no type conversion happening.

3.1.2 Performing secure computations

SecreC distinguishes between public and private data on type system level. Every
type in SECREC has two components: the data type and the security type. When not
specified, the security type is implicitly assumed to be public. To declare private
data it is not sufficient to state that the data is simply “private”. The programmer
has to be explicit what kind of security scheme is used and has to specify the name
of the concrete deployment of this scheme. This is because SHAREMIND facilitates
the use of many different security schemes and even the concurrent use of multiple
instances of a given scheme.

Having an omitted security domain default to public is not a security issue. The
type system guarantees that private data is never implicitly converted to public data.
Even if programmer accidentally leaves out a non-public domain a type error will
be raised. It is possible to construct an artificial example where this is not true but
it would have to involve (indirect) declassifications. Another reason for having the
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Listing 3.3: Functions, loops and conditionals in SECREC

uint32 nextCollatz (uint32 n) {
if (n % 2 == 0)
return n / 2;
else
return 3*n + 1;
}
void printCollatz (uint32 n) {
while (n != 1) {
print(n);
n = nextCollatz(n);

3
3
void main() {

printCollatz (27 :: uint32);
3

Listing 3.4: Secure comparison in SECREC

kind shared3p;

domain pd_shared3p shared3p;

void main () {
pd_shared3p uint x = 3;
pd_shared3p uint y = 5;
public bool z = declassify(x < y);
print ("x.<.y.=.", z);

default domain be public is that SECREC programs contain fair share of public code.
For example loop counter and array indices are usually public.

To see this in action, consider the code in Listing [3.4| where we first declare
a security scheme (or kind) called shared3p and then declare a concrete security
domain of that kind. In the main function we declare two variables that are in the
shared3p domain, compare them, reveal the result, and print it. This example only
involves computation parties (see Section [2.1.1). The program does not receive
input from input parties or produce results to output parties. The computing parties
only log the result of declassification.

Private variables are defined similarly to public ones, except the security type
is written before the data type. Explicitly writing that the public domain is allowed.
There are a few things of note in this example: public values can be implicitly
converted to private, the regular syntax for comparison can be used to invoke
secure comparison, and conversion to the public domain requires an explicit call to
declassify function. In order for SHAREMIND to be able to execute the following
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Listing 3.5: Millionaires’ problem in SECReC 2

import shared3p;

domain pd_shared3p shared3p;

void main () {
pd_shared3p uint x = argument("IncomeAlice");
pd_shared3p uint y = argument(”"IncomeBob");
publish("result”, x < y);

code, it has be configured to supply the mentioned security scheme and a concrete
instance of it. The security schemes are implemented via loadable modules and
concrete instances (so-called domains) have to be explicitly configured. To configure
a protection domain a user has to specify the domains’ name, which concrete servers
are involved, and a loadable module that associates operation names with executable
code. The precise details are very technical in nature, are subject to change and are
thus not included in this work.

Input and output

In real applications private variables are rarely initialized directly from public ones
like we just saw. A more realistic program would be one that, for example, gets
the value of x from one client and y from another. As a result of executing the
example both input providers would be notified whether x is less than y. This can be
considered an implementation of the Millionaires’ problem [113]]. SEcrReC 2 code
for such application is presented in Listing[3.5] Instead of declaring a protection
domain kind we use appropriate standard library module that already declares that
kind and defines various operators and functions for it. Inputs are no longer hard-
coded and instead are given as arguments to the program. The result is published to
output parties.

Notice that the example still only directly involves computing parties. It does
not state from where the "IncomeAlice” and "IncomeBob” arguments come from
or who receives the published result. This logic is implemented outside of SEcReC 2.
The very same code could be used in many different application. In one case it
could be used for application that involves three parties two of which provide input
and all of them receive the output. Or it could also involve a web interface for
supplying data. In that case input, computing and result parties could all be distinct.
For a real-world example of how SMC can be deployed for web applications see
the dissertation [108]] of Riivo Talviste.
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Private conditionals

Private values can be used exactly like public ones in most places, such as,
expressions, function arguments, variable declarations, and return values. How-
ever, they cannot be branched over. For example, if we want to conditionally
change a secret value x depending on a private Boolean b we are not allow
to write if (b) { x = y;}. The same result can be achieved by evaluating
(uint)bx(x-y)+y that results in x if b is true and in y otherwisd} This pattern can
be abstracted to a function.

Many SMC programming languages, forexample, ObliVM [85]] and PICCO [118],
allow branching over secure Booleans in some restricted cases. We have decided to
not adopt this approach main because we have not had the need for it. While it does
help developers a little bit, in our experience development effort is not significantly
increased in their absence. There are some other less important reasons for not
having private conditionals.

1. When branching over secure Booleans, it is not possible to perform any
public side effects such as printing output or performing public assignments.
The type system or program analysis would need to detect such conditions.
Encoding such information in types makes the language more complicated.
On the other hand, achieving the same results via program analysis hides
from the programmer if a function can be used in a private-conditional or
not.

2. Secure branches are significantly slower than public ones because they force
the compiler to evaluate both branches and then select the correct answer
based on the private Boolean. This argument would be weak if private
conditionals were indistinguishable from public ones, but they are not.

3. Supporting secure conditionals raises the question of why not also provide
support for secure looping with an upper bound to the number of iterations.

In summary, supporting conditionals over secure Booleans adds value by helping
the programmer but it also complicates the language, its type system, and compiler
implementation. Having all control flow be public leads to a more approachable
language and a simpler compiler. Given that private conditionals are not overly
common we opted to not offer convenient syntax for them. This limitation is
conservative in the sense that it can be relaxed in a backwards compatible manner
if it turns out that private conditionals are frequently used.

Depending on the security scheme, different expressions can achieve the same results more
efficiently.
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3.1.3 Protection domains and kinds

We provide two definitions that explain our motivation behind the choices for the
keywords for declaring a security scheme and its instances.

Definition 5. A protection domain kind (PDK) is a set of data representations,
algorithms and protocols for computing on and storing protected data.

Definition 6. A protection domain (PD) is a set of data that is protected with
the same resources. There is a well-defined set of algorithms and protocols for
computing on that data while keeping the protection.

Each protection domain belongs to one protection domain kind and each kind
may have several protection domains. A classical example of a PDK is secret
sharing (see Section [2.1.5) with an associated data representation and protocols
for construction, reconstruction and arithmetic operations on shared values. A PD
in this PDK would specify the actual parties doing the secret sharing. Another
example of a PDK is fully homomorphic encryption (Section [2.1.3) with operations
for encryption, decryption and algorithms for performing arithmetic operations
such as addition and multiplication on encrypted values. For the FHE PDK, each
PD is associated with a secret key. It is also possible to consider non-cryptographic
methods for implementing PDK-s using trusted hardware or virtualization. Intel
SGX offers an example of a practical PDK with a single physical computer evaluating
a program.

In general a PDK has to provide:

1. A list of data types supported by the PDK.
2. For each data type in the PDK:
(a) a classification function for converting public data to the protected
representation and a declassification function for revealing private data,
(b) protocols or functions for operating on protected values.
The protocols performing secure computation should be universally composable so
that they can be safely combined into programs without losing security guarantees.
Here we state that any PDK needs to allow its data to be converted to and from
the public domain. This is not strictly necessary and a PDK may instead allow

converting data to and from some other PDK. However, we have not found a
practical case where restricting public conversions is useful.
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Listing 3.6: A naive and slow implementation of counting in SECREC

pd_shared3p uint count (pd_shared3p uint32[[1]] data,
pd_shared3p uint32 value) {
pd_shared3p uint matchCounter = 0;
for (uint i = 9; i < size(data); ++ i)
matchCounter += (uint) (datal[i] == value);
return matchCounter;

3.1.4 Array processing

Rarely do applications of secure computation deal with single values. More often
the goal is to learn some information from a large set of data without revealing
information about the individual values. Naturally, to process many records a
programming language has to support arrays or some other forms of collections.
As we will later see, a solid support for data-parallel processing is also an attractive
feature. SECREC supports arbitrary-dimensional arrays with publicly known size.
Access is provided and modifications are made via public indices.

A simple aggregation procedure is to count a number of occurrences of a value
in a set of data. This can easily be achieved, as shown in Listing[3.6] by iterating over
the input array, comparing with the value, and incrementing the counter whenever a
match is found. Counter increments are achieved by casting the result of the equality
check to an integer and adding that to the counter. When the comparison results in
true the counter is incremented by 1 and otherwise by 0. Double square brackets,
such as [[1]], denote the array’s dimensionality (the number of dimensions). For
instance, public integer matrices are represented with int[[2]]. We use double
square brackets to be distinct from C where int[4] denotes a one-dimensional
array of length four. Stacking multiple square brackets as int[J[J[J[] would
mean that special syntax would be needed for dimensionality-generic code.

SecrEC puts a lot of emphasis on array processing and tries to make it convenient.
For example, many language constructs are lifted to operate pointwise on arrays.
One can add two arrays using the exact same syntax as for adding two scalars.
Binary arithmetic also allows for one operand to be an array and the other a scalar.
Other than being less verbose vectorized operations are in many situations more
efficient than loops of scalar operations. It is possible to rewrite the counting
function in a more compact style by comparing the value to the data pointwise and
summing the resulting Booleans as sum(data == value) where sum is a function
defined in the standard library. We will later see that, in addition to conciseness,
this version also performs significantly better than the one in Listing [3.6]

Reshaping and moving data between arrays is very common and to avoid
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writing verbose loops for such a typical task we support indexing arrays with
ranges. Given a one-dimensional array arr the expression arr[b:e] results in an
array of length e-b where the elements are taken from the range of indices from
b to e-1. If omitted the lower bound is implicitly assumed to be 0 and the upper
bound is assumed to be the length of the array. This syntax expands naturally to
arbitrary-dimensional arrays and can be mixed with regular indexing. For example,
the expression mat[1, : ] results in the second column of the matrix mat.

It is possible to change the number of dimensions and dimension sizes of an
array. The only requirement is that the number of elements of the resulting array
be the same as in the input array. For example, a matrix mat can be flattened into
a one-dimensional array with the reshape(mat,size(mat)) expression. More
generally, reshape takes arbitrary number of arguments after the first one that
indicate the shape of the resulting array. SECREC guarantees that arrays are stored
in generalized row-major order. When we flatten a matrix, its first row occurs first
in the resulting array, then the second row, and so on. Scalars are allowed to be
reshaped into any shape or size.

3.1.5 Protection domain polymorphism

SHAREMIND is not limited to using a single protection domain kind and can even
support the use of multiple protection domains concurrently. This feature makes
it possible to re-use code between different security schemes. For example, the
function for counting occurrences in an array can be implemented for any scheme
that supports comparison, addition, and conversion from Booleans to integers.
However, the implementation in Listing [3.6]is not usable across different security
schemes but only on one particular instance of the additive three-party scheme.

To enable reuse across security schemes, SECREC supports protection domain
polymorphism using syntax similar to C++ templates. A generic version of the
counting function is presented in Listing where the function has been made
polymorphic over any protection domain D but the rest of the code remains unchanged
compared to the previous implementation. Note that this includes the public security
domain, making the function also usable on public data. In many cases algorithms
have a single implementation across multiple protection domains.

Template functions are type checked similarly to C++. Type correctness of a
template function body is verified only when the function is instantiated to some
concrete protection domain. The definition itself is only syntactically verified.
Unfortunately this means that when the counting function is called on a protection
domain that does not support equality, a type error is raised at the location of
the comparison and not where the function is called from. Some other languages
overcome a similar problem by restricting type parameters to only types that are
known to offer some necessary functionality (such as equality). The restriction can
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Listing 3.7: Protection domain generic counting function in SECREC

template <domain D>
D uint count (D uint32[[1]] data, D uint32 value) {

D uint matchCounter = 0;
for (uint i = 0; i < size(data); ++ i)
matchCounter += (uint) (datal[i] == value);

return matchCounter;

be statically verified at the call site and error is raised when the constraints are
not satisfied. For example, Haskell has type classes, rust has traits, and C++ has
proposed concepts. All these solutions add considerable complexity to the language.
Thus, we find it acceptable tradeoff to not have any form of bounded quantification.
SEcrEC programs are at most medium-sized and typically span less than a few
thousand lines of code.

Often it is not sufficient to provide a single implementation of a particular
function that works on all protection domains. Sometimes we want a faster
implementation for a certain protection domain, or the default implementation uses
operations that a domain does not support. Function overloading can typically be
used to solve those cases.

Consider function choice for choosing a value based on a Boolean. It takes a
Boolean value and two arguments and returns the first argument if the Boolean is true
and the second argument if the Boolean is false. SECREC does not support regular
if-expressions over secure conditionals; thus, this kind of function is often useful
for filling the role of branching. In Listing[3.8] the first definition is polymorphic
over any protection domain but the second one is restricted to a domain based on
Yao’s garbled circuits scheme. The first definition can be considered a more generic
default implementation and it relies on multiplication, addition and subtraction.
However, for Yao’s scheme multiplication can be a rather costly operation that we
want to avoid. Instead, in the case of the yao2p domain, the Boolean is converted
to a suitable bitmask and the result is computed via bitwise conjunction and XOR.
Note that the second implementation is also not a good default as it is not efficient for
additive secret sharing based schemes. The polymorphic overload that is specialized
for yao2p protection domain kind works for any concrete domain of that kind.

When multiple matching definitions are found for the function being the most
restricted match will be selected. In the current example, the second definition has a
more restrictive signature than the first. When multiple equally matching functions
are found, a type error is raised.

We have built a standard library using polymorphic functions, overloading and
modules. The code is structured into a generic stdlib and specialized modules
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Listing 3.8: Function overloading in SECREC

template <domain D>

D uint32 choice(D bool b, D uint32 x, D uint32 y) {
return (uint32)b * (x - y) + y;

}

template <domain D : yao2p>

D uint32 choice(D bool b, D uint32 x, D uint32 y) {
D uint32 mask = - (uint32) b;
return mask & (x * y) * vy;

Listing 3.9: Generic array flattening in SECReC

template <domain D, type T, dim N>
D TLL11] flatten(D TLIN]] arr) {
return reshape(arr, size(arr));

}

for each protection domain. The stdlib module defines functions that are poly-
morphic, with some overloaded on public domain. Each protection domain kind
module can overload the standard library functions and provide the user with more
efficient implementations. For example, we supply the shared3p module and some
accompanying modules to provide more efficient operations.

In addition to protection domain polymorphism, we also allow functions to
be generic over data types and array dimensionalities. For example, the function
defined in Listing [3.9|reshapes an arbitrary-dimensional array of any type in any
protection domain into a one-dimensional array.

3.2 Writing efficient SECREC

Efficiency is often a concern in secure computation. Secure algorithms, that are
implemented directly based on some public version, can be infeasibly slow due
to high round counts or impractical network bandwidth requirements. This is a
problem as most secure computation protocols require network communication.
Some security schemes require a constant number of communication rounds but
high network bandwidth, and some schemes have low bandwidth requirements but
need to perform many communication rounds. In either case, a programmer must
take care when implementing secure algorithms.

In this section we provide some generic techniques that help improve perfor-
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mance of secure programs. We have the following suggestions that we will elaborate
on and show how they are applied in SEcreC.

1. Prefer parallel execution to sequential execution. Even for reasonably large
inputs, applications should take a sublinear number of communication rounds.

2. In many cases the SIMD style of parallelism is sufficient but sometimes more
involved techniques need to be applied to lower the number of communication
rounds. For example, associative operations can be aggregated in a logarithmic
number of rounds.

3. Prefer operations that are not costly in the chosen protection domain. For
example, in additive schemes addition does not require network communica-
tion.

3.2.1 Parallel execution and SIMD

SecrEC operates on the assumption that the underlying computation protocols are
universally composable. This property allows secure operations to be executed
either in parallel or sequentially without loss in security guarantees.

In real applications, when we execute two subsequent multiplications we invoke
the underlying secure multiplication protocol twice sequentially. Regardless of
how many communication rounds the underlying multiplication protocol performs,
when two sequential multiplications are performed it takes about twice as much
time. Compared to regular computers where operations take nanoseconds, in secure
computation operations have latencies of over several milliseconds because of
network communication. This is a difference in the order of 10°.

Such a drastic overhead might sound like secure computing is completely
infeasible. In addition to comparing only instruction latencies, we should also
look at parallel execution. Namely, in a networked setting it is possible to perform
thousands of operations in parallel in the same amount of time that it takes to execute
a single operation. This is because the network is optimised for high-bandwidth
usage. Thus, for reasonably efficient applications sequential execution should be
avoided and parallel execution should be preferred.

SecrEC has opted for data parallelism (performing one task on many pieces of
data at the same time) over task parallelism (performing many tasks at the same
time). Most operations in the language can be applied to arrays in which case
the operation is executed pointwise on the data. This is also known as the single
instruction, multiple data or SIMD approach.

To demonstrate the issue with high latency let us look at an implementation of
dot product (Listing [3.10) as usually written in a regular imperative programming
language. The common solution is to iterate over both arrays adding the product
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Listing 3.10: Dot product in SECREC

template <domain D>
D uint32 dotProduct(D uint32[[1]] x, D uint32[[1]1] y) (

assert (size(x) == size(y));
D uint32 result = 0;
for (uint i = @; i < size(x); ++ i)

result += x[i] * y[i];
return result;

Listing 3.11: Round-efficient dot product in SECREC

template <domain D>
D uint32 sum (D uint32[[1]] arr) {
D uint32 result = 0;
for (uint i = 0; i < size(arr); ++ 1)
result += arr[i];
return arr;
}
template <domain D>
D uint32 dotProduct(D uint32[[1]] x, D uint32[[1]] y) (
return sum (x * y);

}

of the corresponding elements to the accumulator. In most security schemes the
multiplication operation requires the execution of a protocol that takes at least a
single communication round. The iterative solution would then take a linear number
of communication rounds with respect to input length. Due to network latencies
this makes the algorithm infeasible to use in real applications with non-trivial input
sizes.

To optimize the previous example we notice that we can multiply the input
arrays pointwise. This is a data parallel operation and takes the same number of
rounds as multiplication of scalar values. The result of the product is stored in a
temporary array that is then summed. In the additive scheme, integer addition is a
local operation; thus, the implementation in Listing[3.11]is efficient enough because
iterative addition does not increase the round count of the procedure.

3.2.2 Round-efficiency

In some schemes, such as Boolean circuit based ones, addition is not a local
operation, meaning that sequential addition still incurs a linear round count. This
shortcoming can be overcome by iteratively performing data-parallel additions
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Listing 3.12: Round-efficient summing in SECREC

template <domain D : pd_yao>
D uint32 sum (D uint32[[1]] arr) {
uint n = size(arr);
if (n == @) return 0;
while (n > 1) {
uint smallHalf = n / 2; // Rounds down
uint bigHalf = n - smallHalf;
arr[: smallHalf] += arr[bigHalf : nJ];
n = bigHalf;
}

return arr[0];

between the lower and upper half of the array until a singleton array remains. For an
input of length 7 this procedure takes O(log n) communication rounds. A possible
implementation that also takes care of non-power-of-two inputs is provided in
Listing[3.12] We could use round-efficient summation as the default implementation
but it turns out to be slower in the case of public data and security schemes where
addition is a local operation.

This technique is generic and is applicable to any associative binary opera-
tion. For example, secure floating-point addition as implemented by Kamm and
Willemson [62] performs multiple communication rounds. Summing a sequence
of floating-point values is a common operation that is often performance-critical.
While floating-point addition is not strictly associative it is regardless very useful
to apply this technique for performance reasons.

3.2.3 Security scheme specific techniques

Parallelism and round-reduction techniques are useful tools in general but especially
important in a secure setting because of the very high constant factors involved. In
many cases it is also possible to exploit the properties of the security scheme to
provide even better performance. We shall see few of these techniques here and
take a look how they can be implemented in SEcrReC.

Consider the task to check if at least one value in a Boolean array is true. An
implementation that uses a parallel algorithm to compute the disjunction of all
elements takes O(logn) rounds for an n-element input array. In practice this is a
perfectly reasonable implementation but it is possible to do better. Asymptotically
improved round complexity is achieved by converting the Boolean array to additively
shared integers, adding up the integers, and checking if the sum is zero. This exploits
the fact that addition of additively shared integers is a local operation. In order to
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Listing 3.13: Constant-round disjunction

template <domain D : shared3p>
D bool any (D bool[[1]1] arr) {
return sum ((uint64) arr) != 0;

3

not overflow the sum we must use at least [log n|-bit integers. Because conversion
from Boolean to integer takes a constant number of rounds and integer comparison
has logarithmic round complexity, this yields an algorithm with O(log log n) round
complexity. Our implementation in Listing [3.13] uses 64-bit integers which is
sufficient for all practical purposes.

Itis difficult to adopt many common algorithms to the secure computation setting.
For example, most popular sorting algorithms branch their control flow depending
on the results of comparisons between the elements of the input. These sorting
algorithms cannot be adopted to secure computation setting in a straightforward
manner because such control flow dependencies leak information, namely the ranks
of the elements and, thus, the relative ordering of secure inputs. However, if the
original ordering of the data is hidden by randomly shuffling (permuting) the input
then the control flow does not reveal as much information. In fact, if all input values
are unique then no information is revealed [51} 21]].

A useful and efficient technique available for many different secret sharing
schemes is to randomly shuffle the input to hide data dependencies. The random
shuffling scheme proposed by Laur, Willemson and Zhang [80] is constant in round
complexity and O(nlogn) in communication complexity. Thus, this primitive
facilitates the implementation of O(nlogn) sorting algorithms. Many practical
data-oblivious sorting algorithms exist—bitonic sorter [4], Batcher odd—even
mergesort [4], pairwise sorting network [95]—but they all have O(n log® n) time
complexity, take (’)(log2 n) rounds, and are not stable. Numerous applications are
built on top of oblivious sorting [74]]. The shuffling primitive has also found use in
oblivious database linking [79].

3.2.4 Trade-off between efficiency and privacy

When writing SMC code there is almost always a trade-off between efficiency
and security. An implementation that does not reveal any information can be
impractically slow. Revealing some sensitive information that is found to be
acceptable to leak we can speed up the program significantly. One such example is
sorting where the best practical oblivious algorithms take O(n log? n) time. When
it is acceptable to reveal the results of comparisons it is straightforward to adopt any
O(nlogn) sorting algorithm to secure computation setting [21} 51]]. We shall see
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how SecCrEC gives the programmer flexibility to make trade-offs between efficiency
and privacy.

As a small case study we will implement quickselect [54]] (also known as Hoare's
selection algorithm) for finding the k-th smallest element of an unsorted sequence.
On average the public algorithm runs in linear time. In this section we show how
a naive secure implementation of the algorithm has O(n?) running time but by
revealing a little information about the input sequence we can achieve O(n logn)
average-case complexity, and by revealing even more we get an implementation
that works in linear time.

Public quickselect operates similarly to quicksort. The algorithm operates
iteratively on a working list. In every iteration we pick a pivot from the list and
split the remaining list into two parts: elements smaller than the pivot, and the rest
of the elements. Let the list wih smaller elements have [ elements. If £ = [ then
we are done as the pivot is the k-th smallest element (we start counting from 0). If
k < [ then the answer can be found in the list with smaller entries, and we just drop
the larger elements and continue. If £ > [ then the element can be found in the list
with larger entries. In this case we drop the smaller elements and continue to look
for the (k — [ — 1)-th smallest element in the remaining sequence.

Usually, the development of a privacy-preserving algorithm starts from a public
implementation or description. In Listing[3.14] we have implemented quickselect
in SECrEC so that it only operates on public data. It mostly follows the algorithm
description from earlier but we have already given some forethought to the secure
implementation. Namely, we perform all comparisons between the pivot and the rest
of the list in parallel to keep the round count minimal. The results of the comparison
are stored in the mask array and variable [ is computed by summing the bitvector. If
k > [ we flip the mask. After the checks we filter the list according to the mask. To
keep the presentation simple, we have not optimized it. Namely, the algorithm does
not operate in-place and traverses the sequence more often than is strictly needed.

Given an n-element input list, in the worst case our implementation may take n
iterations leading to an O(n?) algorithm. Consider the case where the list is already
sorted and we are looking for the (n — 1)-th smallest element. In such case, during
every iteration, the pivot is chosen to be the first element of the running sequence.
Because it is the smallest one, no elements other than the pivot are eliminated from
consideration. We can improve the algorithm by selecting the pivot randomly but
this does not improve the worst case as every time the smallest element could be
selected. A perfectly secure version has to account for the worst-case possibility.
Thus, if we do not want to leak any information we have to perform all n iterations
of the algorithm. But such an implementation is unacceptably slow and better ones
clearly exist. For example, we could simply sort the input sequence using some
oblivious sorting network and pick the k-th element of the result. That yields a
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Listing 3.14: Public quickselect algorithm in SECREC

int quickselect(int[[1]] list, uint k) {
assert (k < size(list));
int pivot;
while (true) {
pivot = list[@]; // Random selection is better
list = list[1:];
bool[[1]] mask = list < pivot;
uint 1 = sum(mask);
if (k == 1) break;
if (k > 1) mask = ~mask;
if (k >1) k =k -1-1;
list = filter(list, mask);
}

return pivot;

much better O(n log? n)-time algorithm.

If we are willing to accept leaking the number of iterations that the algorithm
performs, we can do much better. Unfortunately, this may actually give away a lot
about the original data. For example, when we select the first element as the pivot
during each iteration and the algorithm performs n iterations then we learn that the
input list is sorted. Randomized pivot selection makes such a leak unlikely but does
not eliminate it.

The secure implementation in Listing follows quite straightforwardly from
the public one. To stop iterating, we need to declassify the results of comparison
k = l. We have to update variables mask and k obliviously. Updating the working
list, however, is tricky. Namely, we cannot simply obliviously remove unnecessary
elements as this will give away more information than we would like. One possible
solution is to use an additional bit vector indicating if an element in the list is actually
there or not. This would complicate the implementation. A simpler solution is to
replace elements that are not needed with some reserved values that are guaranteed
to be larger than all others, and move them to the end of the sequence.

Secure partitioning is performed in the following way. First we replace the
elements of the sequence corresponding to false values in the mask by maximum
integer values, and then we sort the sequence by the Boolean mask moving true
values to the front. This can be done similarly to the Boolean counting sort step
of the radix sort in [108, Algorithm 8]. Sorting Boolean vectors can be done in
effectively linear time and; hence, the partitioning is also linear-time and takes a
constant number of communication rounds. Given that, we can say that on average
the algorithm in Listing takes O(nlogn) time and O(log n) communication
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Listing 3.15: Privacy-preserving O(n log n) quickselect algorithm in SEcreC.

template <domain D>
D int quickselectPrivate(D int[[1]] list, uint k) {
assert (k < size(list));
D int pivot;
while (true) {
pivot = list[0];
list = list[1:1;
D bool[[1]] mask = list < pivot;

D uint 1 = sum(mask);
if (declassify(k == 1)) break;
mask = choose(k > 1, ~mask, mask);

k = choose(k > 1, k -1 -1, k);
list = partition(list, mask);
}

return pivot;

rounds. This is already as good as sorting-based solutions.

To go even further, if we are willing to leak on every iteration the number
of elements smaller than the pivot, we can achieve linear-time solution. When
declassifying [ we can, instead of partitioning, remove the unneeded elements; thus,
reducing the size of the working list. To improve security we can pick the pivot
securely. This can be done by securely shuffling the working list at the start of every
iteration and continuing as before.

3.3 Compiler implementation and integration with
SHAREMIND

In this section we give a short overview of the SECREC compiler implementation
and its integration with the SHAREMIND framework. We will also briefly discuss the
bytecode to which the language compiles.

3.3.1 Compiler implementation

SecreC is implemented in the C++ programming language and the source code is
availablg? under the GPLv3 licence. The compiler follows the standard compilation
pipeline: lexical analysis, syntactic analysis, semantic analysis (type checking),
intermediate code generation and, finally, code generation. We target a custom

2https://github.com/sharemind-sdk/secrec
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bytecode that SHAREMIND is able to execute. Lexical analysis was implemented
using Flex and syntactic analysis using GNU Bison.

3.3.2 Custom bytecode

SHAREMIND is able to execute custom bytecode. We will not go over the details
of the bytecode but we will elaborate on why a custom bytecode language is used.
The bytecode specification is available onling?]

We use custom bytecode for a few reasons. The most important one is security.
By sacrificing some performance, we can have a more secure implementation where
invalid operations, like division by zero, can gracefully stop the execution of the
code instead of crashing the entire platform. Many bytecode languages have access
to foreign functions and raw memory but this is something we wish to avoid for the
sake of security. Custom bytecode allows for fine-grained control of memory. A
program can be stopped by the VM when it goes over some memory allocation
limit. Because we avoid garbage collection, the programmer can better predict
memory usage.

The secondary reason for having custom bytecode is portability. Namely,
different architectures implement floating-point operations in a different manner.
For example, machine instructions for computing sine might give one result on one
machine but a slightly different result on another. In such case the control flow of a
program executing on these machines could dffer. Many existing bytecode languages
rely on floating-point operations and therefore not suitable for distributed execution
necessary for SMC. SHAREMINDs bytecode relies on a software implementation of
floating-point operations. Currently, we use the SoftFloat [52] (Release 2c) library.

3.3.3 Integration with SHAREMIND

The SEcreC language is not tightly coupled to SHAREMIND. The compiler is just
a standalone tool that takes a SECREC program text and produces a bytecode
executable. The bytecode, in turn, can be executed using SHAREMIND. Conceptually,
the bytecode can be generated from some other language or can even be manually
written.

The SEcrReC compiler does not have to be deployed together with SHAREMIND
but it usually is. This is because SHAREMIND is still vulnerable to executing untrusted
code and, therefore, before executing any code it must be reviewed. Bytecode is
much more difficult to audit than high-level SEcCReC programs. Hence, system
administrators usually compile the SECrREC file themselves after auditing the code,
and then manually deploy the compiled bytecode file. The SEcCREC compiler is
open-sourced and free to be verified by anyone.

3https://github.com/sharemind-sdk/vm_m4/blob/master/doc/bytecode.md
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Figure 3.1: SEcreC integration with a SHAREMIND instance running on three parties Py,
fpz and fpg

A standard SHAREMIND deployment scheme is given in Figure The figure
depicts how a SEcreC script app. sc is compiled and run on a SHAREMIND instance.
For each of the three parties, the script is compiled to a bytecode file app. sb. When
instructed, the SHAREMIND instance can then execute the deployed script. Before
execution, SHAREMIND checks that the bytecode files are identical.

The bytecode contains the list of protection domains that it expects to use, and
also the list of system calls that it may perform. Before execution, SHAREMIND verifies
if such protection domains have been configured and checks that all system calls
are supported. After verification, SHAREMIND instantiates the required protection
domains. This can include setting up various facilities such as random number
generators, local overlay networks, database engines, and logging back-ends. If
everything goes well, the program is executed after the setup phase.

The individual bytecode instructions do not include network communication,
random number generation or any other security primitives. All of these tasks are
performed via system calls to SHAREMIND. When the bytecode invokes a system call,
control is given to the protection domain that implements it. Generally, a system
call first verifies that its parameters (e.g., number of arguments, input lengths, input
types) are correct, and then executes the actual logic. For example, the system
call could perform the additive three-party multiplication protocol. To execute
that protocol, protection domains need to generate random numbers and perform
network communication between each other.
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3.4 Future language extensions

SecreC is already a very usable language with many applications and prototypes
that utilize it but much work remains to be done to improve the language. SECREC
is currently quite simple, makes too many assumptions about underlying security
schemes, lacks many optimizations and offers little protection from simple mistakes
concerning security. We will explore a few possible and upcoming language
extensions that can alleviate these problems.

3.4.1 Specifying protection domains

Currently the most critical limitation of the language is that it assumes the existence
of a large set of primitives from the underlying protection domains. For example,
when a user attempts to divide two unsigned 64-bit integers, SECREC assumes that
the security domain supports a call with the name div_uint64 and the compiler
generates code where such a system call is performed. If the underlying domain
does not support division then a run-time error will be raised when trying to execute
the program. The programmer does not learn that the operation is not supported
until the code is actually ran. While emulation of protection domains can simplify
development to some degree, this is still less than ideal situation.

We also assume that protection domains support all data types that SECReC
has. This might not be true, for example, a basic experimental scheme could only
support 32-bit integers. Another outstanding problem is that currently SEcrReC does
not allow protection domains to have types that do not exist publicly. It might be
that a security domain only support fields over some prime numbers. In that case
the data type should be different from all the public types.

Sokk [106] extended the SEcReC language with support for specifying the
interface of protection domain kinds in the language itself. As a result of his work
it is now possible to define custom data types for domains and describe which
operations are available for the given types. For example, we can declare a new
protection domain that supports 64-bit signed integers, fixed-point numbers, and 64-
bit unsigned integers as is shown in Listing[3.16] For each type the programmer must
specify the size of the private representation and declare its public representation.
Both the size and the public representation can be omitted.

3.4.2 Other language extensions

SeEcreC is currently a simple language. There are many features that can be
borrowed from general-purpose high-level languages that would make developers’
lives easier. For example, the language only supports passing function arguments
by value. While general first-class pointers or references would arguably not be
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Listing 3.16: Specifying PDK interface in SEcCReC.

kind my_kind {
type int64 { public = int64, size = 64 };
type fix { public = float64, size 64 3};
type uint64;

suitable for a secure computing language we would benefit a lot from allowing
function arguments to be passed by reference. A few more possible additions are
first class support for structures and strings, more powerful abstraction mechanisms
like template specialization and type constraints, language support for task-level
parallelism (even parallel loops) and more syntactic sugar for array processing.

The type system of SECREC can catch simple coding errors and accidental
implicit declassifications. However, it is still possible to accidentally reveal more
information than what was intended via explicit declassification calls. A more
powerful type system or static analysis tools will help in this regard. Some work has
already been done to verify SECREC annotations for both correctness and security
guarantees. We give a short overview of this tool in Section

3.4.3 Optimizations

Currently SEcrReC does not perform any code optimizations. However, we could
benefit from both optimizations described in general compiler literature and opti-
mizations specific to secure computation For example, Kerschbaum [65]] describes
an optimization that infers if any of the secure computations can be made public.
This is possible if the values of intermediate secure results can be inferred from
public inputs or outputs. The knowledge inference problem was later expanded
upon by Rastogi [101].
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CHAPTER 4

THE SEMANTICS OF SECREC

In order to talk about correctness and security properties of SECREC programs, we
need to specify the language formally. A formal specification can also be useful for
understanding of the language better and can reflect some details more clearly than
informal specification. We do not formalize the language fully and limit ourselves
to a rather small core language. There are a few reasons why we have opted not to
fully formalize the language.

* For a small development team with different focus a total specification
constitutes an impractical amount of work. In our case this time is better
spent improving the language.

* Just like documentation and comments, a formal specification is easily subject
to bit rot and needs to be kept in sync with the development of the language.

* Formal specification is highly likely to contain errors.

* Many language features, such as structures, are completely orthogonal to the
properties that we wish to prove and, thus, specifying them provides us with
little value.

Using the formal approach, we wish to show that if the underlying computing
protocols are secure and compose well then programs built of only those protocols
are also secure. Additionally, we wish to show that translating a program to a
low-level representation preserves the security of the original program. We limit
our scope to only monomorphization, that is, turning a program that contains
security scheme polymorphic functions into one that only contains monomorphic
functions. This represents compilation to a lower-level representation and is one of
the important steps in the code generation pass of the compiler.

In this chapter we provide the formal foundations of the language. This includes
the formalization of the syntax and semantics of the core language, a formal
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Figure 4.1: The syntax of the SEcReC core language

description of translation to a monomorphic form and a discussion about the
correctness of translation.

4.1 Abstract syntax

The abstract syntax of SECREC core is described in Figure[d.I] Programs are denoted
with P and consist of a sequence of protection domain kind declarations, protection
domain declarations, and function definitions, followed by the program body. A
program body consists of a single statement.

We denote variables with z, kind names with k, function names with f, and
protection domain names with d. Protection domain public and kind Public that
it belongs to, are reserved and considered predefined. We sometimes write public
types, such as public int, as int™ for the sake of conciseness.

A function definitions F' consist of a function name f, a sequence of parameter
declarations, a return type, and finally a function body. The function body may be
missing in which case the declaration is considered to be a system call provided
by SHAREMIND. This is similar to the foreign function call mechanism in general-
purpose programming languages. Functions in the SECREC core may be protection
domain polymorphic and in this case the function needs to be annotated with
the universal quantifier followed by some protection domain declarations a. A
universally quantified domain may optionally be restricted to some protection
domain kind. This is useful for security scheme specific operations and polymorphic
function overloading to offer more efficient operations for some security schemes.

Data types in core SECREC have been limited to the unit type (needed for
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functions that do not return anything), integer type, Boolean type, and arrays of
integers and booleans. Data types are denoted with ¢.

Statements s and expressions e (Figure d.1)) are fairly standard for a WHILE-
language. Expressions only contain variables, literals, function calls, and addition.
Other binary operators, such as multiplication, are very similar to addition where
semantics and type checking are concerned and can always be emulated via either
function or system calls. We assume that for public literals ¢, it is always possible
to tell their data type ¢. Statements s are limited to skip, composition, assignment,
if, while, and return statements, and variable declarations.

4.2 Notation

In order to specify the static and dynamic semantics we need to define some
notation.

* As SecreC allows function overloading we need a way to distinguish different
function definitions that have a common name. Let £ be a set of labels such
that every function declaration has a unique label from this set. For label
e Lletf ¢ denote the function (or system call) declaration F' with the name
f atlocation /.

* Let pdk(P) denote the set of protection domain kinds that are declared
in program P. Similarly, let pd(P) denote the set of protection domains
declared in P. For d € pd(P), let kind(d) € pdk(P) denote the declared
kind of the protection domain d.

» For a function declaration f* in program P let argp(¢) denote the list of
declarations of function’s formal parameters and retp(¢) its return type.

* For alabel £ € L let §(¢) denote the set of protection domain names that the
function declaration f* is quantified over. If the function declaration f* is
not a template then this set is empty.

* Let bodyp(¢) denote the body of the function declaration at the location
¢ € L. If the function declaration at £ refers to a system call then let body p(¢)
be L. Let body(P) denote the body of the program P.

* Let 6 : 6(¢) — pd(P) denote a substitution from quantified variables of f*
to protection domains of the program P. Given a mapping 6, let body?; (0)
denote the statement body p(¢) where all occurrences of quantified variables
d € §(¢) have been syntactically replaced by protection domains 6(d). We
define arg% (¢) and ret%(¢) in a similar manner by replacing all quantified
variables of f* using 6.

53



* For a function name f and program P let
instancep(f;dy t1,...,dp ty) : [L X (6(¢) — pd(P))]U{L}

denote a pair where the first component is a label £ and the second component
is a substitution 6 from the quantifiers of f* to protection domains of P. The
function f* is the best match among n-ary function declarations named f
with parameters that under substitution # are equal to respective d; t;. If a
unique best matching instance is not found the resulting value is L.

The instancep(f;-) function is responsible for finding both the best matching
function declarations f and the substitution that makes the function’s type equal to
the provided argument types. Note that the body of the function found may not type
check under the given substitution. In this case the type checker later fails when
verifying the function’s instantiation to concrete protection domains.

A matching function may be missing for two reasons, either because there are
no matches or because there are multiple equally good ones. We do not specify
the way matches are evaluated against each other. One way to do that is to build
subtyping relations between function signatures, then consider only the subset of
all signatures that match and check if a unique least element is found among them.
The least element in this case means the most concrete signature. For example,
monomorphic signatures that match are always strictly better than polymorphic
ones.

4.3 Static semantics

Let I denote a set of triples (f,¢,0) where f is a function name, ¢ € L is a
location and @ : §(¢) — pd(P) is a substitution from quantifiers of f* to protection
domains of program P. Intuitively, set I contains all template instances that are
required by the program. We say that the program P is well-typed if there exists
a finite instantiation context I such that I - P. Each instance in [ itself needs to
be well-typed. Whenever a function is called the respective instance needs to be
in I. Before we look at type checking rules formally, we also need to consider the
following typing judgements.

e Let P;0; 1+ f* denote that the function definition or system call declaration
with name f at location ¢ is well-typed in program P if the quantified
variables §(¢) of f* have been replaced using substitution 6.

e Let P;I'; I F e : dtdenote thatexpression e has a type d ¢ in program P under
type environment I'. The environment I is of the form x1 : dy t1,..., 2y :
dy, t, where x; are variables and d; t; are types of the variables. For an
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Figure 4.2: Program type checking rule

body%(¢) = L

Po Tk (SysCaLL)
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P;o; 1+ f*

(FuncTion)

Figure 4.3: Function declaration type checking rules

expression e to be considered well-typed, all its free variables have to have a
typein I,

* Finally, let P;I'; I I s denote that statement s is well-typed in program P
under type environment I'.

A program P is well-typed if its body is well-typed under the empty type
environment and all instances in I are also well-typed. This is reflected by the
derivation rule in Figure f.2] Notice that for a program to be well-typed, it is
sufficient for only the instances that are actually used to be well-typed. Therefore, a
well-typed program may contain procedure definitions that would not be well-typed,
as long as these functions are never actually used.

Figure[4.3|presents typing derivations for system call declarations and procedure
definitions. System call declarations are always considered well-typed. However, a
procedure definition f¢ is well-typed under a substitution @ if its body body%(ﬁ),
substituted by 6, is well-typed in the environment where procedure parameters have
types given by arg%(ﬁ). The type checking environment also contains a special
variable return that denotes the return type of the function instance, needed for
type checking return statements.

Expression type checking rules are presented in Figure[4.4] Variable z has type
d t if it has that type in the environment I'. A constant ¢ of type ¢ always has a
public type. Recall that we assume that it is always possible to tell the data type of
a constant literal. The sum of expressions e; and ey has type d ¢ if both expressions
have type d ¢ and ¢ is either an integer or an integer array. Because we allow addition
of both public and private integers we have made an implicit assumption that every
protection domain kind supports addition. Of course, this is not always so and it is
sensible to allow user-defined non-public operators for convenience and type safety.
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Figure 4.4: Expression type checking rules

Finally, a function call is well-typed if the function arguments are well-typed, there
exists a unique instantiation to the argument types, and that instance can be found
in I.

Statement type checking rules are presented in Figure #.5] Most of the rules
are straightforward and are easy to adopt from standard WHILE-language type
checking. Two notable rules are for if- and while-statements. Namely, in both
cases the condition has to be a public Boolean. This is because control flow is
public in SEcreC and selecting the branch based on a private Boolean will leak
that secret value. It is possible to support certain classes of if-statements with
private conditionals but it would complicate the type system. For example, secure
branches may not perform public side effects but may perform private side effects
like assignments to private values. To spare the programmer worries about such
complexities we have decided that non-public branching always has to be explicit.

In our previous work [20] we presented the type checking rules without needing
instantiation context but we required that the derivation rules be interpreted co-
inductively. The co-inductive rules are indeed simpler but unfortunately make the
interaction between inductively defined translation rules more complicated.

There may exist many different instantiation contexts for which a program
is well-typed. We are usually only interested in the smallest one. Let I be an
instantiation context and P a program such that I - P. Let G be a directed graph
where vertices are the instances from I and let arcs transition from instance 7 to
instance j if the instance j is required to type check the instance i. Let G also
contain a special node src that denotes the body of program P. We have an arc
from vertex src to vertex ¢ if ¢ is required to type check src. To type check program
P, only instances that are reachable from src are required. Unreachable instances
can be thrown away. Instances reachable from src cannot be discarded as they are
(indirectly) needed to type check the body of program P. This discussion gives us
the following result.
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Figure 4.5: Statement type checking rules

Proposition 1. For a program P if there exist I, and Is such that I; - P and
I+ PthenI1 NIy P.

Type checking algorithm A program is defined to be well-typed through the
existence of a certain instantiation context. Thus, these rules do not directly give
a type checking algorithm. Fortunately, the type checking algorithm is quite
straightforward to implement. We need to keep track of the instances that have
already been type checked and keep a queue of instances that still remain to be
checked. Initially, no instance is checked and the queue is empty. A new instance is
added to the queue whenever a function call is type checked. We start the algorithm
by checking the body of the program. We take and remove instances from the queue
until there are no more instances to check. If the instance is already checked we
pick another one. Otherwise, we check the instance and mark it checked.

The type checking algorithm clearly terminates because a program may only
declare a finite number of protection domains. If we allowed procedures to be
generic over types or the number of array dimensions we would need some extra
conditions to guarantee termination of type checking.
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4.4 Dynamic semantics

In this section we describe the behavior of SECREC programs in small-step op-
erational style. We chose the small-step style as it allows us to reason about
non-terminating programs and we found it a more natural fit than big-step or
denotational style.

Let Val denote the set of values SECREC expressions may take. We have left
the structure of Val open but it definitely contains Booleans (true and false),
integers, Boolean arrays and integer arrays. A special value 1 € Val denotes
uninitialized or undefined values. Let PolyVal contain triples (v, d, t), usually
written vq ¢, denoting that the value v € Val is in protection domain d and has data
type t. Dynamic tracking of types is only needed for the polymorphic language
semantics. Later we will see how to convert programs to monomorphic form in
which we do not need to dynamically keep track of types. We usually denote values
with v but sometimes also with u and w. To provide the polymorphic language
with dynamic semantics we need to extend the set of expressions e with the set of
values: e ::= ... | vg ¢ where vy ; € PolyVal.

4.4.1 Evaluation context

An expression evaluation context £ is an expression where exactly one subexpression
is replaced with a hole denoted with “e”. We define £ so that only the leftmost
unevaluated subexpression can be replaced with a hole. This means that all
subexpressions to the left of the e have to be fully evaluated to values. We define £
as follows:

g 5+62

£
} vd ¢ -+ 4.1
|

1 i—1
FQugy gy 0g 4 €5 €it1, - €n)

The evaluation context is used to specify the order of evaluation of subexpres-
sions. Our definition effectively fixed evaluation order to be from left to right. In
principle, there are other options. For instance, the C language does not specify
the order of evaluation at all. It might sound like an unintuitive and easily misused
aspect but it allows for C programs to be more aggressively optimized. Regardless,
we chose a fixed evaluation order as it is easier to understand and (formally) reason
about. The efficiency of public operations is not our primary concern.

We define statement evaluation context S in a similar manner. A statement
evaluation context S contains a single expression evaluation context which in turn
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contains a single hole for an expression.

S S; S92

r=E&

return &

if £ then s; else 59 .

(4.2)

Notice that while-statements are not represented in S. As we will later see this is
because the evaluation of while-statements is done via rewriting to if-statements.

Let £[e] denote an expression where the single hole in £ has been replaced by
expression e. This operation is defined via structural recursion over £.

E+eld = Ell+e
(vat+E)e] = wva¢+Ele]
f(v}iltl, L& e, ... ep)le] = f(véltl,...,g[e],ei,...,en)
ele] = e

In some cases we will use £[e] in argument position. This indicates an expression
¢’ with the leftmost unevaluated expression e such that ¢ = E[e]. It is always
unambiguously clear if for a given expression €’ there exists € such that ¢’ = £[e]
either for any or for some fixed e. Statement S|e] is defined in a similar manner.

4.4.2 Small-step operation semantics

During program evaluation we store the values of variables in an environment ~y.
We represent «y as a partial mapping from variables to values. For a variable z, let
~v(x) € PolyVal denote its value in y. Given a value v, ; € PolyVal, a variable =
and an environment vy let y[z — v4,] denote environment 4/ such that 7/ (y) = vg
ify = z and v/ (y) = v(y) otherwise.

When evaluating the body of a function we need to keep track of the values of its
local variables. When a function is called we need to store the local environment y
and remember the current position of evaluation. The context where the function call
was performed is represented using statement evaluation context S. A configuration
C'is a non-empty sequence C ::= v | (S,7) : C that keeps track of the call stack
and the current evaluation environment. All components of C, other than the last
one, are pairs consisting of a statement evaluation context S; and an environment
v;. The last component is simply the environment that is currently being used for
evaluating either the program body or the body of some function.

The semantics of SECREC are given in small-step operational style as a set
of tuples P - C° 5 C* where C° is called program configuration, C* is called
target configuration and k € A is the action performed during the transition from
one configuration to the next. The action x can either be empty (denoted with 7 or
simply omitted) or an invocation of a system call.
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Figure 4.6: Expression evaluation rules

System call actions are of the form v = f(d,dy,...,dy,v1,...,v,) denoting
that the n-ary system call with name f, given parameters vy, ..., v, € Val such
that v; is from domain d;, returns value v € Val. The domain d for the return value
v is also given as an argument. We assume that given the name of the system call it
is possible tell both the kind and data type of its arguments and the result. In other
words, the system call with name f must have a signature [ [}, (k;, t;) — (k, 1)
such that k; = kind(d;), k = kind(d), t; are the data types of the arguments and
t is the data type of the result. This information must be encoded in the name of
the system call action. We do not pass to system calls the values in PolyVal as
we want the set of actions A to be compatible between the monomorphic and the
polymorphic language.

A program configuration C* is either a program (P) or a pair (C, s) consisting
of a configuration and a statement s that is being evaluated. The target configuration
C'* is either a configuration C' when evaluation has halted, or a pair (C, s) when
the evaluation of statement s needs to be continued.

Lettupley F (e) = (vg ;) denote that expression e evaluates to vg ; € PolyVal
in the environment . Expression evaluation rules are presented in Figure .6 These
rules only handle the evaluation of constants, variables and additive expressions
with fully evaluated sub-expressions. Constants are mapped directly to values,
values of variables are found in environment and public additions are performed
without invoking any actions. Function calls are part of expressions but they are
actually handled by the statement evaluation rules.

When non-public integers are added we perform a system call action with name
addy ; where k is the protection domain kind of the arguments and ¢ is the data
type of the arguments. The system call is passed and returns monomorphic values
and, therefore, the system call is incapable of telling the types of its arguments.
Thus, type information needs to be encoded in names of system calls. In the case of
arithmetic operations it is sufficient to only supply one kind and one type because
they are the same for the arguments and the result.

60



P (C,s)
PE{(S8,7):C,s)

5(C s P (C,s) 5 C'
5, 5

((8,7):C",s") PFA((S,7):C,s) = (S,7): "

Y = <€> §> <Ud t)
P <’V7S[e]> £> <7a3{vd t]>

Figure 4.7: Utility rules for statement evaluation

Statement evaluation rules

With the given tools we can define the set of tuples P F C° = C*. The program
evaluation rule handles the case where C° denotes the program. The rule simply
transitions into evaluating the body of the program and performs no actions:

Pt (P) — (¢, body(P)) .

Statement evaluation rules are the most complicated ones and do the most work.
Therefore, we present them in three parts. First, we look at utility rules that simplify
the presentation of other rules. Then we look at the rules that evaluate statements,
and finally the rules that handle function and system calls.

The utility rules are presented in Figure The first two state that if it is
possible to transition from (C, s) using action &, then it is also possible to transition
from configuration C' that is extended with another stack frame (S, ) using the
same action. Intuitively, these rules allow us to specify all other rules without
having to manipulate the entire configuration, and we can focus only on the parts
of the configuration that are actually relevant. The third utility rule states that if an
expression e can be evaluated to value v, ; using action « then statement S[e| can
be evaluated to statement S[vg ¢] using the same action.

Regular statement evaluation rules are presented in Figure [4.8] Mostly, the
rules are straightforward and similar to how they are usually presented for WHILE-
language small-step operation semantics. For instance, the rule for the while-
statement transitions into evaluating an if-statement that contains the original
statement, and for the skip-statement we transition into the environment as a result.

The rule that handles return-statements matches the statement S[return vy .
This corresponds to the case where we reach a return statement inside a function
body during evaluation. This rule correctly handles the evaluation of statements
such as (returne; sg); s3 by dropping sy and s3. Other than that, the rule
takes the previous stack frame (S’,+'), plugs the returned value vy into the
evaluation context S” and continues evaluating the restored statement S’[v4 ¢] using
the environment /.
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Figure 4.8: Statement evaluation rules

Function and system call evaluation rules

Function and system call evaluation rules are presented in Figure They are
used when a function call with fully evaluated arguments is found in statement
evaluation context. In that case, we look up the function instance (¢, 6) using
argument domains and types, and continue evaluating the body of the function
body?g(é ) with environment 7' mapping parameters z; to the arguments vZfll_ ¢,- The
statement evaluation context S and the state of the current environment -y are saved
before continuing with evaluation.

System calls are handled similarly to function calls. We also perform an instance
lookup but this time we construct action x of the form

v = f(k,t),(lﬁ,tl),.‘.,(kn,tn)(da d17 v 7dn7 ’Ul, ey vn) )

where v is the monomorphic value of the i-th function argument, v is the value
returned by the call, d is the protection domain of the result and d; is the protection
domain of the i-th argument. Unlike function calls, system calls do not need to
store the stack frame and can simply continue with evaluating the statement where
the call expression has been replaced by the value returned by the call. Note that
we could have handled system calls with expression evaluation rules but chose to
present them here instead due to the similarity to function calls.
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(¢,0) = instancep(f;di t1,...,dnt,) s= body%(¢)
vV =gz vy, | (zidity) € argh, (0)]

Py S, 450, o D) = ((S57) s )
(¢,0) = instancep(f;dy t1,...,dnty) L = body%(¢)
dt=reth(¢) k=kind(d) k; = kind(d;)
5= (V= fot) (ka b)) (s d1s - o dny 0t 0™))
P |7 <fy78[f(vclll t1) 71)3", tn)]> i <77S[’Ud t]>

Figure 4.9: Function and system call evaluation rules

System calls have names of the form f(x ¢) (k1 ,61),...,(kn,tn)» Where k; is the
protection domain kind of the ¢-th argument and k is the PDK of the output. As we
already saw with evaluation of addition, this is necessary because we pass the values
from Val to system calls but the system calls need to perform differently based on
the types of the values. We use protection domain kinds as indices, because domains
of the same kind share the implementation. For example, every domain of the
additive three-party scheme has the same algorithms for performing multiplication.
It is also important to note that we pass system calls to the protection domains
of the arguments. This is necessary because private operations generally need to
perform in a different way depending on protection domains. For example, while
all additive three-party domains have the same multiplication algorithm they need
to send network messages to different parties depending on the specific protection
domain.

4.4.3 Trace semantics

In this section we present the meaning of SECREC programs in terms of traces. A
potentially infinite sequence of actions o 5 0 "3 o. .., where r; € A, is called a
trace. Traces may be empty, finite or infinite. For example, a configuration in the
final state has an empty trace o, but trace o — o — ... corresponds to programs
that loop forever while performing no actions. Forgetting the intermediate states is
useful when we want to reason about program transformations and optimizations.
For example, we might want to show that program compilation does not change the
set of possible traces the program may take. Formally, the set of traces 7 = A*U.A¥
is defined as the union of finite and infinite strings over actions 4.

The trace semantics of program P is defined as a set of traces [P] C T by
collecting all possible finite and infinite execution traces starting with program
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configuration (P). Formally, we define the semantics of programs P as follows:

[P] = {0B0...cBo|PFH(P)BCIAN...APFC2™2C)}
U {oBo...|PHP)BCoN...}.

Note that terminating programs must all eventually stop in some final configuration
C because the body of the program may not contain return statements.

A symbolic trace, denoted with T, is a potentially infinite and potentially
infinitely branching tree where each path, starting from the root vertex, corresponds
to a trace that could be generated by the program. For program P we want a single
symbolic trace to correspond to trace semantics [ P] of the program. Let N; be the
set of names for each type ¢ such that N; N Ny = 0 iff t # t'. We can assume that
the set of names is countably infinite for every type t. A symbolic action A is either
an empty action or an action of the form

v=f(d,dy,...,dn,V1,.--,Vn) ,

where v € Ny, v; € Ny, and f is a system call with signature 7", (k;, t;) — (k,t)
where k; = kind(d;) and k = kind(d).

Each node u of a symbolic trace T is labeled with a symbolic action A,. The
number of descendants of non-leaf nodes depends on the labeling action. For ein
mpty action we have exactly one descendant. A node u labeled with a non-empty
action A, that performs a system call f with signature []7" | (k;,¢;) — (k,¢)
has only one descendant if k& is non-public. However, if & is public then « has a
descendant for each value of type ¢ corresponding to the system call returning that
specific value for given inputs. For each downward path in T, a symbolic value may
occur in a non-public argument position of an action only after it has occurred in
the result position of some action previously.

Let g be a mapping from names N = |JM; to values Val. For a symbolic
trace T let g(T) € T denote the concrete trace where each symbolic value v is
replaced by ¢g(v) and concrete branches are chosen corresponding to the returned
values. Let [[T]] € 7T be the set of traces {g(T)} for all possible mappings g.

The semantics of program P defines a unique, up to a-conversion, symbolic
trace || P|| which can either be defined similarly to the trace semantics or directly
recovered from [P]. It is easy to see that [[|| P||]] = [P]. It is also easy to see that
up to a-conversion, [[-]] is an injective mapping and, thus, there exists essentially a
single symbolic trace corresponding to the trace semantics [P].

4.5 Execution of programs

Our runtime environment implements an arithmetic black box (Section [2.3.4)) with
multiple protection domains. Its security is given through universal composability
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(Section [2.3.1). In heavily simplified terms, a protocol suite is universally compos-
able if its every protocol is secure on its own, and composing them with any other
protocol, either sequentially or in parallel, does not weaken security.

In our case, for each type ¢ and each protection domain, the arithmetic black
box Fagp stores a partial mapping st; 4 from names MN; to values Val. The ABB
accepts instructions of the formv = f(d, d1,...,dn,v1,. .., V,) Where system call
f has signature [[;" , (k;, t;) — (k,t), v € Ny and v; € Ny, such that k = kind(d)
and k; = kind(d;). The ABB implements the system call. When receiving an
operation in the aforementioned form, the ABB will look up the values of the
handles v;, and update st; 4 to map the resulting handle v to its proper value. In
addition to values of the arguments, this may also depend on the responses Fapp
receives from the environment and the random choices of Fagg. Hence, the ABB
refines the non-determinism present in the dynamic semantics of the language.

Given an n-party ABB, a program P is executed as follows. There are n
computing parties Pq, . .., P, the ABB Fagp, the environment Z and the adversary
Sim™. The outer environment Z may provide inputs and supply random values.
Adversary Sim# may corrupt certain parties and perform other permitted attacks on
Fagg- All parties P; give instructions to Fagg according to the symbolic trace || P|].
When an action needs to produce a public value, the descendant corresponding to
that value is chosen. This way we select only a single trace from [P]. In effect, this
execution defines a probability distribution over the set of traces [P]. We denote
this distribution by D[Fagg, Z, Sim™](P).

Let magg denote the implementation of the ideal functionality Fagg. There are
a number of different implementations that are at least as secure as Fagg, meaning
that there exists a simulator Sim such that for any environment Z and any adversary
A, the views of Z in Z|magg||A and Z||Fapg|/Sim™ are indistinguishable. One
possible implementation is the additive three-party sharing we will (partially)
implement in Chapter[5] There are many alternatives like Shamir’s scheme, GMW,
Yao, FHE, or even SGX, depending on which classes of adversaries we want to be
secure against.

We can now state the theorem of correctness and security for the execution
of program P using the comparison of the real implementations of protocols and
the specification. The proof of the theorem is trivial, showing that the universal
composability framework is wholly adequate to relating the abstract and concrete
execution of protocols, allowing us to concentrate on specifying of what should be
executed.

Theorem 1. Let magg be a secure implementation of Fagg. There exists a simulator
Sim such that for any environment Z and adversary A from the class of adversaries
admitted by magg, it holds that:

Correctness: distributions of traces D[ Fags, %, SimA] (P)and D[mpgs, Z, A](P)
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are indistinguishable; and

Security: the views of the environment Z in systems Z||P1|| . .. || Pn|| Fasg || Sim™
and Z||P1|| . . . || Pnll7aBsl||A are indistinguishable.

Proof. 1t follows directly from the fact that magp is at least as secure as Fapg.
From the security of magg we know that there exists a simulator Sim such that for
every environment 2 and adversary A the views of 2/ in systems 2’ || Fagg||Sim*
and Z'||magg||A are indistinguishable. This also holds for the environment Z' =
Z||P1]| . .. ||Pn. Both claims of the theorem state the indistinguishability of certain
parts of these views. O

4.6 Security of information flow

In this section we will show that non-declassifying system calls do not increase
adversaries knowledge during program execution. This also means that if a program
does not invoke any declassifying system calls then the adversary learns nothing
new from executing this program.

Protection domains give us a simple discipline for information flow control. An
observer able to access data only in certain protection domains will learn nothing
about the data in other domains, as long as no operation explicitly transfers data
between these protection domains.

The semantics of the language specifies the possible orders in which system calls
can be made. The actual execution of the program depends on the implementations
of these system calls. The concrete semantics of a system call depends on the
arithmetic black box, the environment and the adversary. Given an n-ary system
call f the semantics is given by a function:

[f] : PD™™! x Val” x W — Val x W |

where PD is the set of all protection domains and VV denotes the set of all possible
states of the environment. The behavior of system calls does not only depend on
their explicit inputs but also on the state of the outside environment influenced
by Z and Sim”. The execution of a system call influences the environment. We
simulate this by returning, in addition to the resulting value, the state of the modified
environment.

Let WV denote the initial distribution of the environment. This distribution is
known to everyone. Note that the semantics of system calls are deterministic. The
random coins that system calls use are considered to be part of V. While the initial
distribution W is publicly known, the concrete initial environment, which would
tell us the values of random coins, is not known.
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To speak about information flow security, we partition the set of protection
domains into low and high domains such that PD = PD; W PDy and public €
PD; . Low domains contain the information that is publicly know and high domains
information that is intended to be kept secret. Similarly the environment is split
into low and high parts: W = Wy, x Wpg. These parts must be independent in the
initial distribution W.

For each system call action k = (v = f(d,d1,...,dn,v1,...,v,)) we define
its low-slice ® by replacing each input v; by a placeholder x if d; € PDy, and
replacing the output v by x if d € PD . This definition naturally extends to traces.

A non-empty action « is called a declassification action if d € PDyp, but
d; € PDy forsome 1 < ¢ < n. We require that the semantics of non-declassifying
system calls behave as we expect in terms of information flow: the low parts of the
result may only depend on the low parts of the input. Namely, the low part of the
environment may not be influenced neither by high inputs nor by the high part of
the input environment. It is natural to require the environment to ensure the absence
of other information flows even without the cooperation of the adversary.

Definition 7. Let f be a system call with semantics
[f] : PD™ x Val® x Wy, x Wy — Val x Wy, x Wy .

We say that f is non-declassifying whenever forevery j € {1,...,n+1},d; € PD,
zj € Val, 2 € Val, (wi, wf, wf,wy) € Wi, (i, wiy, wy, wig) € Wy, if

[[f]](d17 ...,dn+1,ZL‘1, 7xn>wZL7w%[) = (anrl’w%vw?—[)
AN LIy, s dpgr, s W] W) = (2,0, W W)
A Vkl:e{l,'...,n}ifdkEPDL then zj, = z,
A wh =wl

then w} = w’L" and if d,11 € PDy then z,41 = w; 1 1- Superscript ¢ denotes
input and o denotes output. Note that a system call with public inputs and output
can also be non-declassifying if it does not reveal high inputs.

We use the term low adversary to denote an adversary that can only observe the
low part of the environment and the low-slices of the execution trace. We will show
that unless  is a declassification action, the execution of x does not increase the
low adversary’s knowledge about the high part of the initial state of the environment.
We define a probabilistic notion of the knowledge the adversary has after observing
the low-slice of the trace so far.

Definition 8. We say that an adversary’s knowledge KN IT;ML is a probability
distribution over pairs (w, ") denoting the probability that evaluation of program
P started in the state w € VWV proceeds along finite trace T' C [P],,, given that the
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low-slice of the trace so far has been observed to be T' and the initial low part of
the initial state was wy,.

Because we are talking about probabilities over trace prefixes, we assume that
the set of actions A is measurable. This is a natural assumption as labels are
essentially finite products of values and some countable sets. Of course, we also
need to assume that the set of values Val and the environment )V admit to measure.

The concept of low-slices naturally extends to expressions, statements, evaluation
contexts, and configurations. They are straightforward to define by replacing all
high values vg ¢+, where d € PD g, with x4 ;. All low-slices are denoted using
an overline. For example, the low-slice of a configuration C is denoted with C'.
When writing C7 ~, C'5 we mean that the low-slices of the respective program
configurations are equal: CY = C3. This notation naturally extends to actions,
traces, and expressions. Low equivalence is naturally an equivalence relation.

Lemma 1. Let P be a well-typed program. Let P = CY = CYand P+ C5 uct cs
be two possible transitions that may be taken during the program’s execution. If
Cy ~r C5 and k1 ~1, Ko then C} ~p, C5.

Proof. Notice that by taking the low-slice of a configuration we only replace
values, meaning that low-slicing preserves structure. The choice of semantic rule
depends almost always only on the structure of the program configuration. The only
exception is the case of if-expressions, for which the rule that we apply depends
on the value of the public conditional. Hence, the same transition rules apply if
Cy ~p C5.

We will prove the case for assignments in more detail. The rest of the proof is
more succinct. Assume that CY is of the form (y1, 2 = v4¢). Because C] ~1, C3
we know that C5 has to be of the form (72,2 = ug) such that y; ~y v and
Uqgt ~1 vq¢ From the evaluation rule E-Assign that applies in the case of
assignment, C7 transitions into C} = 71 [z — vg ] and C¥ into C§ = ya[x — ug¢].
Neither transition performs any actions. Regardless of whether d is low or high:
CY =iz = vai] ~L el = vad ~L 2T = uad] = C3.

In the case of variable declarations the low equivalence of target environments
can be shown exactly the same way. However, we also need to show that target
statements are low equivalent. This is straightforward because by taking a low-
slice, the structure of statements does not change. For sequencing-, while- and
skip-statements the proof is trivial as the rules are purely structural. The case of
if-statements is also simple as their behavior only depends on public values.

In the case of variable expression evaluation assume that C7 is in of form
(71, S1[z]). We know that C5 has to be in of form (72, Sa[x]) such that y; ~1, 72
and 1 ~, So. If d € PDy, then it follows that © = v and the statement is trivial.
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If d is a high domain then

C = (y1,S1fua d]) ~r (1, S1lxa ) ~r (72, Sal*a]) ~r (v2, S2lvas]) = C3 .

Constants and public addition expressions are handled similarly to variables.
Let CY be of the form (y1,Si[u), + v} ,]) such that d € PDy. We know that
C$ has to be of the form (y2,S2 [u?” + vﬁ .|) where v ~r, 72 and S§1 ~1 So.

Let configuration Cy perform action x; = (w' = addy¢(d, u*,v"). In both cases
Ri = (x = addy+(d, %, x)). Finally, we see that

Ct = (71, S1[wg ) ~1 (2, Salxad]) ~1 (v, Solwf ) = C5

The case of system calls is very similar to non-public addition but simply more
involved as some of the arguments may also be public. The cases of function calls
and function return are again straightforward and techniques that we have already
seen can be applied. Note that if all system calls had to be deterministic then we
could prove a more powerful result that does not require the low equivalence of
labels as an assumption.

Finally, we also need to prove the induction step. Assume that the statement
holds for a given P - C? ™ Cf and P - C§ 3 C3 where Cf ~, C5. There
are a few possible cases of which rule to apply depending on the structure of the
transitions. We will only look at one of them and the proof follows similarly for
other cases.

Let C7 be of the form (C'y, s1) and C7 of the form C]. From C{ ~, C5 we know
that C5 is also of the form (C, s2), such that C ~1, Co, and s1 ~, So. From the
induction assumption: C] ~, C, = C3 and transition label 1 and k3 are also low
equivalent. To prove the induction step let P F ((Sy,71) : C1,51) =5 (S1,71) : C1.
Thus, P F ((S2,72) : Ca,52) =3 (Sa,72) : C%. From the induction assumptions
and the low equivalence of the input configurations we immediately have that
(S1,m) : Cf ~1 (S2,72) : C. O

For each possible initial environment w € WV the semantics of system calls and
program P uniquely determine an execution trace 7' € [P]. We denote this trace
by [P]w- Let A = {F | k € A} be the set of all low-slices of transition labels and
T ={T | T € T} the set of all low-slices of traces.

Definition 9. Let IZ’wL denote the set of all possible initial environments w’ with
the low part wy, such that the low-slice of [P], has been thus far observed to
be T'. Formally Ig’wL = {w' | w} = w, AT C [P],} where C denotes that a
sequence is a prefix of the other one.

Lemma 2. Letw; € Wy, T € T and k € A such that k is not a declassification
action. Then either Ilj;;”’wL = Ig’wL or Ig?”’wL = 0.
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Proof. We first note that the low-slice of the program context and the low part of

the environment are the same for all w’ € I;‘g’wL after the execution that produces
the trace with low-slice T'. This is a straightforward implication of Lemma
All initial configurations (P) are trivially low equivalent and in every step low
equivalent configurations transition into low equivalent ones. Similarly, the low
part of the environment in different executions evolves in the same way due to
the constraints placed on the semantics of system calls. All system calls f have
deterministic semantics [ f] and, most notably, system calls with high arguments
may not influence the low part of the environment.

We will now show that the low-slice of the current program context C7 and
the low part of the current environment w determine the low-slice of the next
transition label «’, unless the next label is a declassification label. First, whether
the next transition is a system call or an empty action is determined by the
structure of C'° and the types of values. If C° performs a non-public addition then
k' ~p (* = addy¢(d, %, *)) and kind k, type ¢ and domain d are all determined by
ce.

Let us now consider the case where C° performs a system call

H/E (UO :f(do,dl,...7dn,1}1,...,7}n)) .

Note that the system call’s name f and protection domains d;, for 0 < ¢ < n, are
all determined by program P and C°. In the low-slice of ' the arguments of f are
also completely determined by the program and the low-slice of the configuration.
We need to show that the result vg is also determined. If the system call f is public,
as d; € PDy, then [ f] has to be deterministic given the arguments vy, . . ., v, and
the low-slice of the environment wy,. Hence, we can compute the result vy from
those arguments. If dy € PDy then vy is replaced with * in the low-slice of x’
and is thus trivially determined. In all other cases ' is a declassification label.
As we saw, the low-slice of the configuration C° and the low part of the
environment wy, are uniquely determined by program P and the observed low
trace 7. The low-slice of the configuration in turn determines the low-slice of the

next label /. Thus we either have I}:C“{’wL = Ig’wL ifk = K/ or Ig;ﬁ’wL =0

otherwise. O

Lemma 3. Let w;, € Wi, T € T and k € A such that  is not a declassification
label. Then KN 5" = KN EvL,

Proof. This follows immediately from the previous lemma. O

Theorem 2. Let wy, € Wy, T € T such that all labels in T are non-declassifying.
Then IC/\/g’wL = IC./\/'?;“'L.
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Proof. By induction using the previous lemma. O

Theorem [2| shows that adversary’s knowledge does not increase until the
first declassifying system call. Lemma [3]is actually stronger. It claims that after
declassification subsequent non-declassifying system calls also do not increase
adversary’s knowledge. We do not restrict how much information declassifying
system calls release. They could either reveal everything adversary could learn or
they might not reveal any new information.

Theorem 3. Let P be a program with body of the form
{x:dbool; x = get_bool(); s}

such that statement s and functions defined by P do not contain declassifying system
calls. Let ™8 g, parametrized with b € {true, false} be a secure implementation
of ‘F/ZBB that

e gives non-declassifying semantics to non-declassifying system calls, and
e return b in response to get_bool().

Let Py, ..., P, be the computing parties executing the program P (Sectiond.5).
Then for any adversay A admitted by WZBB the views of any environment Z, in
configuration Z||P1]| . .. ||Pn||TREE||A and Z||P1]| . . . ||Pn||7i85°||A are indis-
tinguishable.

4.7 Monomorphic representation

The syntax of SECREC presented here is quite simplified compared to the real
language but it still offers high-level features in the form of domain polymorphism.
The semantics of the language reflects the meaning but in this case presents
evaluation in quite unrealistic manner. In this section we describe a more simplified
language that models the compiler’s intermediate representation. The dynamic
semantics of the simplified language reflects the actual evaluation better.

There are two issues with the high-level language’s evaluation rules. First,
we are keeping track of protection domains and types of all values and variables.
Second, function calls are dynamically dispatched by performing an instance lookup
for every call. In reality we do not need to keep track of types during running time
and all dynamic dispatches can be statically resolved.

We denote the syntactic elements of the monomorphic language using the same
notation that we used for the high-level language. The languages are syntactically
almost identical and it is always clear from the context whether we are talking
about the polymorphic or the monomorphic one. The only difference is that
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P;)+ body(P) VF;e P.P+F,;
HP

(MoNOPROGRAM)

Figure 4.10: Monomorphic program type checking rule

MonoSysC
P}_f(xl:dltl,...,xn:dntn):dt( ONODYS ALL)

P;(return:dt,xy :dyty,...,xn:dpty) F s
Pt f(xy:dity,...,zp:dpty):dts

(MonoFuNcTION)

Figure 4.11: Monomorphic function declaration type checking rules

the monomorphic language may not contain polymorphic functions and additive
expressions are annotated with types (Equation (4.3)). The syntax for programs,
data types and statements remains unmodified.

F o= f(xy:dity,...,zn dyty):dt]s] 4.3)
e u= x| |ertqrea| fler,ea, ... en) '

4.7.1 Static semantics

The type checking rules for the monomorphic language differ from the rules for
the polymorphic language in a few aspects. First, the monomorphic language
type checking rules are no longer defined via the existence of an instantiation
context. Second, during function calls we no longer have to look up instances and
instead look for a function with a concrete type. Lastly, functions may no longer
be overloaded by type. Apart from that, the rules are fairly similar. In fact, the
rules for statements are identical in both languages (see Figure {.5), and hence,
will not be repeated here. A monomorphic program P is well-typed if its body
and every function definition is well-typed. This is reflected by the type checking
rule in Figure 4.10] Procedures are well-typed if their body is well-typed given
appropriately assigned types in the environment I" (Figure 4.TT). System calls are
always well-typed.

Typing rules for expressions are presented in Figure d.12] The only rule that
is different from the polymorphic language is for function calls (the MoNnoCALL
rule). In the monomorphic case we simply check if a function with the given
name exists. The lookup provides us with the argument and return types of the
function. Then we check that the arguments have matching types. We write
Pt f:(dyty,...,dyty,) — dtif program P declares an n-ary function or a
system call named f and it has the corresponding signature.
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(x:dt)el

PTF o di (MoNOVAR)

m (MONOLIT)

P;T'ke;:dt P;T'keg:dt te {int,int[]}
P;I'Fej+giex:dt

(MonNoADD)

Pl‘fﬁ(dltl,...,dntn)*}dt
P'te :diti ... P;Tlke,:dyty
P;TF fler,...,en) :dt

(MonoCaLL)
Figure 4.12: Monomorphic language expression type checking rules

4.7.2 Dynamic semantics

Just like with static semantics, the dynamic semantics of the monomorphic language
is largely similar to the polymorphic case presented in Section[4.4] Recall that in
the polymorphic setting, values were annotated with protection domains and types.
In the monomorphic case this is no longer so. For example, the environment v now
maps names directly to Val.

Firstly, we need to extend expressions with values: e ::= ... | v where
v € Val. Expression and statement evaluation context can be defined similarly to
the polymorphic case with the difference that values are no longer annotated with
type information. Thus, we will not repeat the definitions here and refer the reader
to Equations (4.1)) and (4.2). Plain configurations C, program configurations C°,
and target configurations C'* are all defined in a similar way.

Dynamic semantics are presented in small-step operational style using the set of
tuples P - C° % (. The presentation is again almost identical to the polymorphic
case. We will highlight the rules for evaluating addition, function calls and system
calls (Figure {.13)). For an addition expression, the type and protection domain
are encoded in the operation itself and not in the value. The notable difference for
function and system calls is that in the monomorphic setting we no longer need to
perform dynamic instance lookup.

The trace semantics of monomorphic language program [P] is defined in the
same manner as for the polymorphic language. We are reusing the same notion of
traces as previously. This is possible because we have defined traces so that they
hide the details of program state and only consider the actions that the program
performs during its execution.
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d= public w=1u-+v d 75 public R = (w = addkind(d),t(d)uyv))

yEA(u+g¢v) = (w) Y (U g v) 2 (w)

s =bodyp(f) 7 =clx;—vi| (2 :dit;) €argp(f)]
P <7ﬂ5[f(7~}17 s 7Un)]> — <(Sa7) : 7/75>
Pl—f(dl tl,...,dntn) —dt
L = bodyp(f) k=kind(d) ki = kind(d;)

K= (V= flot),(k1t1)(onstn) (@ d1s o iy 01, 0p)

PF (7, 8[f (i, o)) 5 (7, S[v])

Figure 4.13: Monomorphic language expression evaluation rules
V(f.0,0) € I:P;0;1+ fC~ Fog
Fr={F;|ielI} P;0;IF body(P)~ s
I+ P~ pdk(P) pd(P) Fy &

(TraNsPROGRAM)
Figure 4.14: Program translation rule

4.7.3 Monomorphization

We have defined the syntax and semantics of the monomorphic language. Here
we cover translation from the polymorphic language into the monomorphic one.
The type-directed translation rules model how the compiler generates lower level
intermediate code from the high-level program.

For an instantiation context I, we write I = P ~» P’ to mean that polymorphic
program P translates into the monomorphic program P’. The top-level translation
rule is presented in Figure[.14] Every function instance in / and the body of program
P is translated into monomorphic form and the resulting program is constructed
out of the translated instances. The protection domain kind and protection domain
declarations are taken directly from P.

A single polymorphic function may be translated into multiple functions, each
with a concrete type. To distinguish between those functions we add some extra
information to function names during translation. Namely, function f¢ with a
concrete substitution 6 will get translated into a function with name f; ). Function
argument types, result types and the function body are substituted with 4 to use
concrete domains. Finally, the function body is translated with a properly extended
environment. The function and system call translation rules are presented in

Figure d.15]
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body%(¢) = L
P:6: 1+ ft~s f(w)(arg%(ﬁ)) : ret%(ﬂ)
bodyf (¢) # L
P; (return : ret%,(¢),argh(¢)); I - body%(£) ~ s’
P:6: T+ ft s f(@’g)(arg%(ﬁ)) : ret%(ﬁ) s’

(TrAaNSSYsSCALL)

(TransFuncTION)

Figure 4.15: Function declaration translation rules

PTIF vy, di—o ([RANSVAL)

(x:dt)el
P;lsIkFx:dt~zx

(TransLiIT)

(TrANsVAR) P;TiIF ¢ttt ~ ¢

t € {int,int[]1}
P;IiIke:dt~ey PiIiIFey:dt~ €

P;TsIF e +ex:dt~ € +q:€)

(TRANSADD)

P;IsIbe;:dity~~e€) ... P;IiIFe,:dyty~ e,
(¢,0) = instancep(f;dy t1,...,dptn) (f,4,0) €I

PTiTE f(er . en) tdt ~ feg)(eh . ch)

(TrANSCALL)

Figure 4.16: Expression translation rules

Expression translation rules are given of the form P;T; 1 F e : dt ~ € in
Figure .16 The rules state that a high-level language expression e has type d ¢ and
translates to monomorphic expression €’. The rules are very similar to the high-level
language type checking rules. We only note that function calls are translated to refer
to concrete instances of polymorphic functions. We will omit statement translation
rules as they are completely structural and correspond directly to the rules from
Figure {.5] directly.

The translation rules are in one-to-one correspondence with the type checking
rules. In fact, whenever a program is well-typed, there exists a monomorphic
program into which it translates. The reverse also holds. If we can translate a
program to monomorphic form it needs to be well-typed.

Proposition 2. For every polymorphic program P and instantiation context I we
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have I & P iff there exists P’ such that I = P ~~ P’.

Proof. This follows immediately from the one-to-one correspondence between
type checking and translation rules. If I - P then we can follow the translation
rules without getting stuck, and hence, there must exists a P’ such that I = P ~ P’.
If there exists a P’ such that I = P ~» P’ then we can take the rules the translation
follows and simply erase from them the translation part and keep the type checking
part. O

We can show that the translation only produces well-typed monomorphic
programs.

Proposition 3. For every program P and instantiation context I if [ = P ~~ P’
thent P'.

Proof. If I = P ~» P’ then we know that P has to be well-typed I = P. When
attempting to type check the body of P/, we follow the exact same path as we do
when type checking the body of P. However, when visiting function calls we will
instead call concrete instances. From the rule TRANSCALL we know that a well-typed
instance must exist. Hence, the respective calls in the body of P’ have to also exist
because of the way translation of programs (TrRaNsPrRoGrRAM) is defined. O

4.7.4 Correctness of translation

To show the correctness of translation to monomorphic form we will show that
equivalent polymorphic and monomorphic program configurations take the same
transition steps. For this, we need to define what we mean by equivalent program
configurations.

Environments ~ and ~' are equivalent when erasing types d ¢ in ~y gives /.
We write this v = +/. Let I'(y) denote a type checking environment such that
for every x, where y(z) = vq¢ for some v € Val, we have (z : d t) € T'(y).
Essentially, we map the dynamic language runtime variable environment +y to a type
environment. Two configurations are equivalent if their components are equivalent
and a high-level language statement translates to a low-level language statement in
the respective context. Formally:

vy=v P;T(y);lks~s PI-C=C"
P;I+{(C:v,8) =(C":4,5")

Lemma 4 (Bisimilarity). Let P be a program and I an instantiation context such that
I+ P~ P'. Forevery two equivalent program configurations P; 1 - C° = C'°
the following conditions hold:

76



1. For every label k and polymorphic language target configuration C* if
P F C° 5 C° then there exists C'* such that P' + C" 5 C'* and
P;I-C*=C".

2. For every label x and monomorphic language target configuration C'®
if P = C° 5 C'* then there exits C* such that P + C° 5 C* and
P;I=C*=C".

Proof. For a given program P and instance context I, the configuration C°
determines C’°. Given x and C°, the configuration C*® is also uniquely fixed.
Similarly, given x and C"°, the target configuration C’® is uniquely fixed. These
facts reduce the proof to induction over high-level and low-level statement evaluation
rules for the first and second part respectively.

O

Theorem 4. For every program P and instantiation context I if there exists P’ such
that I = P ~ P’ then [P] = [P’]. In other words the semantics are preserved
under translation.

Proof. This follows from bisimilarity. For program P let I = P ~» P’. Consider
a single trace T € [P]. The trace T follows from the initial configuration (P)
taking steps k1, k2, . . .. The program P and trace 1" together fix the intermediate
configurations uniquely, and thus, by application of the bisimilarity lemma we
get that 7' € [P’]). By similar reasoning and by applying the second part of the
bisimilarity lemma we also get that if T € [P'] then T' € [ P]. O
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CHAPTER 5

A LANGUAGE FOR LOW-LEVEL
SECURE MULTI-PARTY COMPUTATION
PROTOCOLS

SHAREMIND features a large set of secure primitives: basic arithmetic, comparisons,
bit extraction, bit conversions, division of arbitrary-width integers, as well as a full set
of floating-point [62]] and fixed-point [30] operations, including the implementations
of elementary functions.

More often than not SHAREMIND protocols are specified in a compositional
style forming a hierarchy, with more complex protocols invoking simpler ones. This
is a very natural approach to software development. For example, floating-point
operations use fixed-point operations which in turn use integer operations [[71]]. The
choice to expand the set of primitives in SHAREMIND has been validated by the
multitude of privacy-preserving applications it has been used for (see Chapter [6] for
examples).

The implementation and maintenance of such a large set of protocols has turned
out to be an error-prone and repetitive task. Manual attempts to optimize complex
protocols over composition boundaries is a laborious task, prone to introduce errors
and make the library of protocols unmaintainable. Implementation is made more
difficult due to the fact that protocols need to work for several integer widths, and
many abstractions in the implementation language, such as virtual function calls
in C++/Java, entail an unacceptable runtime overhead. The task of building and
maintaining implementations of protocols is naturally answered by introducing a
domain-specific language (DSL) for specifying them.

In this chapter we describe the protocol DSL. It was designed by the author of
this work, who was also the principal developer of the compiler. We discuss the
design rationale of the language, show how it enables us to easily build protocols
for complex operations, and describe our experience in using it, both in terms
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of performance and maintainability. We start with an informal overview of the
language through a number of examples, allowing us to give the reader an intuitive
understanding of the language and to highlight the important details. The design of
the protocol language has been heavily influenced by Cryptol [83]]—a language
for specifying cryptographic algorithms. Syntactically our protocol language is
quite different but both languages encode sizes in type level, are intended for
cryptographic algorithm specification and both compile to a low-level circuit
description. However, our protocol language is much more specialize and contains
network communication primitives.

5.1 Language overview

We sought to create a programming language that facilitates the implementation
of SMC protocols in a style similar to their specification in [22]] and [62]. Our
experience in implementing SMC protocols in C++ showed that the aspect most
hindering our productivity and performance was the lack of composability.

Namely, our C++ protocol development framework is designed to allow a single
protocol to be executed on many inputs at a time (SIMD style) but vectorized execu-
tion of two different protocols is only realizable by interleaving both protocols and
manually packing all network messages together. Doing so is very time-consuming
even for medium-sized protocols. Lack of composability leads to unreadable proto-
cols, and difficulties with maintenance and introducing modifications. Fixing a bug
means making changes in every place the modified protocol has been copied to.
This has often led to sacrificing performance for readability and development time
to an unacceptable degree.

Hence, the key design principle of the protocol DSL is to always put compos-
ability first: whenever the data-flow dependencies allow, the protocols are executed
in parallelT] no matter the order they occur in the code. For performance reasons it
is important to keep the round complexity of protocols low, as a network roundtrip
is orders of magnitude slower than the time it takes to evaluate the (arithmetic)
gates in the protocols.

When implementing protocols in C++, large parts of the code dealt with how
network messages are packed, and how and when they are sent to other computing
parties. We decided to automate this process. In the protocol language we have
simplified the network messages aspect and the programmer only has to specify
what values are used by other parties, but not how or when they get there. The
compiler minimizes the round count, chooses how values are packed into messages,

'We do not mean parallelism in the sense of using multiple cores but in the sense of packing
many different values into one message and thus sending fewer network messages and reducing the
number of communication rounds.
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Listing 5.1: Typical top-level structure of a DSL protocol (add. prot)

parties 3

// Polymorphic function that adds two n-bit integers
def add(u: uint[n], v: uint[nl]): uint[n] = u + v

/* Generate the following protocols: */
protocol add32(x: uint[32], y: uint[32]): uint[32] = add(x, y)
protocol add64(x: uint[64], y: uint[64]): uint[64] = x + y

and deals with sending and receiving network messages automatically.

We also wanted to have an optimizing compiler for the language so that the
programmer does not have to manually optimize when compositions introduce
possibilities for it. The protocol DSL is a functional language that enables writing
code in a declarative style and lets the programmer manipulate protocols in a
higher-order manner. For instance, it is natural to apply a protocol to each element
of a vector by using a higher-order mapping operator.

The language supports type level integers, called size types, and arithmetic
on them. Functions polymorphic in the number of input bits allow a protocol to
be specified once for all input lengths. The language is not strongly coupled with
SHAREMIND and can be used by other SMC frameworks. However, protocol DSL
is mainly targeted for implementing arithmetic secret sharing schemes and only
works with statically fixed number of parties.

5.1.1 Top-level structure

Typically, a program in the DSL declares the number of parties the protocols
operate on, imports some external modules to use, defines some functions, and
finally defines some protocols. Code will be generated only for protocol declarations
and not for function definitions. Functions in the DSL may be polymorphic, for
example, they may operate on arbitrary bit width integers, but protocols are strictly
monomorphic and first-order.

A simple example to demonstrate the top-level structure of the language is
presented in Listing [5.1} In the example we operate with 3 computing parties.
The default mode of operation in the protocol DSL is that every computing party
executes the same code. In this example all three parties perform exactly the same
way. After declaring the number of parties, we define a function named add that
takes two n-bit unsigned integers u and v, and returns an n-bit integer. The function
is defined to evaluate to the sum of the arguments. The type of n-bit integers is
denoted with uint[n] where the type argument n is placed between square brackets.
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Figure 5.1: Overview of the protocol DSL toolchain

As the last step we declare that code is to be generated for two protocols: 32-bit and
64-bit addition. Notice that protocol declarations operate on concrete bit widths.

Figure[5.1] gives an overview of how the protocol DSL toolchain can be used to
compile, evaluate or analyze the current example. Compiling the file will produce
an intermediate code file for each protocol declarations (see Section[5.4). For the
current example, two files add32.dag and add64.dag are produced. Each of the
generated DAG files can be optimized, evaluated for testing, analyzed for security,
and can be compiled to machine code via the LLVM toolchain. The object code can
be linked in SHAREMIND to provide an automatically vectorized addition protocol.
Object code can also be directly evaluated, used for testing or could be used by
other SMC systems.

5.1.2 Implementing protocols for additive secret sharing

As an example we will define a basic protocol set for three-party additive secret
sharing. Recall that values are shared over a finite ring. Different rings of the form
Zon and Zi can be used. The protocols perform operations on secret shared values,
receiving the shares of the operands as inputs and delivering the shares of the results.
A secret shared value x € R, where R is one of the rings Zon or Z7, is represented
as a triple (z1, z2, x3) with party P; holding x; € R, satisfying x1 + z2 + x3 = x,
where addition is in ring R. A useful property of the additive scheme is that integers
can be added with no network communication by adding the respective shares.
Most other operations require at least one communication round. This means that
the previous example in Listing [5.1] actually implements addition protocol for Zan.
Next, we take a look at examples using network communication.
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Listing 5.2: Additive resharing

def reshare(u: uint[n]): uint[n] = {
let
r = rng()
w=u+r - (r from Next);
w

}

Resharing

To ensure that shares are independent of values that an adversary may have previously
observed, resharing is commonly used when implementing three-party additive
protocols. Resharing operation takes input shares and returns new shares that are
independent of input shares but reconstruct to the same value that input shares
reconstruct to. The new shares can be used used as inputs for further protocols.

The implementation of resharing [23| Alg. 1] in our DSL is depicted in
Listing The i-th party receives the share u; of some private value u € Zon
as input. In order to obtain the output share «/, the i-th party generates a random
value r;, sends it to the previous party and finally adds to the input the difference
between the generated random value and the random value that it has received from
the next party. All arithmetic is performed modulo 2. The final shares obtained
in the protocol will be (u}, uh, us) = (w1 +r1 — ro,ug + 12 — r3,uz + 13 — 11).
We see that v} + uf + uf = uj + ug + ug = wu, i.e. the output value is the same as
the input value but v/ are independent of u;.

We define variable reshare of type uint[n] -> uint[n] denoting a function
that takes an n-bit unsigned integer to an n-bit unsigned integer. The function
argument is called u and its type uint[n] is indicated after a colon. The body of
the function follows after the equality sign and it first randomly generates a value r,
and computesu + r - (r from Next) as its result. For ¢-th party the expression
r evaluates to the ¢-th share of r but the expression r from Next evaluates to 7,(;)
where n(7) denotes the next index (p(-) maps 1 to 2, 2 to 3 and 3 to 1).

It is important to note that we have not explicitly stated which computing party
performs which computation. Recall that implicitly every computing party executes
the same code. For instance, each party generates a random value independently
even though it is only written once in the code. The types of variables are derived
via type inference: from the type of the function we know that the input variable
u must be an n-bit integer, and because addition operates on integers of equal bit
width we know that the randomly generated variable r must also be an n-bit integer.

Sometimes it is useful to reshare a value in such a way that one of the parties
holds 0 as its share. Such resharing protocol is given in Listing In this protocol,
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Listing 5.3: Resharing between two parties

def reshareToTwo(u: uint[n]): uint[n] = {
let {1}
r2 = rng()
r3 =u-r2;

1->0
2 =>u+ (r2 from 1)

1

2

3

4

5

6 party:
7

8

9 3 ->u+ (r3 from 1)
0

given the shares of an input u = (u1, u2, u3), the first computing party generates a
random value 73, sends it to the second computing party and sends r3 = u; — 3 to
the third computing party. The second and third computing parties add the received
values to their input shares. The resulting shares are (0, ug + r2, us + (u; — 72))
which sum to the original value .

The protocol in Listing |5.3| demonstrates various features of the language: the
ability to perform computations and define values for only a subset of parties (lines
2 to 4), the ability to branch the computation depending on the evaluating party
(lines 6 to 9), and finally the ability to receive values from certain fixed parties. The
variables r2 and r3 are only defined by the first computing party. The result of the
function body is computed differently depending on the computing party: the first
computing party always returns O (line 7), while the second and third party add the
received value to their respective input shares (lines 8 and 9).

Both resharing operations have the pattern where one of the participants
generates a random value and sends it to some other party. Instead, the two parties
can agree upon a common random number generator seed before the protocol
is evaluated. The parties can later generate random values that would otherwise
have to be sent over the network. Using this optimization, the resharing functions
require no network communication. We apply this optimization automatically so
that developers do not have to modify existing protocols to benefit. The details and
benefits of this optimization are discussed in Section[5.4.2]

Multiplication protocol

The algorithm for multiplying two additively shared numbers u, v € Zon is based
on a simple equality given by the distributivity of multiplication over addition:

3,3 3
(u1 + ug + us)(vy + v +v3) = Z uv; = Z(uwz + Uivp ;) + up(i)vi) ,
ij=1,1 i=1
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Listing 5.4: Multiplication protocol

def mult(u: uint[n], v: uint[n]): uint[n] = {
let
reshare(u)
reshare(v)
wW=u*v+u* (v from Prev) + (u from Prev) * v;

< c
n o

where p(i) denotes the previous index (p(-) maps 2 to 1, 3 to 2 and 1 to 3). This
equation is directly mapped to the code in Listing [5.4] by letting the i-th party
compute the term w; = w;v; + uiUp(;) + Up(;)v;- To achieve security and privacy
the algorithm reshares both inputs. Notice the let-expression overshadowing input
variables u and v with same names. We can see the similarity to Algorithm 2 in
[23] but again, the presentation is much more concise.

Textually the resharing calls happens one after another but notice that there are
no data dependencies that forbid us from performing both in parallel during the
first communication round. This is exactly what happens in practice where we try
to minimize the number of communication rounds. The simplest approach is to
greedily send network messages in the earliest communication round possible.

Usually we specify protocols for integers of arbitrary bit width n, like the
multiplication protocol here, but in a concrete system protocol implementations are
instantiated to bit widths that computers support natively. In most cases protocols
are specialized to operate on 8-, 16-, 32- and 64-bit integers. The only limitation
is that we do not allow bit width to be chosen dynamically. It always has to be
fixed before executing the code, during the compilation of protocols. Support for
arbitrarily large integers has turned out to be extremely useful. For example, the
integer division protocol internally uses integers larger than 128 bits. In addition to
that, as we will later see, fixed- and floating-point computations can be sped up by
starting operations on large integers and gradually cutting back during the protocol.

Disregarding the resharing calls, the multiplication protocol that we have
just implemented is not symmetric in communication. When resharing does not
perform network communication the multiplication protocol sends both messages
(v from Prev) and (u from Prev) over the same network channel. One-sided
communication does not benefit from the full-duplex nature of Ethernet connections.
We have proposed [64]] a small modification to the protocol that achieves balanced
communication, namely the result is u;v; + Up(;)Vi + Up(5)Un(s)- AS previously, uy ;)
is computed as (u from Prev) and v,(;) as (v from Next). While the expression
for sending u will occur in the implementation twice, the data is only sent once. We
showed [64] that this optimization results in a small speedup of around 1.1.
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Listing 5.5: Basic bit-level protocol

def xorReshare(u: uint[nl]): uint[n] = {
let r = rngQ);
u*r * (r from Next)
3
def conj(u: uint[n], v: uint[n]): uint[n] = {
let
u = xorReshare(u)
v = xorReshare(v);
u&v *u& (v from Prev) * (u from Prev) & v
3

def disj : uint[n] -> uint[n] -> uint[n] = \u v -> ~conj(~u, ~v)

5.1.3 Bit-level operations

Many of the high-level protocols are implemented in terms of bit-level operations
on values secret shared over Zy. To see how we can implement basic bit-level
operations, consider the special case of additive secret sharing over the ring Zs.
Multiplication over Zs acts as Boolean conjunction A and addition as exclusive
OR @. This yields a simple recipe for implementing bitwise additive sharing over
Zy. XOR is implemented by locally computing the XOR of respective shares.
The bitwise conjunction protocol (Listing [5.5) is almost identical to additive
multiplication but addition is replaced by XOR and multiplication of shares by
bitwise conjunction. Bitwise negation is computed by an odd number of parties
negating their shares, and disjunction can be computed via conjunction and negation
via De Morgan’s laws. We call this kind of bitwise additive sharing XOR sharing.

Prefix-or

Prefix-or is a primitive bit-level operation that is often used inside higher-level
protocols. It is excellent for demonstrating recursion and size-polymorphic functions.
The prefix-or of a value @ € Z3 is obtained by propagating its most significant
1 bit downwards. For example, the prefix-or of the 8-bit number 001011005 is
00111111s. If @; denotes the i-th bit of #, then the prefix-or of « is ¥ where
U; = \/;L:Z Uj.

The implementation of prefix-or is shown in Listing[5.6] The prefixOr protocol
is defined recursively: we split the input into two roughly equally long parts and
recursively compute the prefix-or of the parts. If the upper half has any 1 bits
then all lower half bits will also need to be set. To achieve this, we compute the
disjunction of the resulting lower bits with the lowest bit of the upper half. Finally,
we concatenate the resulting parts. For 0- or 1-bit number we return the number
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Listing 5.6: Prefix-or protocol

def prefixOr(p: uint[nl]): uint[n] = {
if (n < 2) return p;
let
x = prefixOr(p[@ .. n/2])
y = prefixOr(pLn/2 .. nl)
x = disj(x, lift(y[el1));
X ++y

}

itself; this is the recursion base case.

This example demonstrates multiple features of the language. First, the function
is defined recursively. Second, integers can be manipulated as arrays. In fact, integer
type uint[s] is actually a synonym for bit array arr[bit, s]. The syntax u[m. .nJ]
denotes the slice of the array u from index m until the index n-1.

The example uses few operations that we have not defined previously. The
operator ++ is defined in the standard library and concatenates two arrays. The
built-in function 1ift of type a -> arr[a,n] takes a value of any type and
replicates it to desired length. The number of duplicates depends on the context
and is derived from the return type. Concretely, the expression 1ift(y[0]) takes
the least-significant bit of y and replicates it to n-bit integer (bit array).

Share conversion from XOR to additive

Bit-level protocols are used as building blocks for high-level additive protocols.
To use these building blocks we need to convert between additive sharing and
XOR sharing. Converting a bit u € Zs to an additively shared integer in Zon is not
completely straightforward, because the shares of « may also add up to 2 or 3 in
Zon. The implementation of this protocol called shareconv (Listing|5.7|adapted
from [23]) is quite involved but only performs simple operations. The first party
generates a random bit b € Zy and reshares m = b @ u; € Zan, where u; is the
first party’s share of u, between the second and the third party. Next, the second
and third party compute s = b @ uz B us € Zs. Finally, if s = 1 then the result is
1 — m and otherwise it is m.

We have restricted shareconv function to only return integers that have at least
one bit. This is achieved via the constraint n>0. Whenever the share conversion
function is called, the type checker verifies that its result has at least one bit.

Using the share conversion protocol we can convert an arbitrary bit width
XOR-shared integer @ € Z7 to an additively shared integer by converting each bit
U; to v; € Zon and then computing the dot product with public successive powers
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Listing 5.7: Share conversion

def shareconv[n>0](u: uint[1]): uint[n] = {
if (n == 1) return u;
let {1}
b12 = rng ()
b13 = rng ()
b =Dbl2 * b13
m = zextend (b * u)
mi2 = rng ()
mi3 =m-ml2;
let {2} s23 = (b12 from 1) * u;
let {3} s32 = (b13 from 1) * u;
let {2,3} s = (s23 from 2) * (s32 from 3);
party:
1->0
2 > if (s == 1) (1 - (m2 from 1)) else (m12 from 1)
3> if (s ==1) (0 - (m3 from 1)) else (m13 from 1)

Listing 5.8: XOR to additive conversion

def xorToAdditive(bits: uint[n]): uint[n] = {

if (n == @) return 0;

sum(zipWith(\b i -> shareconv(arr{b}) << i, bits, countUp(@)))
3

of two: Z?:_ol 2iy;. We call this function xorToAdditive. The implementation
(Listing [5.8)) is straightforward using some standard library functions. The function
countUp takes an integer and produces an array of successive integers starting
from the input value. The length of the result is derived from the output type
arrluint[n], k] where uint[n] is the input type. Higher-order function zipWith
takes a function of two arguments and two arrays of same length and applies the
function to the input arrays pointwise. Expression arr{b} converts the bit b into
an integer of length one. We need to take special care of 0-bit integers because the

share conversion function can not return 0-bit integers.

Additive type conversions

The problem of converting a single bit to a larger additive representation can be
generalized to the question if the sum of shares overflows. This same problem
occurs in the additive scheme if we want to convert any n-bit number to a larger
(n 4+ m)-bit number while keeping the original value. The solution is to implement
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Listing 5.9: Overflow protocol

def msnzb(u: uint[nl): uint[n] = {
if (n < 2) return u;
let u = prefixOr (u);
u?r (u>1
3
def mszb(u: uint[n]): uint[n] = msnzb(~u)
def overflow(x: uint[nl): uint[1] =
xorBits(conj(mszb(x), party: 1->0 2->x 3->0))

a general overflow function that returns one if the sum of shares overflows. Note
that a sum of three number may overflow two bits. Therefore, overflow should
only be used on values that are shared between two parties.

The overflow function is defined in Figure [5.9] It operates by first finding the
most significant positions where the input bits are equal and then checks if those bits
are either 1 or 0. If those bits are both 1 then they generate a carry and subsequent
bits will propagate that carry over the last bit. If the highest equal bits are both 0
then they cancel any incoming carry and higher bits can not generate a carry either.

The helper function mszb takes a XOR shared number and finds its highest 0
bit. It is defined through prefixOr. If the highest zero bit of x is at index 7 then
mszb(x) return XOR shared 2°. If the input does not have 0 bits then mszb returns
0. We have also used a standard library function xorBits that takes an integer and
finds the XOR of its bits.

Using this primitive we can implement many useful functions: cut to eliminate
some lower bits of a number, extend to convert a number to one with more bits,
and publicShiftRight to shift the input right by some public number of bits. The
functions are implemented in Listing [5.10} Notice how the cut function differs
from bit shift in that it explicitly removes lower bits. This is an optimization over
publicShiftRight that has to compute both upper and lower overflow bits—cut
only has to compute lower overflow bits. This is usually a considerable speedup.

We use the syntax ‘s to convert a size type s to an integer value. The backtick
operator accepts any size expressions. For example * (n+m) is also a valid expression.
In the current example this type to value conversion is needed because primitive
bit shift operations expect integer arguments. Notice also that extend function has
type uint[n] -> uint[m+n] expressing that the input can be extended by any
number of bits m. When we write extend*[m = 8](x) we extend the input x by 8
bits. The variable m to the left of the equals sign indicates the type argument m of
the extend function.
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Listing 5.10: Additive type conversion protocols

def extend(u : uint[nl]) : uint[m + n] = {
if (n == @) return 0;
if (m == @) return u;
let u = reshareToTwo(u);
zextend(u) - (shareconv(overflow(u)) << ‘n)
}
def cut(u : uint[n + m]) : uint[n] = {
if (n == @) return 0;
if (m == @) return u;
let u = reshareToTwo(u);
ulm ..] + shareconv(overflow(u[.. m]))
3
def publicShiftRight[n > @J(u : uint[n], p : uint[n]) : uint[n] = {
let u = reshareToTwo(u)
s = u << (*n-p)
o1 = shareconv(overflow(u))
02 = shareconv(overflow(s));
(u>>p) - (o1 << (*n-p)) + 02
3

Additive to XOR share conversion

We have seen how to convert XOR shared data to additively shared data but
the inverse is also required. Our protocol relies on computing the sum of two
XOR-shared integers using primitive operations such as conjunction, disjunction
and XOR. Therefore, before we present our conversion protocol we first need to
discuss adder circuits. Our task is to add two n-bit integers A = [A1As ... A,] and
B =[B1By...B,] where A;, B; € Z3 and A; is the least-significant bit of A. We
want to compute the bits of A + B efficiently.

We denote the sum of A and B as S € Z3 and its bits as .S;. Let C; denote
whether the addition of A and B generated a carry to the i-th bit. In other words,
C; indicates if the addition of (i — 1)-bit integers A[l : 4 — 1] and B[1 : ¢ — 1]
overflows. It is easy to see that from carry bits we can compute the sum as
S; = A; + B; + C;_1. Here we will assume that the incoming carry C is zero. A
carry bit C; 1 is set if at least two of the three bits A;, B; and C; are set. This can
be expressed as C; 1 = A; B; + C;A; + C; B; where bit operations are performed
in Zs. Alternatively, we can write C;1 = G; + C; P; where generator G; = A; B;
and propagator P; = A; + B;. Using that terminology S; = P; + C;_1.

Let us define a new binary operator (P,G) X (P',G') = (PP',G + G'P) in
Zo x Zso. It is easy to see that this is a closed and associative (but not commutative)
operator. Let T; = (P;,G;) and Q1 = T and Q11 = Ti41 X Q;.
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Figure 5.2: Parallel prefix-sum circuit constructions

Proposition 4. IfCy = 0 then Q; = (P; ... PaP1,Citq).

Proof. The proof is straightforward by induction. First, Q1 = 71 = (P, G1) and
Cy = G1 + C1P;. Because C; = 0 we have G; = (5. For the induction step
assume that Q; = (P; ... Py Py, C;11). By definition

Qir1 = T RQ = (Piy1,Gip1) XQ;
= (PipaPi...PoP,Gig1 + Ci1 Piga)
= (PP... PP, Ciyo) .

O

From (); it is efficient to recover the carry bit C; and, therefore, also the sum bit
S;. Notice that because X is associative we do not have to compute the prefix-sum
of T; in the exact same manner as we saw in the proof. The simple approach has
a large delay that would translate to a large round count in the implementation.
Fortunately, it is well known that the prefix-sum of any associative operator can be
computed in a logarithmic number of parallel operations. Two well-known parallel
prefix-sum schemes [67, 72]] are depicted in Figure[5.2]

Equipped with the knowledge about adder circuits, the protocol implementation
is very simple. Given an additively shared value v € Zy» we first reshare it between
the second and the third party as (0, ve, v3) such thatv = vy +wvs3. The reshared value
can then be viewed as two XOR-shared values = (0, v2,0) and y = (0,0, v3).
Unfortunately, if we simply add them in Zs» we will get an additively shared sum.
If we implement an adder circuit that uses conjunction and XOR, we get properly
XOR-shared result. Bit extraction is defined in Listing

The addition circuit can be implemented in a similar recursive style as the
prefix-or in Listing [5.6]but we opt for a different approach. A serious problem with
the circuit construction scheme used in prefix-or is that it is quite heavy in local
computations. Protocols eventually get translated into straight line LLVM code that
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Listing 5.11: Bit extraction

def bitextr(v: uint[nl): uint[n] = {
if (n <= 1) return v;
let
v = reshareToTwo(v) // (@, v_2, v_3)
X = party: 1->0 2->v 3->0 // (0, v_2, 0)
y = party: 1->0 2->0 3->v; // (@, 0, v_3)
xorAdd(x,y)
3

does not contain loops or functions. Therefore, every computation step has to occur
as an explicit instruction in the generated code. Large amounts of code stress the
tools that we use and degrade the performance of protocols. Currently, the only
workaround for this issue is to write code that avoids manipulating individual bits
and, instead, operates in SIMD fashion.

The prefix-or protocol computes prefix disjunction using the generic prefix-sum
by Ladner and Fischer [72] in a bottom-up manner. The circuit for 16-bit case is
depicted in Figure[5.2b] The implementation is actually communication-efficient but
does not seem to admit to a good software implementation. Instead, we implement
XOR shared addition using the Kogge-Stone [67] construct (Figure [5.2a)) which is
easier to implement computation-efficiently in software. As bit extraction is a very
commonly used primitive we get much smaller protocol binaries with a reduced
local computation overhead. We found that for 64-bit prefix-or, Kogge-Stone takes
about 1.5 times more communication but results in a DAG that is about 20 times
smaller.

Addition of XOR shared numbers is implemented in Listing[5.12] The xorAdd
function is restricted to operate on integers at least two bits long. The function first
defines the initial generator g and the initial propagator p as we previously discussed.
Next, it calls a recursively defined helper function with the type parameter k set to 1.
The helper function computes a single layer of the circuit (see Figure starting
from the top. In the helper function we use the notation “k to convert the size type k
to its integer value. Notice that the recursive call xorAddLoop*[k = 2xkJ(...) is
made multiplying the type arguments by two. We stop the recursion when shifting
by k would shift out all bits of the input.

5.1.4 Building high-level protocols

High-level protocols are usually defined by composing simpler protocols and using
higher-order functions to facilitate the composition. For example, it is often useful
to apply a protocol to every element of an array.
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Listing 5.12: XOR shared addition protocol

def xorAdd[n>1]1(x: uint[n], y: uint[n]): uint[n] = {

3

let

g = conj(x, y)

p=x"y

g' = xorAddLoop*[k=11(g, p, 1);
p g <<

def xorAddLoop[k](g: uint[n], p: uint[n], m: uint[n]): uint[n] = {

}

if (n <= k) return g;
let
g' = conj(p, g << k)
p' = conj(p, (p << k) * m);
xorAddLoop*[k = 2 *x kl(g ~ g', p', m * (m << *k))

As an example we will define the private right-shift protocol. It uses the
following functions and protocols that we have not previously seen.

The built-in higher-order map operation takes a function of type a -> b and
applies it to the input array arr[a, n] pointwise. This function can actually be
defined in the language but is currently built in for a more efficient mapping
over integer values.

The standard library function xor takes an array of integers and aggregates
them with XOR.

The built-in function 1ift takes a value of type a and replicates it k times to
produce an array of type arr[a, k]. Thanks to type inference the number of
repetitions k can be learned from the result type.

The built-in function trunc takes an array of length n and returns an array
of length m that contains only the first m elements of the input array. In the
case of integers (bit arrays) the function drops most-significant bits. The
function requires that m is smaller than n.

Recall that the standard-library function countUp takes an n-bit integer x
and returns an array that contains z at the first position, x + 1 at the second
position, and so on.

In addition to the higher-level building blocks, right shift also uses a low-level
protocol that takes an additively shared integer and returns an XOR shared m-bit
integer where the ¢-th lowest bit indicates if the input was equal to 7. In other words,
the chVector [77] protocol computes the characteristic vector of the input. The
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Listing 5.13: Characteristic vector protocol

1 def chVector[1l,n>0,m>=n](v: uint[n]): uint[m] = {

2 let

3 v = reshare(v)

4 c : uint[m + 1] = xorReshareToTwo(rotate(share(1), v));
5 trunc (party:

6 1->0

7 _ -> rotate(c, v from 2 + v from 3))

8

Listing 5.14: Additive bit shift right protocol

1 def shiftr[8 <= nl(u: uint[n], s: uint[8]1): uint[n] = {
2 let

3 u = bitextr(u)

4 vs = map(\i -> u >> i, countUp(@))

5 bs : uint[n] = chVector*[1 = 0](s)
6

7

8

rs = zipWith(\v b -> conj(v, lift(b)), vs, bs);
xorToAdditive(xor(rs))

}

protocol implemented in Listing takes an additional type parameter [ such
that m + [ is a power of two. This is because the protocol only works correctly
for results that are a power of two bits long, and the language currently lacks the
power to express the constraint that a size type is a power of two, or to perform the
rounding to the next power of two automatically.

The protocol itself operates the following way. The first party constructs the
characteristic vector ¢ from the share v; and XOR-reshares the result between the
other parties (line 4). The second and third party then rotate c by the sum of v5 and
vs (line 7). The implementation makes use of a local rotate function that rotates
the first argument right by the amount specified by the second argument.

The right-shift protocol itself is defined in Listing [5.14] It takes an additively
shared integer and an additively shared shift, and returns the shifted value. The
shift amount is strictly required to be 8 bits long and the input must be at least that
long. The implementation is quite straightforward and compact. We first convert
the input to XOR shared form and compute all possible n shifts (lines 3 and 4).
Next, we build an n-element bit vector where the i-th bit indicates whether the shift
is by ¢ bits (line 5). Finally, we mask every shift with the respective bit and XOR
the results (line 6). This yields a XOR shared result that we convert to additive
form (line 7).

93



Listing 5.15: Floating-point number representation

struct float[m,n] = {
sign: uint[1]
exp : uint[m]
frac: uint[n]

}

def floatMinus(x: float[m, nl): float[m, n] =
float{~x.sign, x.exp, x.frac}

5.1.5 Floating-point operations

We have used the protocol DSL to implement floating-point arithmetic and most of
the primitive operations from [62]. A floating-point number NV is composed of three
parts: sign bit s € Zg, n-bit significand (fractional part) f, and m-bit exponent e
such that N = (—1)* - f - 2°7°. The highest bit of the significand is always 1 and
the exponent is biased by b. The value of bias b depends on the number of bits of
the exponent. For example, it could be chosen to be b = 2™~ — 1. The significand
is represented as an n-bit value but in SHAREMIND the highest bit interpreted to
have the value of 1/2, the second highest 1/4, and so on Because the highest bit
must always be set, the mantissa is in the range [1/2, 1).

In our implementation we have n = 32 for single-precision and n = 64 for
double-precision floating-point numbers. The length of the exponent is 16 bits for
both formats, but the number of bits actually used for storing the exponent is 8 bits
for single-precision and 11 bits for double-precision numbers. This is to ensure
backwards compatibility with the previous implementation. In addition to providing
different accuracy guarantees, our floating-point numbers do not match the IEEE
standard because they do not include some special values such as infinities and the
not-a-number value. The mismatch is in order to simplify the implementation and
provide better performance.

In the protocol DSL floating-point numbers can be represented using data
structures. In Listing [5.15| we declare a new structure with fields for sign, exponent,
and fractional part. The structure is generic over the width of the exponent and
fractional part. The number is represented in a generic way because usually the
operations are defined in a similar manner for 32- and 64-bit floating-point numbers,
and this allows to define an operation for both bit widths by writing just a single
polymorphic function. As an example of how structures are used, we define the
trivial negation function floatMinus that simply inverts the sign bit.

As another example we demonstrate a protocol for computing the inverse of a
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floating-point number. The intuitive idea is that for N = (—1)* - f - 2°7% we have

1 1 11 1
1Vt (_1)s —(_1)5. _o(1—e+2b)—b
N~ (=D f2eb (=1) 2f 2(e=b)-1 (=1) 2f 2 ‘

This results in a suitable floating-point representation for every f € (1/2,1)
because then % € (1/2,1). When the fractional part of the input is close to or
exactly 1/2 the algorithm is self-correcting, as rounding the intermediate results
down prevents it from overflowing. This gives us the recipe for computing the
inverse of a floating-point number. We first compute 1 — f and interpret it as a
fixed-point number with a single binary digit before the radix point. To do that we
divide — f by 2 (negation and division are computed as for an unsigned integer).
The fixed-point format with a single binary digit before the radix point allows us to
represent values in the range [0, 2) and the extra digit is needed because inverse
yields us a value in the range [1, 2).
By setting z = 1 — f we can compute 1/ f using the equality

1/f=1/(1—z) :iwi - ﬁ (a:T' +1)
i=0 i

-0

Evaluating just the first k& terms of the product gives the maximum error of about
272 atz =1 /2. This means that for a single-precision floating-point number it is
sufficient to only compute the first 5 terms. To get the fractional part of the result all
that is left to do is to evaluate that expression on fixed-point numbers. Note that this
approximates 1/ f as a fixed-point number with one digit before the radix point, but
reinterpreting it as having no digits before the radix point yields the approximation
for 1/(2f).

To find 1/f we need to compute powers of z = 1 — f and multiply the
terms incremented by one to approximate the desired value. Therefore, fixed-point
multiplication is needed. Let u and v be (1 + n)-bit fixed-point numbers with a
single digit before the radix point. To compute the product w * v (assuming that the
result does not overflow) we extend both numbers to 1 4 2n bits, multiply them, and
then cut away the least significant n digits of the result. In additive secret sharing
this is a rather expensive operation: to extend the numbers we need to compute
their overflow bits. To cut away least the significant digits we again need to check if
those digits overflow.

If we know ahead of time that we have to perform several fixed-point multipli-
cations in a row, we can optimize the computation by eliminating the need to extend
the numbers before every multiplication. If we know that we are going to perform
exactly r multiplications on v we can immediately extend. u to 1 + (1 + 7)n bits
and on every successive multiplication remove the lowest n bits.
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Listing 5.16: Floating-point reciprocal protocol
def bias[m > 31(): uint[m] = (1 << *(m - 1)) - 1

def floatInv[r > 1, n >m, m > 3](N: float[m,n]): float[m,n] = {
let
x = publicBitShiftRight(-N.frac, 1) // x =1 - f
f' = fixInv [r=r1(x)
e' = share((bias() + 1) << 1) - N.exp // 2 - e
// b indicates if 1/(2f) < 1/2
b : uint[1] = cut(f')
half = share(1 << “(n - 1))
f' = choice(b, f', half) // correct fraction
e' = e' - shareconv(b); // correct exponent
float {N.sign, e', f'}
3

def fixInv[r > 1, n > @1(x: uint[n]): uint[n] = {
let
x : uint[n + rx(n - 1)] = extend(x)
one = share(1 << *(n - 1));
fixInvLoop*[r = r - 2]J(x[.. n + (r - 1)*x(n - 1)] + one, x)
3

def fixInvLoop[n > 0](
acc: uint[n+(r+1)*(n-1)1,
xPow: uint[n+(r+2)*(n-1)1): uint[n] = {
let
xPow = cut(square(xPow))
one =1<<(n-1)
acc : uint[n+rx(n-1)] = cut(mult(acc, xPow + one));
if (r == @) acc else fixInvLoop‘[r = r - 1](acc, xPow)

3

We have used two helper functions: choice for obliviously choosing between
two additively shared integers, and share for sharing a public value so that two
parties pick O as their shares.

The function bias returns the bias for m-bit exponents, the function fixInv
computes the inverse of an n-bit fixed-point number with a single digit before the
radix point and finally floatInv computes the inverse of a floating-point number.
Both inverse functions take the number of iteration, denoted with r, as a type
argument.

If the input has a fractional part very close to 1 then 1/(2f) is very close to 1/2.
During computation this may be rounded down and the highest bit can become 0,
resulting in a denormalized float. To avoid this, we need to check the highest bit of
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the to-be significand—we denote it with b. The highest bit b is computed by cutting
away all but the highest bit of the initial fractional part. If the highest bit of the
to-be significand turns out to be 0 then we know that the input had a fractional part
very close to 1 and the result was rounded down too much during the computation.
In this case we correct both the resulting significand and the exponent.

Initially we implemented the inverse protocol using a fixed-point polynomial
evaluation technique [62]]. However, the protocol DSL enabled us to rapidly try out
different implementations and optimizations, and we quickly found out that the
approach presented here is superior to polynomial evaluation both in speed and
precision. Implementing the protocol in an optimized manner in our C++ framework
would have been a major undertaking.

5.2 Implementation and integration with SHAREMIND

The compiler is implemented in Haskell. The front-end performs lexical analysis,
syntactic analysis, static checking, and translation to the low-level intermediate
DAG representation (IR). The IR is optimized, statically checked for security and
compiled to LLVM [73] code. The LLVM code can in turn be compiled and linked
with SHAREMIND.

First we verify that the high-level protocol language is properly typed. This
includes both data type verification and party type verification. After static checks
we translate the high-level code to much simpler intermediate code that is based on
the core language formalization from Section [5.3] This representation is evaluated
to a normal form which is converted to the IR. The IR has a well-defined syntax
and semantics and is optimized with a separate tool. Security analysis is performed
on the IR to provide additional guarantees that optimizations preserve security.

The well-specified IR facilitates various tools to make protocol development
easier. For example, in addition to the optimizer and security checker we also have
implemented a tool to directly evaluate IR programs. The evaluator drastically
simplifies and accelerates protocol development: new protocols can be tested
without having to integrate them with SHAREMIND and having to deal with the
complicated networked application. Only when the developer is sure that a new
protocol is correct, secure and performs reasonably well can it finally be integrated
with the platform.

It is possible to estimate performance of protocols by only analyzing the
generated IR code. We found (see Section [5.6.5)) that the lowest performance in
operations per second can be estimated very accurately as a linear function of round
count. The highest achieved performance can be estimated as a linear function of
communication cost.

The compiler generated code is not actually tightly coupled to SHAREMIND and
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does not depend at all on SHAREMIND’s functionality. Instead control is inverted
so that the generated code provides meta-information and various callbacks. The
callbacks need to be invoked with requested data such as received messages and
randomly generated bits. Other SMC systems can use the generated code, given
that they are able to send network messages and provide random numbers.

5.3 Language semantics

In this section we will formalize the type system and dynamic behavior of the
core of the protocol DSL. We will look at the data type system and party type
system separately. The core language is not as syntactically rich as the high-level
one and a major difference is that type arguments are not inferred automatically.
The core language can be considered a mid-level intermediate language in our
compilation pipeline. For some constructs we provide syntactic rewriting rules
from the high-level language to the low-level one.

5.3.1 The core language

The syntax of the core language is presented in Figure [5.3] Expressions include the
standard constructs for lambda calculus: variables, function applications, lambda
abstractions and let-expressions. The language also includes conditional expressions
over type-level size predicates, case-expressions for branching depending on the
computing party, and from-expressions for performing network communication.
The language lacks general type abstraction expressions as type arguments are
implicitly introduced at the top-level. The language supports restricting functions
to some type constraints C'. The constraints may contain conjunctions, negations,
size type equalities and less-than relations.

Expression are always evaluated by a set of parties that may communicate with
each other. By default, all parties evaluate the same expression, but every computing
party does not always hold a result for the given expression. Case-expressions allow
the computation to branch depending on the evaluating party but may also omit
the resulting value for some parties. Let-expressions are not recursive and shadow
(override) previous variable definitions with the same name.

From-expression e from (p1, ..., py) is used for network communication and
states that the ¢-th evaluating party gets the value of the expression e from party
pi. For example, the expression = from (1,1, 1) evaluates to the first computing
party’s value of the variable z for all computing parties (including the first one). The
high-level language contains metavariables Next and Prev that can be rewritten as
(2,3,...,n,1) and (n,1,2,...,n — 1) respectively.

Conditional expression if C' then e; else es evaluates to ey if type constraint
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Size literals ¢ € Ny
Party no. D € Np
Expressions e == x| Ar.el|ejex|er

| letx=e; iney

| if C thene; else ey

| case:pi —e1,...,pp — €y

| efrom(pi,...,pn)
Programs M 1= e|defxz:0 =eM
Constraints C = e¢|CLNCy| =C |71 ~To|s1 <582
Kinds k = type | size
Monotypes 7,5 = «|unit|bit]|arrlr, s1|m — 7
Size types | c|s1+s2]s1xs2]81/52
Polytypes o = Y(a:k).o|C=T1

Figure 5.3: Syntax of the core of the protocol DSL

C holds and to ez otherwise. When type checking the first branch the fact that
C holds may be used. Respectively, when type checking the second branch the
fact that C' does not hold is used. The protocol DSL compiles to an intermediate
representation (IR) with no branching constructs, meaning that source code may
only contain loops that are statically bounded. The combination of supporting
type-level integers and providing the ability to branch over them facilitates writing
recursive code and cleanly segregates values that might only be dynamically known
(regular values) from values that are definitely statically known (types).

Unlike low-level language the high-level language also supports branching
over runtime values. Same functionality can be implemented using a function
that takes the conditional and both branches as arguments and chooses the correct
results based on the conditional. Note that we do not currently have static program
termination checks and well-typed programs are not guaranteed to terminate. For
example, a recursive call inside an if-expression over a dynamic value will result in
an infinite loop during translation to intermediate form. We have not found this to
be a problem in practice.

Case-expression case: p; — ey, ..., Pn — €, evaluates to e; for party p;. This
construct is slightly different from what we have seen in the previous examples but
high-level code can be straightforwardly translated to this form. A case over a set
of parties P can be implemented by binding the expression e to a fresh variable ¢,
replacing the expression with the variable, and duplicating the resulting branch for
each party p € P.

A program M consists of a sequence of variable definitions. All top-level
bindings must be annotated with types. Unlike let-expressions, top-level definitions
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may be mutually recursive. In the core language we are not modeling the protocol
definitions of the high-level language. Monomorphic, first-order functions can be
considered to fill the role of concrete protocols.

5.3.2 Data type system

The type system of the language is inspired by Cryptol [83]. We have opted for
strict and static type checking with type inference: a classic Hindley-Milner type
system [34] extended with type constraints (predicates) over type-level natural
numbers. To simplify type inference we require top-level definitions to have explicit
types and we do not support polymorphic let-expressions.

The syntax of types is presented in Figure[5.3] A regular type 7 is either a type
variable «, the unit type having only a single value, the bit type having two values
0 and 1, an array arr[7, s] of length s containing elements of type 7, or a function
T1 — T taking arguments of type 7 and returning values of type 7». Because most
protocols operate on integer values we use uint[n] as a synonym for an array of n
bits for the sake of conciseness and readability. A size type s is either a variable «,
a natural number ¢ € Ny, or an arithmetic expression of size types.

The protocol DSL has two different kinds of types: regular data types, and size
types for denoting lengths of arrays. Kinds are denoted with &. Rules for checking
that types are well-formed and well-kinded are presented in Figure [5.4] Judgement
I' F 7 : k denotes that type 7 has the kind k£ under the type environment I".

Type constraints C' are used to restrict global functions using equalities and
inequalities between size types. More complicated constraints can be formed with
conjunctions C7 A Cs and negations —C'. Type constraints can also be used for
branching in if-expressions.

The type system of the DSL is provided in Figure [5.5] Judgements of the
form C';I" - e : 7 denote that expression e has type 7 under type environment
I' assuming that constraint C' holds. Judgement I' = M denotes that program
M is well-typed in environment I'. Judgement I' - f : ¢ = e denotes that the
polymorphic function definition is well-typed under I'. The entailment relation
C |- D denotes that whenever C holds then D must hold. This is under all possible
valuations of their free variables. Equalities between data types are structural and
between size types standard arithmetic rules apply. The type environment maps
variables to their types but also type variables to their kinds.

The typing rules are fairly standard and follow the framework from [112].
However, there are a few things to note. First, let-expressions are not generalized
and polymorphic types can only be introduced in the global scope with explicit type
annotation. This is to avoid having to infer size constraints automatically. Second,
if-expressions do not allow for free type variables to occur in the size predicate.
Finally, global declarations in a program are all potentially mutually recursive;
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(a:k)el
I'Fa:k

I'E7:type TI'F s:size
I'Funit:type I'F-bit:type I'=arrl7, s]:type

'k s):size 'k sy:size @€ {+,x%,/}
I'kc:size ' sy ®sy:size

I'C; T'FCy T T'kFsi:k T'ksy:k
I'ke I'ECLNACy I'k-=C F'Er~m

I'ksi:size T'F s9:size
'k sy < sy

Figure 5.4: Kind checking rules

hence, we require that all global type bindings occur in the initial environment. We
assume that all type arguments have been explicitly provided. This is not to simplify
the type checking rules but to simplify the presentation of dynamic semantics. In
the actual language we infer type arguments when possible. For inferring type
arguments the following rule can be added:

Ci'te:VYa:k.o T'k1:k
CiTke:|awT]o

The type system is simply an instantiation of Outsideln(X) [112]] where X has
been chosen to be the natural number constraint domain. The general type checking
algorithm is described in [[112]]. Note that the type system of the language is not
complete. In order to type check arbitrary programs we need to be able to solve
arbitrary (non-linear) systems of equations over natural numbers. In practice this
has not turned out to be a problem as almost all constraints are very simple and
easily dispatched by Z3 [89] SMT solver.

5.3.3 Party type system

The goal of the party type system is to guarantee that values are always available to
every evaluating party. For example, we forbid the first party from using a variable
that only the second party has previously defined. Party types are represented as sets
of parties. If an expression e has type P it means that e has well-defined values for
each party in set P. Another requirement is that the party type system has to support
polymorphism. For example, we want arithmetic operations to be polymorphic over
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Figure 5.5: The protocol DSL data type checking rules

input parties and also allow party-polymorphic user-defined functions that do not
perform network communication.

Function arguments may be constrained by availability. If an argument is used
by some specific parties then the type of the function has to reflect that this argument
must be defined for at least those parties, but it can be defined for more. We capture
this via the subtyping relation over sets of parties P, > Py <= P, O P». If an
expression e has type P» then it also has type P, whenever P; C P,. Let T indicate
the set of all available parties. For example, when type checking the program for
three parties, T = {1, 2, 3}.

In this section we will present the party type checking algorithm. The algorithm
operates in two phases: first, a system of constraints is generated, and then the
system is resolved. If the system is successfully resolved then top-level types can
be inferred. Compared to data type checking, the party type checking rules do
not directly describe what it means for an expression to be well-typed. Instead
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Constraints o = APy |u>P

Figure 5.6: The syntax of party types

the relation is indirect. Expression is well-typed if a system of constraints can
be generated according to the rules we provide and the system can be resolved.
Direct meaning could be given as we did for data type system in Section[5.3.2] We
postulate that this could be done and the algorithm could be shown to be sound but
not complete as in [[112]. We will start by introducing the syntactic structure of

party types.

The syntax of party types

The syntax of types is given in Figure[5.6] Top-level and built-in functions have
a polymorphic type ( that is possibly restricted by constraints ®. The constraints
require type variables u to be available to at least some subset of parties P. Types
7 are either non-function types 7 or function types from contravariant type p to
invariant type 7. We consider non-function types separately in order to restrict
functions from being sent over the network or being applied depending on the
computing party. Function types 7 are constructed so that only type variables may
occur in contravariant positions. This limitation greatly simplifies type inference.

Non-function types 7 contain exact party types P, intersection types 1 N o
and tuples (/3,),cT Where 3, denotes if a value is available to party p. The tuple
components may directly indicate availability with O or 1. Conjunction 81 A [32
denotes that the component is available only if both 3; and 32 indicate availability.
Finally, 7[[¢] is available if 7 is available for the i-th party.

Notice that party type P is equivalent to tuple (8,)pcT Where (3, is 1 if
p € P and 0 otherwise. Similarly, 71 N 72 can be rewritten using projections
and conjunctions. While technically neither construct is necessary, they improve
readability. Intersection types allow many built-in operations to have more compact
types. For example, binary addition has the type Vu v. v — v — w N v whereas
without intersection types it would have to be written as

Vuv. u — v — (u1] Av[1], u[2] A v[2], w[3] Av[3]) -

Type inference is split into constraint generation and constraint resolution.
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During constraint generation we emit a slightly richer set of constraints W that also
contains more general subtyping relations and equality constraints:

Ui=U1 AUy |7 >P|n=>pln=p.

The constraints do not contain an empty (or constant true) constraint because this
can, for example, be expressed as {} > {}. During constraint resolution we will
try to find the least restrictive ® from which ¥ can be derived. The algorithm for
doing so is described next.

Constraint generation

We present constraint generation (Figure in the style of Algorithm W by Damas
and Milner [34] using side effects for generating fresh variables. Judgements of the
formI' - e : n ~» ¥ denote that under environment I" expression e generates type
7 and constraints W. All rules compute the resulting constraint as the conjunction of
the constraints generated by the subexpressions and some extra constraints specific
to that rule.

Let us start with the rule for lambda functions. We first generate a unique type
variable u and type check the body of the function e with the variable z bound to
the type u. If we find that e has type n then the lambda expression has type u — 1.
As we see the rules contain side effects in the form of fresh variable generation.
Hence, the rules should be taken as the description of the constraint generation
algorithm. A more declarative description could be given in a style similar to that
of data type checking rules in Section[5.3.2]

When type checking polymorphic functions, the universally quantified variables
are replaced with fresh variables and the constraints required by the polymorphic
function are returned as the result. In the case of from-expression, we restrict the
subexpression to a non-function type 7 and return a type that shuffles 7 appropriately
using projections and tuple construction. When type checking case-expressions
we make sure that the branches have non-function types and are defined for the
required parties. A case-expression is defined for the union of all parties that have
been branched over. In the case of if-expressions we type check both branches,
and generate a fresh variable u that must be a supertype of both branches. During
constraint resolution we actually find the least common supertype.

Recall that the party type system is not directly exposed to the end user and type
errors are raised only if the compiler fails to infer types for all top-level expressions.
This means that for top-level bindings type generalization needs to be performed.

For the party type checker a program M is just a sequence of potentially
recursively defined variable definitions f; = ey, ..., f, = e,. To type check the
program M we generate fresh variables u; and construct the global environment
I'"'= f1:u1,..., fn: uy,. Let built-in function types be defined in environment I
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Figure 5.7: Party type constraint generation algorithm for expressions

Next, we perform type inference for all top-level definitions I', T - ¢; : m; ~> ¥;
and attempt to resolve all generated systems of constraints ¥, yielding some ®; and
substitutions ¢; that map variables to types. We need to solve all constraints at the
same time as mutually recursive functions influence each other’s types. Constraint
resolution is described in the following section. Finally, each top-level definition f;
from the recursive block gets the type Va;. ®; = 6;1; where &; are the free type
variables of the substituted 7;. In the actual implementation we sort the top-level
bindings topologically and perform type checking a single recursive block at a time.
This improves efficiency and gives type errors that refer back to the previously
well-typed functions.

Constraint resolution

Constraint resolution is performed by simplifying the constraints ¥ until we either
get stuck, in which case the program is ill-typed, or until we reach a suitable form.
In the first phase we substitute type variables and apply the following simplification
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rules:

(pr—=m)=(m2—=p2) — m=p2An2=p
(p1—=m) > (2 —p2) — m=p2An2>p

(p1—=>m)>u — n>usAug > p1r Au=u; — uz
u> (g —p2) — ug>paAng>up Au=u; —>uz ,

where u1 and ug are fresh variables. We keep track of the substitutions that have
been performed. The second rule is derived from the standard subtyping principle
for functions. The last two rules are used when the subtyping relation forces a type
variable to a function.

During variable substitution we must take care to perform occurs checks and
take care to not invalidate the structure of types. For example, substituting a function
under an intersection type will yield a type error. Initially, the system of constraints
contains only type equalities only in the form n = u; — ws. If during substitution
we find that 7 is a non-function type 7, and not a type variable, we will need to raise
a type error. If n is a type variable we can substitute it because the right-hand side
may safely occur in both covariant and contravariant positions. If 7 is a functional
type, we simplify it according to the first rule. During simplification we again only
introduce substitutions u = u; — us9 that are safe to apply in both argument and
result positions.

After the first phase the system of constraints only contains inequalities either
of the form w > P or m > u. We simplify this further by replacing 7, N my > 7’
with w1 > 7’ A my > #/. This yields a system where each 7 is either a variable
u, a subset of parties P, or a tuple (31, ..., k). Next, we transform the system
by replacing each m > 7’ with a conjunction of projections A .+ ([p] > #'[p])
where T indicates the set of all parties. We recursively collapse (31, ..., Bx)[p] to
Bps (B1 A B2)[p] to Bi[p] A B2[p], and P[p] to 1if p € P or to 0 otherwise.

These transformations result in a system that consists of inequalities only of
the form § > « where 7 is either u[p] or 0 or 1. Now we replace inequalities of
form 5y A By > v with 51 > v A B2 > v to yield a system that only consists of
inequalities of the form v > +/.

Lety >* + <= Iv1,...,%.- 7 > 71 > ... > v, > ° be the transitive
closure of our transformed system of inequalities. If 0 >* 1 then the system is not
solvable and we know that the original one was not solvable either. This corresponds
to the case where we expect a value to exist for some party but it does not.

Let 1 be the type of the function that we have inferred, with the substitutions
performed during constraint resolution already applied to it. Let covars(n) denote
the free variables of 7 that can be found in covariant position and let contravars(n)
denote ones in contravariant position. For every u € contravars(n) let P, = {p |
up] >* 1}. The constraint ® of 7 is defined as the conjunction of all u > P,
where w are contravariant.
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The variables in covariant position may also be restricted. However, we cannot
express these restrictions via constraints ¢ as they are not rich enough. We need
to consider two cases: first, if there exists a restriction 0 >* v[[p] then we know
that v is not defined for party p in covariant positions; and second, if for some
contravariant variable u we have u[p'] >* v[p] then v is defined for party p only if
u is defined for party p’. These two rules give us a substitution scheme. We replace
each v with (81, ..., 8,) where 3, = 0if 0 >* v[p] and otherwise

Bp = /\{u[[p']] | up'] >* v[p], u € contravars(n),p’ € T} .

The generated type is usually very difficult to read and should be simplified for
displaying. For example, it is possible to remove duplicated conjunctions. However,
note that it is not correct to replace a tuple (u[1], u[2], »[3]) with u or otherwise
from-expressions could be used on functional values.

5.3.4 Dynamic semantics of the protocol DSL

This section describes the dynamic behavior of protocol DSL programs. We do
not specify how programs behave on concrete hardware or how network messages
are ordered and scheduled. We are only looking to specify the ideal functionality
protocol DSL programs.

The semantics of the language is relatively straightforward. We distinguish
two kinds of values in the protocol DSL: functional values and tuples of primitive
values where the i-th component denotes the value that the i-th party has. When
we say that some value is undefined we mean that it is a tuple consisting of bottom
values L. Because DSL programs have to terminate it is not possible to produce an
undefined functional value.

The semantics is presented in small-step style. Transition rules are either
from one expression to another (y - e Lo ) or from an expression to a value
(vFe 2, v). All transitions are annotated with probabilities (omitted if equal to
1). The meaning of constraints [C] € {true,false} is defined in the obvious
manner (C' does not contain free type variables). The environment y only contains
the definitions of global functions and does not map local variables to values.

The expression evaluation rules are given in Figure [5.8] Mostly they are
straightforward lambda calculus rules. We evaluate expressions under evaluation
context C and substitute variables in case of function applications and let-expressions.
Evaluation is performed strictly except for lambda (or type) abstractions and if-
expressions. The from-expression rearranges the components of the tuple. For
case-expressions all subexpressions are evaluated and then the correct components
are picked out of the branches. The built-in function rngBit chooses each possible
combination of bits with equal probability.
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Figure 5.8: Semantics of the core language expressions

These semantic rules are the basis for our compiler but implementing them
directly would result in an extremely inefficient evaluator. It would constantly
compute values that are never used due to the case-construct dropping them, and
often propagate bottom values, due to the case-construct introducing them. However,
this is not a problem because we are compiling to an IR in the form of a finite
directed acyclic graph with no control flow constructs. This allows us to eliminate
all such inefficiencies with dead code elimination, by throwing away bottom values
and the operations that have introduced them.

A program M consists of a sequence of top-level declarations z; : 0; = ¢;
followed by a body of the program e. The environment -y is formed by mapping
each z; to e;. We assume that e is an n-ary function from integers to integer. For
input z = (z1,...,2,) € Njj the meaning of M is given by

[[M]] Z{p1p2 . Pn | 84 F e qp SE2mnTny pl’p27 -Pn y}

That is, for input  we look at the probability of reaching result y. The ideal
functionality of program M is given by [M].
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5.4 Low-level intermediate representation of the
protocol DSL

5.4.1 Arithmetic circuits

Arithmetic circuits are the low-level IR for our protocol compiler. This representation
is used for optimizations and compilation. An arithmetic circuit is a directed acyclic
graph (DAG) where the vertices are labeled with operations and the incoming
edges of each vertex are ordered. The input nodes of the circuit correspond to
the representations of inputs to the arithmetic black box operation. In the case of
protocol sets based on secret sharing, each input is represented by several nodes,
one for each computing party. Similarly, the output nodes correspond to the shares
of the output.

Communication between parties is expressed implicitly: each node of the
circuit is annotated with the executing party, and an edge between nodes belong-
ing to different parties denotes communication. This representation makes both
computation and communication easily accessible to analyses and optimizations.
It is straightforward to tell how many bits are sent in how many rounds and to
find dependencies between computations. The fact that our DAG representation
contains no control flow constructs or loops makes accurate analysis and powerful
optimizations possible even on large graphs.

As an example, Figure [5.9]contains the graphical representation of the unop-
timized DAG for the three-party additive multiplication protocol. Nodes denote
operations and edges denote data dependencies. Inputs are denoted by = and y, the
dollar sign denotes random generation, and nodes labeled with arithmetic operations
denote the corresponding operations. The shape and color of a node indicates which
party performs the operation: the first party is denoted with red circles, the second
party with green squares, and the third party with blue diamonds. Edges running
between two different shapes indicate network communication and are drawn as
solid arrows. Output nodes have a double border. The DAG representation is typed
but in this example we have omitted the types as they are all equal.

To compile a protocol specified in our DSL to an arithmetic circuit, all function
calls have to be inlined and the code has to be converted to monomorphic form. If
the control flow of a protocol requires some information about data known only
at runtime, such as public inputs or lengths of dynamic arrays, then this protocol
cannot be fully specified in the protocol DSL. In those cases SEcCReC can be used
to specify parts of the protocol. Alternatively, protocols can still be written in C++,
either fully or with some parts implemented in the DSL.

Semantics Because we do not formalize the syntax of our arithmetic circuits
we also do not formalize their semantics. We assume that each m-input and n-
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Y2

Figure 5.9: Unoptimized multiplication protocol DAG

output arithmetic DAG d has implicitly given meaning in terms of a function
[d] : Ng* — (Nj — [0, 1]). The semantics [d] does not encode any information
about network communication between participants. It only describes the ideal
functionality of the DAG d. For example, a DAG that performs 64-bit additive
resharing between three parties has the following meaning for input (x1, x2, x3):

- . 3 3
271280 if Y Ly =Y., m; mod 26
0, otherwise.

f1,y2,y3) = {

5.4.2 Optimizations

The IR is used to optimize the protocols. Due to the compositional nature of
specification, the protocols typically contain inefficiencies such as constants that
can be folded, duplicate computations, and dead code. So far, we have implemented
all basic optimizations analogous to the ones reported in [70] for Boolean circuits:
constant propagation, merging of identical nodes, and dead code removal. But as
our biggest circuits only have a few hundred thousand nodes, and the arithmetic
operations allow much more information about the computation to be easily gleaned,
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we have also successfully run more complex optimizations. We can simplify certain
arithmetic expressions, such as linear combinations, even if communication is
involved between operations.

In addition to generic optimizations from compiler implementation literature,
we have implemented two optimizations that are not applicable to locally executed
public code. First, we can eliminate network communication by sharing random
number generators. Second, we can occasionally eliminate random numbers if
doing so does not affect security.

Shared random number generators

Usually every input of a protocol is explicitly reshared to ensure that a party’s
view could be generated from only its inputs. Recall that the resharing protocol
is implemented as follows: each party P; generates a random value r; < R
and sends it to the next computing party P,;), adds the generated value r; to
the input share [u];, and subtracts the random number r,;) received from the
previous computing party P, ;). The shares of the output [v] of the protocol are
([uly +71 =73, [u]y+ro—r1, [u]s+73—72). Wesee thatv = [v]; +[v],+[v]; =
[uly + [uly + [ul; = w.

We can spot a pattern that occurs in resharing: a party generates a random
number and sends it to some other party. This can be optimized by letting both parties
generate the same random number using a common random number generator
(RNG). The seed of the RNG needs to be agreed on beforehand. This optimization is
not new and has previously been used in [63]] and [78]]. Our contribution is that our
protocol DSL toolchain allows this optimization to be automatically applied, with no
changes to the specification of protocols. The optimization itself is straightforward
on our intermediate representation.

An analysis of generated intermediate code tells us that this technique reduces
the network communication of three-party additive and XOR protocols by 45% to
50%, i.e. it nearly halves the required network traffic. For example, communication
cost of integer multiplication is reduced by exactly 50%, and communication cost of
64-bit public division by 48%. Based on the network communication analysis and
benchmarking from Section [5.6.5| we can tell that this translates into a performance
improvement on large inputs. On scalar values, network latency is the performance
bottleneck; thus, we do not expect a performance gain on small inputs.

We have also manually implemented this optimization for the multiplication
protocol and compared the performance to that of the unoptimized manually
implemented version to validate the effectiveness of this modification. We did not
use the protocol DSL for this comparison because it was difficult to concurrently
support two evaluation strategies.

We chose the multiplication protocol because of its simplicity, efficiency,
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Table 5.1: Speedups of the shared RNG multiplication protocol over regular multiplication.
The speedups have been measured for input vectors of sizes 1 to 108.

L Speedup on given input length

10 10t 10> 10® 10* 105 105 107 108
8§ 135 139 145 152 142 141 1.09 0.73 094
16 143 146 151 158 1.71 186 1.22 1.02 1.24

32 139 139 142 160 182 1.84 1.33 1.23 1.27
64 149 174 152 1.83 209 1.68 1.02 140 148

ubiquity in application, and because it is one of the least computation-heavy
protocols. The comparison was performed using the methodology described in
Section[5.6.1] and the results are displayed in Table

We can see that performance has improved by up to two times. The optimization
has not, in most cases, improved performance as much as was suggested by the
reduction in communication. On small inputs the speedup is lower, as expected,
due to the influence of network latency. Unfortunately, we do not have a good
explanation why we do not see greater speedup on large inputs. A smaller speedup
past 105-element inputs can be at least partially explained by the fact that we process
only 10° elements at a time; thus, the number of rounds increases past that point.
We see some significant slowdown that we are not able to explain for large input
sizes in the 8-bit case.

Elimination of random numbers

When developing large protocols, it is occasionally very convenient to use existing
private operations (partially) on constant values. However, using private operations
directly on constant values introduces an inefficiency: classical optimization methods
are not able to propagate constants through resharing calls. This problem can be
solved manually by implementing optimized alternatives with public arguments but
this is significant work. This problem has motivated us to implement an optimization
to eliminate randomness nodes that are not needed for security.

It turns out that by using the security analysis algorithm from Section[5.5.2]
we can detect if any randomness can be eliminated without affecting security.
The detected nodes are then replaced with constant zero nodes. This optimization
does not directly reduce network communication on its own, but facilitates other
optimizations, like constant propagation and common subexpression elimination.
Hence, the random number elimination step is performed before the rest of the
optimizations. We have experimentally determined that applying this optimization
iteratively with other optimizations has little to no effect.
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Unfortunately, this optimization is not able to distinguish nodes that are needed
to implement non-deterministic functionality from those intended for security. For
implementing non-deterministic operations this optimization must currently be
skipped. A more flexible solution would be to allow randomness nodes to be
annotated if they are intended for security or not. So far we have not had the need
to implement this functionality.

We have measured the effect of this optimization on the communication cost
of various operations. For the first measurement we ran all optimizations except
RNG elimination, while for the second measurement we first ran RNG elimination
and then the rest of the optimizations. In all cases, except for very simple protocols
like integer multiplication, the optimization reduced network communication. For
all single-precision floating-point operations communication was reduced by 5%
to 10%, and in the case of comparison by 13%. Improvement is smaller for 32-
bit integer operations where we saw 3% to 6% reduction, with the exception of
comparison that improved by 13.8%.

5.5 Security

5.5.1 Security definitions

To recall Section [2.3.T]let 7 denote a real functionality expressed as a collection of
actors and F an ideal functionality expressed as a single actor. If 7, is an SMC
protocol for performing a particular operation op on shared values, then the actors
of m,p receive the shares of the inputs over the interface with Z at the beginning
of the protocol. The adversary may corrupt some actors at the beginning of the
protocol. During execution the actors exchange messages and compute the shares
of the outputs. Corrupt actors send everything they receive to the adversary. Finally,
the actors of 7o, hand the shares of the outputs back to Z.

A corresponding ideal functionality Feee also receives the shares of the inputs
from Z and corruption requests from .A. The functionality Fes. reconstructs the
actual inputs from the shares, applies op to them and shares the results, thereby
obtaining the output shares which it gives back to Z. The functionality Fgs. also
sends the input and output shares of corrupt parties to A. If the adversary is
malicious, then it can also change the output shares returned to the corrupt parties.

An SMC protocol 7o, is said to be secure (Section @) if it UC securely
implements the ideal functionality Feb.. For example, the resharing protocol is
a secure protocol for the identity function. Privacy is defined similarly—mop, is
private if it UC securely implements pfiv where F:fiv is obtained from Fgbc by
not sending the final shares to appropriate parties.

We know that sequential composition of two protocols, where the output shares
from the first protocol are directly given as inputs to the second one without going
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through Z, preserves privacy [18]]. Against honest-but-curious adversaries, the
composition of a private protocol and a secure protocol (commonly resharing) is
secure [18]]. Against malicious adversaries, privacy limits the amount of information
they can learn about the inputs of the protocol [97].

A protocol optimization 7 transforms a protocol 7 implementing an ideal
functionality F into a new protocol 7 (7) also implementing F. Each optimization
we have implemented in our DSL compiler preserves the preservation of privacy—
we show that there exists an actor T such that

VSim : [VZ, A : Z||7||A =~ Z||F||Sim” =
V2, A 2| T ()[4 ~ 2| F|[(T|Sima)"],

where Sim,, denotes Sim with renamed channels, such that it directly communicates
only with T. In effect, if 7 is a protocol transformation, then T||(-), is the
corresponding simulator transformation used to transform a security proof of 7
into a security proof of 7 ().

Unfortunately, the optimization for eliminating random numbers by replacing
their sources with constant zeros does not fit into this framework. The randomness
removal will not preserve the ideal functionality of transformed protocols. This is
because the algorithm is not able to distinguish between randomness nodes that are
redundant from the ones that are intended to offer some functionality.

5.5.2 Proving the security of protocols

Our protocol DSL contains no mechanisms to statically ensure the security or
privacy of protocols. The type system of the language only verifies the lengths of
the values but not their dependence on inputs or random variables. Hence, we also
cannot speak about security-preserving compilation in the sense of [43]].

We ensure security using data flow analysis on the low-level intermediate
language. Our compiler pipeline contains the static analyzer by Pettai and Laud [97]
that checks protocols expressed as arithmetic circuits for privacy against malicious
adversaries. If a protocol passes that check and we know that it is followed by a
resharing protocol, then it is also secure against honest-but-curious adversaries.
The check is invoked after the translation from the protocol DSL to the intermediate
language and the optimization of the generated intermediate code. Having the
security check late in the pipeline ensures that the earlier optimizations do not
introduce uncaught vulnerabilities.

The idea of the algorithm by Pettai and Laud [97] is relatively straightforward.
It operates on arithmetic DAG described in Section[5.4] In the three-party case one
of the participants is designated as an adversary A. First, the DAG is transformed to
what they call an active-adversarial DAG (AADAG). This is done by designating
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all inputs from A as special adversarial source nodes having no inputs and exactly
one outgoing edge, and all values sent to A go into a special adversarial sink node
that has no outgoing edges. It is clear that if all the data that is sent to A is directly
randomly generated then this protocol is secure against an active A. The key idea
behind the algorithm is to transform the AADAG so that all values sent to A become
random but the values observed by A do not change. If the AADAG can be modified
in such a way then the protocol is secure against an active A. The algorithm is
presented in full detail in [97, Figure 3].

Our experience with the protocol DSL validates the security aspects of the
language and compiler design. Indeed, we have found that implementing protocols
in a secure manner is very straightforward. This can be explained by the fact that
most protocols are compositions of simpler ones. When writing in this style, the UC
theorem automatically provides the privacy guarantee. It is very rare that a protocol
is added that is not purely a composition, and even in this case the automatic privacy
checker is there to provide a safety net and validation for the programmer. In fact,
for those reasons, to implement efficient and secure protocols in the protocol DSL
one does not need to have a deep understanding of the security framework of the
additive secret sharing scheme. Due to universal composability and compositional
nature of protocols a developer almost never has to prove that a protocol is secure.
But regardless, privacy of resulting protocol is always automatically verified.

Finally, we can claim that the protocol language can and has been used to build
secure arithmetic black box.

Theorem 5. Let M be a DSL program and d an arithmetic DAG such that
[M] = [d]. If algorithm by Pettai and Laud [97, Figures 2 and 3] deems d private
then there exists a protocol T that is a private implementation of [ M ] against active
adversaries.

Proof. We know that if DAG d is deemed private by the algorithm then there
exists protocol 7 corresponding to d that is private against active adversaries [97,
Theorem 1]. In another words 7 is private implementation of [d]. Thus, 7 is also a
private implementation of [M/] against active adversaries. O

Theorem 6. The protocol DSL can be used to build arithmetic black box that is
secure against passive adversaries. We have done so for three-party additive secret
sharing.

Proof. In Section we saw how to implement addition, multiplication and
conversion operations. These are sufficient for forming an ABB. The previous
theorem gives that if functionality is preserved by compiling DSL program M
into a DAG d and d has been shown to be secure then we can construct a protocol
that implements M privately. We also know that private implementations can be
transformed [18]] into secure implementations against passive adversaries. O
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5.6 Experimental results

In this section we explore the performance of additive three-party protocols
implemented in the DSL. For some protocols we also compare the results against
our previous generation of protocols implemented in C++. In most cases we are
not comparing algorithmically identical protocols. This is unavoidably so, as a key
aim of the DSL is to simplify the development, optimization and exploration of
protocols. The protocol implementations in C++ are long (for example, the C++
division protocol spans over 1500 lines of code) and difficult to read. It is often
not clear if the C++ implementation matches the specification, and frequently it
does not as the concrete implementations tend to employ many undocumented
optimizations.

Another factor that makes identical comparison difficult is that the DSL floating-
point protocols provide better numeric accuracy guarantees and operate correctly on
a larger range of inputs. For instance, we found that some of the C++ protocols do not
handle O properly, some operations have poor relative errors, and double-precision
floating-point numbers provide very poor accuracy in the range of 10~" when the
order of 10715 is expected. These differences should give a performance advantage
to the C++ protocols. Providing a perfectly fair comparison would mean either
incorporating defects into the DSL protocols or improving the C++ protocols. In
both cases valuable time would be wasted.

As it currently stands, all floating-point protocols—addition, multiplication,
inverse, square root, exponentiation, logarithm, sine, error function, and conversion
and comparison operations—take less than 900 lines of code combined in the
DSL. The C++ protocol suite offering less functionality has over 5000 lines for
floating-point operations with additional 2000 lines of support code for various
fixed-point helper protocols. Notably, the protocol suite for logarithmic numbers
(addition, multiplication, inverse, square root, exponentiation, logarithm) developed
in [41] takes less than 300 lines of DSL code. This is thanks to the ability to
re-use generic operations such as fixed-point polynomial evaluation developed for
floating-point protocols.

5.6.1 Benchmarking methodology

Benchmarking was performed on a dedicated cluster of three computers connected
with 10Gbps Ethernet. Each computer was equipped with 128GB DDR4 memory
and two 8-core Intel Xeon (E5-2640 v3) processors, and was running Debian 8.2
Jessie. Both memory overcommit and swap were disabled. During benchmarking
only the necessary system processes and some low-overhead services (such as SSH
and monitoring) were enabled. In every case only a single computation thread was
used other than random number generation that was offloaded into separate threads.
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Even on large input sizes, and even despite the fact that our hardware and platform
supports it, we have not parallelized any protocol computation to multiple cores
or used the networking layer in a parallel manner. We have limited ourselves to
benchmarking on a single compute core to reduce the number of tunable parameters
and keep the performance presentation simple.

Every protocol was benchmarked on various input sizes. When executing a
protocol on many inputs, the round count remains the same while the amount of
network communication increases. On a decent network connection, the evaluation
of the multiplication protocol on scalars, and on vectors of length 10000, takes
roughly the same time. On every input length we performed at least ten repetitions
and, to reduce variance, significantly more on small input lengths (up to 5000
repetitions).

To estimate the execution time of a protocol on a specific input length we
computed the mean of all measurements on that length. A single running time
measurement was computed by taking the running times for all computing parties
and finding the maximum of those. This is necessary as asymmetric protocols will
terminate faster for some participants. The maximum reflects the time it takes for
the result of the operation to become available to all participants.

We found that running tests ordered by ascending input length gave significantly
better performance results than running them in randomized order. Sequential order
results in a steady increase of network load which is predictable for the networking
layer but is not a very realistic scenario for SMC applications. For this reason, for
each operation we performed measurements in randomized order. When evaluating
the performance of an SMC system, we find that performing tests performing tests
in an order that is predictable for the networking layer is unacceptable and easily
leads to dubious performance results.

To compare DSL protocols against previously implemented C++ protocols we
computed the speedup on every input length by dividing the estimated execution
time of the old C++ protocol with the estimated execution time of the respective
DSL protocol. A speedup greater than one means that the new protocol was, on
average, faster than the old one. All measurements were performed in an identical
setup, using the same SHAREMIND version. Only the loadable module providing the
protocols set was differed.

5.6.2 Speedup with respect to the previous generation of
protocols

In order to understand the performance profile of the protocols, we first take a
closer look at the performance of the floating-point multiplication protocol. In
Figure[5.10 we can see the running time of the DSL and C++ protocols depending
on input size. The x-axis denotes the input size and y-axis the running time. Notice
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Figure 5.10: Running time of the floating-point multiplication protocol

how the running time is roughly constant up to around 500 elements after which
it grows linearly. We call this point the saturation point because after this point
execution time is no longer latency bound and is limited by some other factors
(such as bandwidth or local computation). Unfortunately, this figure only tells us
that the DSL version is faster than the C++ version but the graph does not clearly
express by how much.

The performance difference is expressed more clearly in Figure [5.T1|that shows
the speedup of DSL protocol compared to C++ versions. We can see that the
new floating-point multiplication is two to twelve times faster. It is interesting to
note that the speedup is not constant and depends on input size. This is because
performance on small inputs is dominated by network latency and performance
on large inputs by network bandwidth. Hence, on small inputs the running time is
mostly determined by the round count and on large inputs by the amount of data
sent over the network. Looking at the speedup graph, it is reasonable to postulate
that single-precision floating-point multiplication now has about two times less
rounds and performs six times less network communication. Experimentally, we
found single-precision floating-point multiplication to take about 9.5 times less
communication. Unfortunately it is difficult to tell how many communication rounds
protocols implemented in C++ perform.

For the rest of the operations we will not give such a detailed performance
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Figure 5.11: Speedup of floating-point multiplication implementation in the DSL with
respect to the implementation in C++

analysis. Instead, we only present the measured speedup for various input sizes.
The results of comparisons with protocols implemented in C++ are presented
in Table [5.2] Integer operations have been benchmarked on 32-bit integers and
floating-point protocols on single-precision numbers. We chose to display only
32-bit versions because some 64-bit integer operations are not implemented in C++
and for the rest of the operations, the results are quite similar, mostly favoring DSL
protocols. We can see that shift-right by a private value (a > b) has benefited a
lot from a redesign in the DSL. Similarly, the redesign of the floating-point error
function has improved performance drastically.

We can see that for every floating-point operation the use of the protocol DSL
has resulted in better performance. All new floating-point protocols run at least
twice as fast and in many cases the DSL provides an over 10-fold speedup. Some
slowdown for integer division operations was to be expected, as they are very well
tuned medium-sized protocols. Surprisingly, past 10-element inputs we can see
some speedup in favor of our compiler.

The performance gain of the multiplication protocol comes from the use of
shared random number generators, as our previous generation of protocols did not
take advantage of such optimization. In the speedup table we have presented a
comparison with the DSL protocol and we see a speedup of up to 1.9. In the specific
case of integer multiplication we actually continue to use the manually optimized
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Table 5.2: Speedup in comparison with non-DSL protocols

Op. Speedup on a given input length
10 10t 102 100 10 10°

a/b 10 1.2 1.7 18 16 17
axb 14 14 14 17 19 16
a>n 11 11 1.6 33 44 30
a/n 04 05 09 24 40 43
a<b 08 09 14 33 62 54
a>b 14 26 102 31.6 314 269

z+y 26 30 48 55 41 3.9
rxy 17 20 35 67 75 6.2
r<y 69 74 85 85 68 66
sinz 78 89 132 111 80 86
1/z 21 29 63 100 94 95
Inz 130 148 200 152 115 117
Jz 26 37 84 137 132 126
et 55 75 174 255 270 231
erfz 50 139 449 746 918 885

Note: a and b denote 32-bit additively shared integers; n denotes a 32-bit public integer;
2 and y denote single-precision private floating-point numbers.

C++ protocol. By hand-tuning we can better optimize memory usage and tailor
the protocol to use communication patterns that are more suitable for our network
layer. We have measured that in the best case scenario the manually implemented
multiplication protocol seems to have a speedup of 1.2 over the DSL generated one.
This happens only in few cases. Mostly the protocols perform roughly equally well.

5.6.3 Performance of elementary operations

The performance of multiplication protocol is presented in Table [5.3] We have
evaluated the performance of integer multiplication on up to 108-element input
vectors. We are able to perform up to 17 million 64-bit multiplications per second
and up to 27 million 32-bit multiplications. Note again that performance is measured
for a single computation thread. With more parallel threads we could saturate the
communication channels.

Table shows the performance of other elementary integer operations. We
have benchmarked less-than comparison, right-shift and division operations on
up to 10%-element input vectors. We also consider the case where the second
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Table 5.3: Performance (in 1000 operations per second) of ¢-bit integer multiplication.

¢ 109 10t 102 103 104 10° 106 107 108
8 7.89 789 776 6860 31400 52900 48800 33300 45800
16 823 822 794 6710 28900 48300 37000 33500 43000

32 7.58 753 723 5790 20800 27400 23700 24600 26200
64 7.34 721 677 5110 13800 14600 10500 16100 17200

argument of right-shift or division is a public integer. Public divisions and shifts
are quite common. The performance advantage over completely private operations
is considerable. In the case of 64-bit integers we can perform up to a few hundred
thousand operations per second. The slowest operations is division of two private
integers which achieves ten thousand operations per second.

Performance results for floating-point operations are presented in Table [5.5]
We have measured addition, multiplication, comparison, inverse, square root, expo-
nentiation, natural logarithm, sine, and error function from single-element inputs
to 10%-element input vectors. The results have been presented in thousands of
operations per second. Looking at the table, it is clear that performance scales very
well with vectorization: only a few hundred scalar operations can be executed per
second but by computing on many inputs we can perform hundreds of thousands
of operations per second. Generally, floating-point operations are much slower
than integer operations. For example, multiplication is over a hundred times slower.
However, integer division is a very expensive operation and applications that need
to do many of them should consider floating-point numbers. In fact, floating-point
inverse is twice as fast as integer division of comparably sized types.

Performance results for fixed-point operations are presented in Table [5.6]
Performance-wise they have two significant advantages over floating-point numbers.
First, addition is local. Second, multiplication is over twice as fast. For this reason
we suggest using fixed-point numbers when possible over floating-point numbers.
Of course, fixed-point numbers are not usable in all applications. They are subject
to overflows and underflows, and are not suitable if good relative error is required.
Furthermore, operations other than addition and multiplication are much slower
than the respective floating-point ones.

5.6.4 Performance comparison of applications

We have also benchmarked private satellite collision analysis from [62] using the
new protocols. We see a roughly 5-fold speedup, going from 0.5 satellite pairs
per second to 2.5 pairs per second. When processing 100 pairs in a vectorized
manner, we gain a roughly 8-fold speedup, going from 0.7 pairs per second to 6 pairs
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Table 5.4: Performance (in 1000 operations per second) of integer operations.

Op. L 1000 OP/s on given input length
10 10 102 10 10* 105 106

a>»n 8§ 131 13.6 133.2 1062 3903 5785 6473
16 1.22 12.0 115.2 897 3146 3642 3932
32 161 156 1379 833 2005 1583 1821
64 143 139 1138 548 820 678 821

a>b 8 073 69 67.7 539 1717 2067 2173
16 1.18 121 109.1 604 1287 1079 1312
32 1.03 103 864 409 463 422 502
64 063 6.0 487 111 122 142 153

a<b 8 1.06 104 958 584 1563 1925 2114
16 1.25 122 933 490 1171 1081 1188
32 080 7.7 608 344 748 554 624
64 074 7.0 532 250 335 263 296

a/n 8 0.82 81 732 462 1528 2082 2161
16 057 55 489 307 1056 1108 1206
32 051 5.0 445 255 630 531 590
64 048 44 322 150 239 188 196

a/b 8 075 7.0 53.7 191 260 195 205
16 0.66 6.1 429 128 140 121 126
32 052 40 136 21 20 25 26
64 043 25 6.1 7 8 10 10

Note: ¢ denotes the bit width of the inputs, a and b denote additively shared integers
and n denotes a public integers.
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Table 5.5: Performance (in 1000 operations per second) of optimized floating-point
operations. Variables x and y denote private floating-point numbers.

Op. Prec. 1000 OP/s on given input length
10 10 10> 10® 10t 105 10°

r <y single 1.38 1298 87.9 2174 2309 206.8 2254
double 1.30 11.52 67.5 1364 1185 108.4 120.5

zxy single 0.61 5.71 388 1459 261.1 190.9 202.0
double 0.58 5.17 34.3 121.2 14v.2 1173 123.7

r+y single 0.29 255 149 322 316 29.6 319
double 0.25 2.07 9.2 132 135 145 158

NI single 0.31 281 182 559 669 56.8 574
double 0.24 196 74 12.7 124 138 143

r1 single 0.32 2.86 18.3 547 63.2 55.6 56.7
double 0.24 206 93 181 194 199 20.7

exp(z) single 022 201 135 350 453 374 39.1
double 0.16 1.38 6.0 114 11.8 123 125

erf x single 0.25 223 135 29.2 323 291 295
double 0.19 143 4.7 7.0 7.0 8.0 8.2

sinx single 0.13 113 6.0 10.2 10.0 10.1 10.6
double 0.12 093 28 3.3 3.3 4.0 4.3

Inz single 0.13 1.12 5.6 8.4 8.5 8.2 8.6
double 0.13 091 2.7 3.2 3.1 3.5 3.8

Table 5.6: Performance of fixed-point operations in 1000 operations per second.

Op. ¢ 1000 OP/s on given input length
10 10t 102 10® 10* 105 10°

sxt 32 095 917 734 3343 524.7 462.2 488.0
64 0.92 839 60.9 2284 266.9 2371 243.6

Vs 32 030 253 114 198 21.0 239 239
64 0.22 1.57 4.3 5.6 5.9 7.5 7.8

s7h 32 024 1.60 4.2 4.4 6.2 7.7 7.8
64 0.17 080 1.0 1.3 2.0 2.3 24
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Figure 5.12: Best performance vs network communication

per second. This confirms the obvious—improving the performance of low-level
operations has a great effect on the performance of high-level applications. We
have measured the performance of the privacy-preserving social study from [17]
on old and new protocol sets. We only saw about 20% performance improvement
on a local cluster. Later investigation revealed that performance was bottlenecked
by network latency due to an implementation error that caused many sequential
Boolean conjunctions to be performed.

5.6.5 Performance estimation

The performance of DSL generated protocols can be relatively well estimated
without ever running the actual protocols. In Figure and Figure we have
graphed the benchmarking results of all our DSL protocols, including those for
logarithmic numbers and golden section numbers from [41]]. Figure [5.12] plots the
best performance (vectorized operations) compared to the protocols’ communication
cost. Figure [5.13] plots the worst performance (scalar operations) compared to
the protocols’ round count. We can see that the best performance can be very
well estimated (R? = 0.975) linearly from communication cost and the worst
performance from the number of rounds (R? = 0.94).

Those estimates are suitable only for our specific test setting (the version of
SHAREMIND, networking configuration, hardware specification, operating system).
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We have not explored how to derive more general models or how to best estimate
performance on arbitrary input lengths. We postulate that very accurate general
performance models could be derived that also account for the concrete round
structure and give estimates for any input length and network setting. This remains
future work.

5.7 Discussion and future improvements

The protocol DSL has only been used to implement additive three-party protocol set.
Implementing other security schemes with a fixed number of participants should not
be too difficult. We have considered the implementation of a protocol suite based on
Beaver’s multiplication triples, or the information-theoretic three-party scheme that
uses correlated randomness by Araki et al. [2]. In the second case, no modifications
to protocol DSL language or supporting infrastructure are needed. In fact, we can
implement the bitwise conjuction protocol as presented in Listing Compared
to the additive three-party multiplication in Section [5.1| the multiplication by Araki
et al. requires two times less network communication but twice as much storage.
Integer multiplication is also straightforward to implement in the DSL but requires
the computation of 37! in Zy» which makes it less elegant in presentation.

The multiplication protocol using Beaver triples can be implemented very
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Listing 5.17: Bitwise conjunction by Araki et al.

struct xorShare[n] = {
x: uint[n]
a: uint[n]

3
def xorCorrelated () : uint[n] = xorReshare(@)

def conj (u: xorShare[n], v: xorShare[n]): xorShare[n] = {
let
¢ = xorCorrelated()
r=u.x &v.x *u.a&v.a”*c
z =r *» (r from Prev);
xorShare {z, r}

}

straightforwardly in the DSL but it would require minor modifications to the
language and more significant modifications to SHAREMIND back-end and the way
LLVM code is generated. Namely, we would need a process for multiplication triple
pre-computation. For a particular protocol in DAG form it is easy to tell how many
triples of which size are needed, but it is not as easy for high-level applications.
Falling back on generating triples during online execution would incur a very high
network communication cost compared to the additive three-party scheme.

Currently the protocol DSL does not support security schemes with a flexible
number of computing parties. For example, it is not possible to specify generic
Shamir’s secret sharing scheme. This restricts the set of security schemes that we
can implement quite significantly but it has not been a limitation so far because we
have focused on the additive three-party protocol suite. However, this restriction
could limit wider adoption. One solution is to adopt the concepts of share and wire
types from WysTeriA [100].

Unfortunately, the protocol DSL does not support data types of dynamic size.
For this reason, it is impossible to implement, say, a protocol for aggregating
arbitrary dynamic arrays. Similarly, we do not support dynamic control flow
branching based on public values. One case where this has resulted in sacrificing
performance is the public division protocol where we could send less network data
for certain divisors. However, supporting dynamically sized types would mean
that our intermediate representation could no longer supply precise information on
network communication cost. For now we have found that the ability to combine the
DSL-implemented pieces with either C++ or SECREC gives us sufficient flexibility.

Regardless of the limitations, the protocol DSL has served us well. We have
demonstrated an order of magnitude performance improvement with respect to our
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previous protocol set and we have shown that developing secure protocols in the
DSL is a much better experience than manual implementation in C++ or some
other general-purpose language. This is not only due to the domain-specific design
choices we have made but also thanks to the tools that we support.
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CHAPTER 6

PRACTICAL APPLICATIONS AND
PROTOTYPES

Most of the applications that have been developed on SHAREMIND use SECREC 2
to some degree. This chapter gives a short overview of several applications and
describes how SEcrReC 2 was used in them. For each applications we explain the
problem that was solved, give a general overview of the solution, and explain what
role SECrReC 2 played in the application. We can confidently claim that, as it stands,
SecreC 2 has the most real-life applications and the largest code base out of all
languages intended for SMC.

6.1 The private satellite collision analysis prototype

Kamm and Willemson [62]] implemented secure floating-point arithmetic and
developed an oblivious satellite collision analysis algorithm. Using the secure
floating-point primitives, the algorithm calculates the probability of a collision
between two satellites given their trajectories. The underlying secure operations
(addition, multiplication, inverse, square root, natural exponentiation function,
error function) were implemented in C++ but the algorithm itself was developed
in SEcrEC 2. The floating-point protocols were later re-implemented using the
protocol DSL. In fact problems with C++ implementation were a large motivation
for creation of the protocol DSL.

Finding the probability of collision between two spherical objects moving in
an orbit is a non-trivial task. To see that, we give a brief overview of one of the
steps of the algorithm. After converting input data to a more convenient form the
algorithm computes the encounter probability p as the following double integral:

1 -1 T — 2
2no0y J )1 2 Oz Oy
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where R is the combined radius of the bodies, (x,, y»,) is the center of the bodies
in the encounter plane, o, and o, are the lengths of the semi-principal axes, and
T = [-R, R] x [-VR2 — 22,/ R? — 22]. The value of the integral is numerically
approximated using Simpson’s rule:

AZL‘ n . n—1 .
N <f<0> + f(R) + ;#((2% — 1)Az) + Zl 2f<2mas>> ,

where Az = % and the function f is defined as:

_ Yym + VR? —a? —Yym + VR? — a2
f(z) = [erf ( Va0, ) + erf ( Va0, )] X

oo () e (Fo)

The oblivious SEcReC implementation only spans around 500 lines of code not
including the reusable components from the standard library. The algorithm admits
to vectorization very easily. For example, when computing the final probability
approximation p, all of the calls to function f can be evaluated in parallel. The
native support for SIMD style operations greatly simplifies the implementation.
The C++ code for secure operations spanned about 4500 lines.

Kamm and Willemson implemented two versions of the algorithm. The first
version only processes one satellite pair at a time. The second version was paral-
lelized to process n satellite pairs at a time. Unfortunately, the reported speedup
for the vectorized case was rather small (about three times). This can be attributed
to the algorithm already operating on quite large vectors even when processing a
single satellite pair.

Performance was greatly improved by using the floating-point operations
implemented with the protocol DSL: about fivefold in the scalar case and eightfold
in the vectorized case. The performance improvements are from the DSL generated
protocols alone and not from any improvements to the networking layer. When
combined with the improved networking layer, we see the amortized time for
processing a single pair going from a minute to a few hundred microseconds.

During development Kamm and Willemson implemented various reusable
components. The vector and matrix operations can be used in other algorithms and
across different protection domain kinds that support basic floating-point operations.
Kamm and Willemson implemented vector operations such as length, dot product,
and cross product; product of two-dimensional matrices; some special operations for
diagonal matrices and covariance matrices; and eigensystem computation for 2 x 2
matrices. For many of these operations Kamm and Willemson also implemented
SIMD parallel versions. Most of the operations can be found in the SEcrReC 2
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Listing 6.1: Parallelised dot product for floating-point vectors in SECREC 2

template <domain D>

D float64[[1]] dotProduct (D float64[[2]] x, D float64[[2]1] y) {
assert (shapesAreEqual (x, y));
return rowSums (x * y);

standard library in the matrix module. The development of the standard library
has since continued. For example, the current implementation of the vectorized
dot product (Listing differs greatly from the one presented by Kamm and
Willemson [62), Fig. 9].

6.2 The privacy-preserving social study

In Estonia, the information and communication technology sector is a rapidly
growing industry where skilled and educated specialists are in demand. Wages in
the industry continue to raise and academia cannot match the salaries. This causes
friction. For instance, the universities in Estonia have formed a hypothesis that
students who work during their studies do not graduate in nominal time and many
of them quit before graduation.

This hypothesis can be verified through a study that links tax and education
records. However, conducting the study with plain data would normally be impossi-
ble, as Estonian data protection and tax secrecy legislation does not allow linking
these records. Bogdanov et al. [17]] used SHAREMIND to perform this study securely.
The study was conducted by linking the database of individual tax payments from
the Estonian Tax and Customs Board and the database of higher education events
from the Ministry of Education and Research. The analysis processed ten million
secret shared tax records and half a million secret shared education records. This
was the largest cryptographically private statistical study ever conducted on real
data. A more detailed overview (including regulatory, organizational and social
aspects) of the study can be found in [108]].

The study was implemented using the RmIND [9] statistical analysis system.
It was designed to mimic the statistical analysis system R. RMIND is a remote
application running on client side. To executing commands the client sends requests
to the SHAREMIND computing parties that execute the requests via a compiled
SECrREC 2 program. RmIND heavily relies on the SECREC 2 script in the sense that all
private operations that RminD can invoke have been implemented in SEcrReC 2. This
includes primitive arithmetic operations, statistics operations, array manipulation,
secure database manipulation and data aggregation. We have measured that, as
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it stands, RMIND uses about ten thousand lines of SECReEC 2 code. This does not
include the standard library that contains many of the statistics operations and also
offers the database interface that RminD heavily uses. The study was implemented
using about few thousand lines of RmiND code.

Notably, the social study used sorting, database linking and database aggregation
which were all implemented in SECREC 2. The sorting algorithm was by Bogdanov,
Laur and Talviste [21]] and database linking by Laur, Talviste and Willemson [79].
The database aggregation algorithm was presented in [[17]].

6.3 A privacy-preserving survey system

Surveys often collect sensitive data. For example, employee satisfaction surveys
usually contain questions that employees might not want to answer personally to the
employer. They would prefer to remain anonymous. These surveys usually require
employees to trust either the employer or some third party to keep their answer
secret. This kind of trust can be easily betrayed, accidentally or maliciously. Secure
computing can be used to make survey systems more trustworthy by collecting
responses in encrypted (or secret shared) form and analyzing the encrypted values
without revealing any actual answers of concrete individuals. Only aggregate results
are revealed.

During the FP7-funded PRACTICE project, Partisia, Cybernetica AS, and
the Alexandra Institute implemented a survey system prototype to facilitate the
collection of sensitive data to produce useful statistics without allowing third parties
to see the individual answers. The overview of the system’s design is presented
in [111]]. Cybernetica AS, in partnership with the Alexandra Institute and Partisia,
deployed the secure survey system for the Tartu City Governmen{] This is the first
real-life application of the SHAREMIND secure survey system. The system has also
been used to conduct internal employee satisfaction surveys in Cybernetica AS in
2014 and 2015 [108]].

The survey system has a web-based user-facing front-end. However, the survey
results are aggregated and analyzed using a SECReC 2 script. We measured that
the application only uses about 500 lines of SECREC 2 code, heavily relying on
the functionality provided by the standard library. Front-end was implemented in
JavaScript (9000 lines) and back-end in Java (21 thousand lines).

'https://practice-project.eu/blog/entry/pilot-of-the-secure-survey-system-
created-in-practice (April 2017)
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6.4 The tax fraud detection prototype

The Estonian government loses significant revenue due to value-added tax avoidance.
The Estonian Tax and Customs Board has estimated that 220 million euros are lost
every year. To increase revenue the government proposed a change in legislation
that made it compulsory for companies to report all significant financial transactions.
The updated version of the proposal was later accepted, but the first version was
initially rejected. One of the reasons for rejection was the concern for privacy as
the database would contain many of the financial transactions in Estonia.

The privacy concerns can be alleviated using secure computing. The individual
transactions can be kept secret but transactions of companies with fraud risk can be
disclosed for further analysis. Cybernetica built a prototype application specifically
for this purpose [15]]. The application performs the risk analysis obliviously and in
the end only reveals the companies with high fraud risk.

The data processing, aggregation and fraud risk analysis were implemented in
SECrREC 2. On a local cluster it took 43 minutes to process 2.6 million transactions
from 2000 companies. In [15]] it was estimated that a single month of transactions
takes ten days to process, using about 20 thousand euros worth of hardware. Later
in [[16], the authors demonstrated that with algorithmic optimizations and map-
reduce style parallelization, it is possible to process a month’s worth of transactions
(100 million transactions between 80 thousand companies) in just a few hours.
Running the optimized setup on the cloud cost under 200 US dollars. These results
demonstrate that deploying and running a large-scale application that performs
secure computations on the cloud has become very cost-efficient.

We have measured that the tax fraud detection prototype running on the cloud
uses just under three thousand lines of SEcrReC 2. However, most of the code is
for database manipulation (e.g., creating tables, reading data, linking tables). The
risk analysis and the associated aggregation algorithms take less than a thousand
lines of code. The authors developed two versions of the risk analysis algorithm:
a fast version that leaks some extra information, and a slower version that does
not. The fast version relies on the assumption that a company cannot be identified
from the number of its business partners. The ability to choose the acceptable level
of leakage is an absolutely essential feature of SECReC 2 and, as demonstrated,
can enable secure applications that would otherwise be too slow for for real-life
scenarios.

6.5 The frequent itemset mining prototype

The frequent itemset problem is the task of finding sets of items that are frequently
bought together. Such information can be used by automatic recommendation
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systems that offer to clients logical suggestions about other items they might be
looking for. For example, a customer looking for eggs and flour might also be
interested in milk. However, customer data is sensitive and customer may refuse
to give away their personal information. More customer trust might be gained by
performing frequent itemset mining (FIM) obliviously.

Bogdanov, Jagomigis and Laur [13]] implemented standard frequent itemset
mining algorithms in privacy-preserving manner. They implemented the Apriori [1]]
and Eclat [116]] algorithms in SECREC 1 and measured their performance. They
noted that Apriori performs better but Eclat uses less memory. The performance
advantage of Apriori comes from the fact that it traverses the frequent itemset graph
in breadth-first manner. Thus, each level can be processed in parallel. In [[14]] the
same authors implemented a hybrid combination of Apriori and Eclat to improve
memory usage while performing comparably to Apriori.

The algorithms in [13}[14] were implemented to only handle dense data, meaning
that memory requirements increased linearly with the product of the number of
purchases and the number of available items. In reality, each purchase includes
only a small number of items. It is difficult to use this assumption in the oblivious
setting because we want to hide the number of items in every basket.

Laud and Pankova [[75] used SEcreC 2 to implement frequent itemset mining
for both sparse and dense data. The authors implemented various different FIM
algorithms and presented their round and communication complexity analysis. All
algorithms were implemented in both sparse and dense variants. The performance
measurements [49, Section 2.3.7] indicate that the sparse variants generally perform
less network communication and mostly perform better. Unfortunately, no memory
usage information was provided. The SEcrReC 2 implementation spans over 2500
lines of code. It is heavily vectorized and performs rather complicated data reshaping
steps.

6.6 Creating cryptographic challenges

The security of many cryptographic schemes is based on the hardness of a com-
putational problem (discrete logarithm, integer factorization). In order to be able
to select parameters for cryptographic schemes that guarantee a chosen level of
security, the hardness of these problems has to be estimated. A method that has
proved useful is to publish cryptographic challenges. For example, cryptographic
challenges can be built for the factorization problem. The RSA factoring challenge,
issued by RSA Labs in 1991, led to a much improved understanding of the strength
of symmetric-key and public-key algorithms?|

2http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-
challenge-fag.htm (April 2017)
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Typically, to build a challenge someone generates an instance of the problem,
and the challenge is to find a solution. In the case of integer factoring, a problem
instance is a large number n and the expected solution is a pair of numbers p, ¢ > 1
such that p x ¢ = n. In the case of the RSA problem p and ¢ are large prime
numbers.

However, for many computational problems it is hard to create an instance
without knowing its solution. This means that the research community would have
to trust the creator of the cryptographic challenge to not reveal any information
about the solution and to generate the problem instance honestly. The creator
himself would not be able to participate in the challenge. Instead of a single person
generating a challenge, instances can be generated jointly by several parties using
SMC.

Buchmann et al. [26] showed that SMC can be used to build challenges for
the learning with errors (LWE) problem [102]—an important problem in lattice-
based cryptography that is conjectured to be hard to solve. They implemented
the challenge generation algorithm in SEcReC 2 on SHAREMIND and generated
instances for various parameters. The generation of problem instances took only a
few minutes for the small cases but up to ten hours for the largest ones.

The algorithm spans just over 300 lines of code. Much of the code consists
of comments and also a less efficient generation algorithm that used floating-
point numbers. The parallelized generation algorithm itself, and the rest of the
SEcrEC 2 application that also implements communication with the controller
application, takes less than 200 lines of code. The client (controller) application
was implemented in C++ and Python.

6.7 The SECREC code verifier

SecrEC programs are meant for processing sensitive information. Thus, it is impor-
tant that programs work as intended and do not reveal more sensitive information
than planned. SECReC 2 already contains a basic information flow type system
which enforces that data can only be revealed explicitly. However, many programs
open data in the middle of execution and make branching decisions based on the
public values. It is often not obvious that revealed intermediate values only leak the
intended information.

During the FP7-funded PRACTICE project, INESC Porto developed the Com-
putation Specification Analysis (CSA) tool for static analysis of SEcCrReC 2 code.
The tool can be used to specify and verify functional correctness and data leakage
properties. The CSA tool is a largely independent look at the SEcrReC 2 language.
The parser and type checker have been independently designed and developed. The
tool builds on top of Dafny [82] and Boogie [3} [81] static program verification
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Listing 6.2: Functional correctness property in CSA

//@ template <domain D>
//@ function D int sum(D int[[1]] xs)
//@ { size(xs) == @ ? @ : xs[@] + sum(xs[1:1) }

template <domain D>
D int sum(D int[[1]] vec)
//@ ensures \result == sum(vec);

{ ... 3%

Listing 6.3: Leakage property in CSA

template <domain D>

int leak(D int x)

//@ leakage requires public(x)
{ return declassify(x); }

toolchains. CSA is available in GitHub?l

To support verification, SECREC 2 was extended with a specification language
inspired by the Dafny language. Dafny is designed for verification of imperative
programs and thus is well suited for SECREC 2. Functional and leakage properties
are added to SEcrReC 2 programs in the form of comments. This way the program
that is accepted by CSA is still be a legal SECREC 2 program and can be compiled
without further modifications.

Let us look at two annotated SECREC 2 code examples. In Listing[6.2] we declare
a summation procedure with an annotation that indicates the result is, in fact, the
sum of the argument vector. In the example we have omitted the function body.
Depending on the implementation it has to contain loop invariants and the user
might have to prove some additional lemmas.

In Listing |6.3| we define a trivial function that simply declassifies its input. The
procedure is annotated with a special leakage keyword stating when it is acceptable
for a private input x to be made public. Without that annotation the function would
be rejected by CSA. Using this functionality it is possible to enforce for functions
the acceptable level of leakage. For example, a specialized efficient sorting function
can enforce that it may only called if all possible element comparisons of the input
array are allowed to leak.

3https://github.com/haslab/SecreC|(April 2017)
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CHAPTER 7

STATE OF THE ART

In this chapter we will give an overview of the history and the state of the art
of programming languages in secure multi-party computation. We give a short
overview of the more popular tools. However, we do not give the particulars of the
theoretic advancements. We roughly classify the tools into ones based on garbled
circuits, ones based on secret sharing, and hybrid tools. We will not give overview
of SHAREMIND framework. We have already done so in Section[2.2] We compare
most systems against either SECREC 2 or protocol DSL. Many of the systems that we
cover share the goal of SEcreC 2 to be intended for SMC application development
by non-expert programmers. Protocol DSL aims making arithmetic secret-sharing
based protocols easier to implement. This is rather unique goal that is not shared
by many other systems.

7.1 Programming garbled circuits

7.1.1 Fairplay and SFDL

Fairplay [87] is a system that implements generic secure function evaluation (SFE).
Fairplay is widely considered to be the first system for general-purpose secure
two-party computation. It includes a high-level procedural language called Secure
Function Definition Language (SFDL) that resembles Pascal or C and is tailored
for SFE. The high-level language programs are compiled into Boolean circuits
represented in a language called Secure Hardware Definition Language (SHDL).
The circuits can be evaluated by two parties using Yao’s garbled circuits technique.

An SFDL program consists of a sequence of global constant and type definitions
followed by a sequence of function definitions. The language lacks recursion and
unbounded loops in order to maintain obliviousness. Loops are only allowed if
the number of iterations is known during compile time. SFDL supports standard
if-statements that are implemented by evaluating both branches. Expressions of the
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language contain constants, variables, function calls and operators. The operators
that are allowed include addition, subtraction, Boolean operations and standard
comparisons. However, due to their cost, multiplication and division operators are
not provided as primitives. The language also supports arrays but not accessing
them with private indices. SFDL programs can be written using a graphical editor
specifically designed for this purpose.

FairplayMP [7]] is a generic system for secure multi-party computation that
supplements Fairplay. The system also extends SFDL by allowing an unlimited
number of participants. Participants are classified into three roles: input, computation
and result parties. A single party can have multiple roles. The new language revision
also allows accessing individual bits of a number with array-like notation. They
introduced basic support for polymorphic functions. For example, it is possible to
write a function that shifts any integer value regardless of its size.

In FairplayMP circuits are evaluated using an enhanced version of Beaver, Micali
and Rogaway [S]] (BMR) protocol that runs in a constant number of communication
rounds. The protocol is based on Yao’s two-party scheme but supports any number
of participants.

SFDL has similar goals to SEcreC. Both aim to be high-level algorithm
specification languages. However, SFDL lacks mixed-mode computation and only
has private data types. SFDL is also restricted to using garbled circuits whereas
the choice of security scheme is not fixed in SEcReC. SFDL 2.0 has limited form
of polymorphism that allows for functions to be generic over any integer type.
FairplayMP and SFDL 2.0 have been used to implement prototypes for second
price auction and voting [7]].

7.1.2 FastGC

FastGC is a set of techniques introduced by Huang et al. [57] for improving
the running time and memory requirements of Yao’s garbled circuit protocol. In
previous implementations of Yao’s protocol, the garbled circuit is fully generated
and loaded into memory before circuit evaluation starts. This is not a problem for
simple functions but even small non-trivial applications can require circuits with
billions of gates. Huang et al. observed that it is unnecessary to generate and store
the entire garbled circuit at once. By sorting the gates topologically and pipelining
the process of circuit generation and evaluation they significantly improved overall
efficiency and scalability. Their implementation never stores the entire garbled
circuit. This effectively allows for an unlimited number of gates to be evaluated
using a small memory footprint.

Their implementation allows programmers to construct applications in Java
using a combination of high-level code for application specification and low-level
code for constructing efficient circuits. Their framework includes a library of circuits
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optimized for garbled execution. High-level applications can be built by just com-
posing these circuits. However, custom designed circuits for improved performance
can be designed by programmers. For designing Boolean circuits no understanding
of the cryptographic protocols for evaluating them is needed. FastGC framework
has been used to implement privacy-preserving matrix factorization [93]] that scales
to ten thousand records. Matrix factorization can be basis for recommender systems.
FastGC has been also use to build smartphone prototype applications for private
set intersection and personal genetics [S6].

7.1.3 CMBC-GC

CMBC-GC [535]] is a tool that achieves secure two-party computation for ANSI C. It
translates C programs into equivalent monolithic Boolean circuits and evaluates the
circuits using Yao’s protocol. CBMC attempts to minimize the size of the formulas
and also optimizes the Boolean circuits to improve the efficiency of garbled circuit
evaluation. Not all features of C are supported. CBMC-GC requires all loops and
recursive call chains to be bounded by a constant. Floating-point computations are
not supported and pointer arithmetic is also limited. Not all built-in primitive types
of ANSI C are supported.

The authors of CMBC-GC claim that for a developer, programming an SMC
system should be similar to programming an embedded processor or micro-controller.
Developing SMC applications has to become a normal programming task in a
standard programming language that has a compiler and other productivity tools, the
same goal is shared by SEcrReC. They claim that the programming language should
be standardized. They chose C for various reasons: closeness to the underlying
hardware, and ubiquity. Many programmers can write C programs with ease, and
a large code base is available. For example, Pullonen and Siim [98]] modified an
existing efficient fully IEEE 754 compliant software floating-point implementation
SoftFloaf|and compiled it to secure circuits using CMBC-GC.

CMBC-GC has similar goals to SECREC but the two taken very different
approaches. The former adopts C directly while the latter only has C-like syntax but
is otherwise very different language. One advantage of domain-specific approach is
that SEcrReC allows for mixed-mode computations. As demonstrated Pullonen and
Siim [98]] the two systems can work together. CBMC-GC can be used to specify
low-level operations and SECREC can be used to compose them to large applications.
This combination of GC and secret sharing offers security again passive adversaries.

thttp://www.jhauser.us/arithmetic/SoftFloat.html|(April 2017)
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7.1.4 PCEF circuit format

In portable circuit format [69] (PCF) a secure function is represented as a program
that computes the Boolean circuit representation of that function. The Boolean
circuit is evaluated using Yao’s garbled circuits technique. Their insight is that
it is not necessary to unroll loops until the protocol needs to be run. The only
restriction with loops is that they must not depend on secret values. The programmer
is responsible for ensuring that there are no infinite loops. In PCF the circuit is not
stored entirely and wires will be deleted from memory when they are no longer
required. Essentially, this approach unifies the circuit pipelining of FastGC [57]]
with an optimizing compiler.

For testing, the authors of PCF used the LCC compiler [44] as a high-level
front-end to their system. The LCC compiler translates the input C source code
to a intermediate bytecode representation. Their back-end performs optimizations
and translates the bytecode into PCF format. The PCF representation is also
optimized. They have implemented constant propagation and dead gate elimination
that, when combined, are shown to reduce the number of non-XOR gates by up
to two times. PCF has been used to implement two-party functionality for integer
matrix multiplication, modular exponentiation and graph isomorphism [[69].

71.5 SCVM

The general-purpose secure computation implementations we have seen so far
assume that the underlying functions are represented as circuits. Circuits are a
sensible representation but typically programs use a von Neumann style random-
access machine (RAM) model. Compiling such programs to efficient circuits can
be challenging. Specifically, it is difficult to handle dynamic memory access where
the memory location being read or written depends on private inputs. Program-to-
circuit compilers typically make a copy of the entire memory object upon every
private access to it. This results in a huge circuit when large objects are accessed.

SCVM [84] is an intermediate language for two-party RAM-model secure
computation. It is the first automated approach for RAM-model SMC. The language
supports accessing memory ia private indices by using oblivious RAM (ORAM).
ORAM is a primitive that hides memory-access patterns.

The RAM-model has two main advantages over the circuit model. First, when
performing repeated sublinear queries over a large dataset, the RAM model achieves
sublinear amortized cost per query. Second, when performing one-time computation
over a large dataset, it avoids the linear cost per private memory access.

SCVM is a quite low-level language supporting basic expressions, statements
and arrays. The language does not feature any higher-level constructs like procedures.
It has four information flow types: public, secure, and one local mode for each
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of the two participants. SCVM allows secret data to be revealed in the middle of
execution. After declassification, the (public) control flow of the program may
depend on the revealed secret values. The information flow type system of SCVM
ensures that any program is secure in the semi-honest model if all its subroutines
are secure in the semi-honest model.

The authors of SCVM also informally described how annotated C-like source
language can be transformed into SCVM format. They built an automated compiler
that does so and also integrates compile-time optimizations for improving perfor-
mance. For instance, the compiler can identify parts of the program that can be
safely executed locally by one or both of the parties. In addition, the compiler can
detect memory accesses that do not depend on secret inputs. Using this information
it is possible to avoid using ORAM when the access pattern is independent of
sensitive inputs.

SCVM s intended to be the target language that higher-level secure programming
languages are compiled to. Similar to SECREC it supports mixed-model computations
but otherwise the languages have little in common.

7.1.6 ObIliVM

ObliVM [85] is a programming framework for secure computation. It offers
a domain-specific language, called ObliVM-lang, designed for compilation of
programs into efficient representations suitable for secure computation. The high-
level language is designed to allow programmers who are not familiar with secure
computing or cryptography in general to write SMC applications. ObliVM-lang
extends the SCVM language with function calls inside secret if-statements, native
types, polymorphism, type-level natural numbers, and functions. Just like SCVM it
uses ORAM to support accessing memory with secure indices.

The underlying primitive circuits can be specified directly in ObliVM-lang.
Alternatively, primitives can still be implemented in the ObliVM framework and
made available in the high-level language. Currently, ObliVM supports a semi-
honest garbled circuits based back-end, but developers can implement customized
special-purpose types and functions. The authors of ObliVM [85]] claim that it
would not be too hard to extend the system to support additional Boolean-circuit
based back-ends such as GMW or FHE.

ObliVM adopts the pipelined circuit generation by Huang et al. [S7]. The circuit
is not generated entirely, only parts of it are. Thus, the required amount of working
memory is drastically reduced compared to full-circuit based approaches.

SecreC and ObliVM both stride to make secure computation accessible to non-
expert programmers. They share very similar goals. Major difference is that SECREC
is security scheme independent very explicitly whereas ObliVM is Boolean-circuits
based. Unlike ObliVM SecreC does not support ORAM natively but it is possible
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to implement ORAM in the language itself or via protection domain callbacks
as done by Laud [[74]. ObliVM has been used to implement various algorithms
(Dijkstra’s algorithm, minimum spanning tree, K-means) [85]].

7.2 Programming protocols based on secret sharing

7.21 SMCL

The first imperative programming language for general secure computation was
introduced by Nielsen and Schwartzbach in 2007 [92]. The language was dubbed
SMCL for Secure Multi-party Computation Language. It is a procedural language
syntactically similar to Java where various groups of clients interact with a server
that is capable of performing secure computing with a client’s shares. From the
client’s point of view it is interacting with a single computing engine and the fact
that the server consists of multiple communicating physical machines is hidden.
Code for groups of participants and the server is written in the same language and
it is simple to emulate the concepts of input and output parties (Section[2.1.T) with
this setup. The compiler translates SMCL code to Java.

Consider the problem of finding out which member of a group has the highest
income. In this setting there is one group of participants and the server. The server
may consist of three computing parties and the clients’ group consists of any number
of clients that each supply their salary information to the server in secret shared
form. The server can be viewed as a single entity that, with the help of SMC, offers
computing capabilities. The server side code iterates over all clients, receives the
clients’ income information through a channel, computes the maximum of the
salaries, and then reveals to every client if they have the highest income or not. The
client side code sends the salary information to the server and then waits for the
server to reveal a Boolean indicating if they were the richest or not. Note that each
server only learns a single share of each salary and will not learn any actual salary
information.

Types in SMCL are split into two: secure types and public types. For example,
secure integers are denoted with sint and public integers with int. The language
allows secure values to be explicitly opened (revealed to the public, declassified).
The language admits trace security, meaning that executions of a program on
different private inputs look indistinguishable externally until a private value is
opened.

Both SMCL and SecreC are intended for the same purpose, both are imperative
languages and both allow for mixed-mode computation. In SMCL the code for
input and output parties can be specified whereas SECREC only involves computing
parties. In SECReC security level is a part of a type whereas in SMCL secure integers
and public integers are two distinct data types. SECREC supports security scheme
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polymorphic functions. Notably, SMCL has been used in the implementation of
the Danish sugar beet auction in 2008 [24} [91].

7.2.2 Launchbury’s secure computing DSL

Launchbury et al. [78] developed a Haskell library that provides an embedded
domain-specific language (EDSL) for programming SMC applications. Secure
computation is based on three-party additive and XOR secret sharing. To improve
efficiency, the EDSL supports SIMD parallelism and also task-level parallelism. The
language provides operations for network communication, generating randomness,
and computations with shares. The programmer can write protocols operating on
secret shared values, and also leverage the full power of the host programming
language.

Launchbury et al. detail an approach for optimizing secure SMC programs by
moving to a symbolic representation where concrete types are replaced by symbolic
counterparts. They transform the symbolic representation to one where all loops
have been unrolled and lists have been eliminated. After that they group single
multiplications into SIMD-style vectorized multiplications when data dependencies
allow it. They applied this optimization to their implementation of AES but the
ideas are general enough to be applicable elsewhere.

Our protocol DSL is quite similar in its goals to Launchbury’s DSL. It could
be considered natural advancement of ideas. We offer better safety guarantees via
size-aware data type, party type system and security verification. We also have
more advanced networking primitive and offer more aggressive optimizations. We
compile to automatically vectorized efficient LLVM code. As a downside we have
lost some expressive power because our language is not embedded in Haskell.
Launchbury’s DSL has been used for efficient SMC implementation of AES [78]].

7.2.3 Mitchell’s secure computing DSL

Mitchell et al. [88]] have introduced a Haskell-based embedded domain-specific
language for secure cloud computing. The language features primitive types, condi-
tionals, standard functional language features, mutable state, a secrecy-preserving
form of general recursion, and security type system that prevents control flow
leakage. The language supports three back-ends. One of them is intended for debug-
ging, allowing developers to easily test the code locally without any cryptographic
protection. Two are intended for actual cloud deployments. One of these is based on
secret sharing and the other on homomorphic encryption. Mixing the two security
schemes is not natively supported by the language.

Mitchell’s embedded DSL shares goals with SECREC language. Both aim to
make SMC application development easier. However, this is where similarities end.
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SEcrEC 2 is imperative language with more advanced type system that can be used
with different security schemes. Same code can be shared across multiple different
schemes. Mitchell’s DSL has been used to implement an application that checks if
an email address is present in a secret whitelist of emails [88]].

7.24 PICCO

PICCO [118]] is a system for converting programs written in a C-like language
into secure implementations and running them in a distributed environment. The
language preserves most C features and allows variables to be marked as private
to be used in general-purpose secure computations. The secure implementation
of compiled programs is based on Shamir’s secret sharing, achieving information-
theoretical security against passive adversaries. PICCO supports parallel execution
of parts of the program either by explicit parallel loops or parallel execution of
individual statements. PICCO also has a limited form of SIMD parallelism. For
example, multiplication of private arrays operates pointwise. In [117] PICCO is
extended to support pointers to private data and dynamic memory allocation.

Information flow security is enforced via the type system. Namely, conversions
from private values to public values are not allowed, and branching over private
Booleans is restricted. Private side effects, e.g., assignments to private variables,
are permitted in functions called from the body of an if-statement with a private
condition. Private values can be explicitly revealed with the smcopen function and
the execution of the program can continue on the revealed public value. Public data
can always be implicitly converted to private data.

SecreC and PICCO share similar goals. Both are intended to abstract away the
underlying secure computation details while still enabling programmers to write
performance efficient applications. PICCO takes the concurrency approach while
SECREC is strictly limited to SIMD parallelism. Both offer basic data-flow security
guarantees via type system. PICCO is not security scheme agnostic. PICCO has
been used to implement various algorithms (matrix multiplication, merge sort,
AES) [118]], prototype fingerprint matching application, and a shift-reduce parser
for parsing private data [117]] .

7.2.5 WYSTERIA

Wrysteria [100, 99] is a high-level functional programming language for writing
SMC applications. It features higher-order functions, let-expressions, tuples, sum
types, and primitive values such as integers and arrays. WYSTERIA programs may
involve an arbitrary number of parties. The set of parties (and its size) may be
determined dynamically during computation. Programs are compiled to Boolean
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let a =par({Alice})= read() in

let b =par({Bob})= read() in
let out =sec({Alice, Bob})= a[Alice] > b[Bob] in
out

Figure 7.1: Mixed-mode computation in WysTERI1A (reproduced [100])

circuits that are securely executed by an underlying engine using the GMW
protocol [50].

It is possible to write programs in WYSTERIA in mixed-mode style, interleaving
local and private computation. Namely, the programs operate in a combination
of parallel and secure modes. Parallel mode indicates that one or more parties
are performing local computations in parallel. Secure mode indicates secure
computations occurring jointly among some subset of parties. For example, in
Figure[/.1|three variables are defined. Variables a and b are computed in parallel
mode, by Alice and Bob respectively. The result out is securely jointly computed,
checking if a is greater than b.

WysTERIA provides secret shares and wire bundles as first-class objects. Wire
bundles are used to represent the public inputs and outputs of secure computations.
They are similar to secret shares in that each party has a local copy. With secret
shares the copies are combined to reconstruct a single value but with wire bundles
each copy is its own individual value. A single party’s view of a wire bundle
is his own value, while the shared view represents all possible values. A secure
computation, having the shared view, may iterate over the contents of a bundle. The
length of wire bundles may be unspecified during compile time.

WysTERIA features a strong type system. The language is dependently typed in
the sense that functions take the participants as input, and the types for wire bundles
and shares directly identify the parties involved. The type system also limits from
which contexts a function can be called. For example, within a secure computation
it is not possible to call a function that computes in parallel mode, while the reverse
is possible. The type system also ensures that shares are used properly. For example,
shares of different objects cannot be combined.

The mixed-mode computation can be achieved in SECREC to a degree. Public
and private computations can be interleaved arbitrarily and more complicated
schemes can be emulated by using protection domains for local computations.
Public domain is SEcrReC corresponds to the parallel mode where all parties
executing the program are involved. However, SECREC does not directly support
dynamically choosing which parties to compute with. The protection domain is
picked statically. The similar style could in theory be emulated with security scheme
specific operations.
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Purposes of SEcCREC and WysTERIA diverge slightly. One of the primary goals
of SEcreC is to abstract away the detail of SMC and offer programmers the illusion
of executing regular single threaded code with straightforward control flow. In that
sense WYSTERIA is a lower level language and makes the concepts of participants and
the data they keep explicit. SECREC does not have the concept of a participant and
is intended to be security scheme agnostic and even support, for example, hardware
based secure computation. WysTeR1A on the other hand explicitly supports n-party
computations and does not allow the programmer to swap security schemes in the
language itself. Any security scheme that WysTERIA supports needs to be able to
handle arbitrary number of parties. WysTER1A has been used to implement various
oblivious algorithms [100] (private set intersection, median, nearest neighbors) and
secure application for card dealing [99].

7.3 Programming protocols with hybrid tools

7.3.1 TASTYL

TASTY [53]] is a tool for describing, generating, executing, benchmarking, and
comparing secure two-party computation protocols. The user provides a high-level
description of the secure computation in a domain-specific language. TASTYL is a
high-level language for describing secure computations on encrypted data, allowing
to abstract the details of the underlying cryptographic protocols.

The authors note that homomorphic encryption and garbled circuits have
different performance characteristics. Either one could be more efficient depending
on the application. For example, integer multiplication is faster with homomorphic
encryption but garbled circuits offer a more efficient comparison operation. Thus,
for some applications using both yields a more efficient solution than using either
one separately. TASTY supports both homomorphic encryption and Yao’s garbled
circuits and allows conversions between the two schemes. The schemes can both
be used in the same application to improve efficiency.

TASTYL is a subset of Python programming language and as such is quite
high-level making it comparable to SECREC. TASTYL is specific to two party
computation and a programmer has to explicitly code in client-server setting.
SecreC aims to hide whether a security scheme requires distributed computation.

732 L1

L1 [103] is an intermediate language for secure computation compilers. It enables
the implementation of protocols potentially mixing several general secure computing
schemes. The language supports many schemes such as secret sharing, homomorphic
encryption, garbled circuits, but also task specific secure computing protocols.
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L1 is supposed to be used as an intermediate language for secure computation
but could also support the writing of high-level applications. It is syntactically
similar to Java or C. The language features explicit network communication and
parallel execution of basic blocks that is explicitly controlled by the programmer.

In [66] Kerschbaum, Schneider and Schropfer proposed a way of automatically
selecting a protocol for each operation. They claim that the selection problem is so
complicated and large that a developer is unlikely to manually make the optimal
selection. They achieve improved performance over a pure garbled circuits based
implementation.

7.3.3 ABY

ABY [40] is a mixed-protocol secure two-party computation framework that
combines computation schemes based on arithmetic sharing, Boolean sharing,
and Yao’s garbled circuits. The framework allows to pre-compute almost all
cryptographic operations and provides efficient conversions between the different
representations. The task of specifying which computation is executed with which
scheme is left to the user.

ABY supports converting between the three different types of representations
and performing standard operations such as addition, multiplication, comparison,
and various bitwise operations. For arithmetic sharing the framework uses protocols
based on multiplication triples, and for Boolean sharing the GMW [50] protocol.

The ABY framework abstracts from the underlying secure computation proto-
cols. Variables are either public or secret shared between the two parties. The authors
of ABY claim that high-level languages can be compiled into their framework and
it can be used as a back-end for other secure computation tools. ABY has been used
to develop modular exponentiation algorithm and example applications for private
set intersection and biometric matching [40]].
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CONCLUSION

This thesis studies how secure multi-party computation technology can benefit
from domain-specific programming languages. High-level applications that use
multi-party computation have requirements that general-purpose programming
languages do not satisfy. Implementing secure multi-party protocols poses unique
technical problems. These problems can be alleviated with specialized languages
that both simplify development and increase trust in correctness and security.

The main result of this thesis is the implementation and formalization of two
programming languages. The first language, called SEcreC 2, is intended for secure
multi-party application and algorithm development. Its goal is to make secure
multi-party applications with good performance easy to develop for programmers
who are not security experts. The second domain-specific language is intended for
low-level secure computation protocol development. Its aim is to make protocols
easier to develop and to increase the trust that protocols are correct and secure.

For the SEcreC 2 language we give a very informal overview that is meant for
the language those who with to learn the language. We rely heavily on examples
and show how to develop code that is reusable and performs well. In addition the
informal overview we formalize the core of the SECReC 2 language and describe its
type system and its dynamic behavior. We show that if the underlying protocols
invoked by SEcreC 2 are universally composable, then the whole program is secure.
We describe how to translate SECReC 2 programs to a non-polymorphic form
and show that the translation preserves the programs’ behavior and therefore their
security.

For the domain-specific protocol language we also give an informal overview.
This is mostly intended for curious readers, the users of the language, and anyone who
is interested how three-party additive protocols work. We show that the language
is expressive enough to implement all integer operations and also complicated
floating-point arithmetic. We also show that protocols developed in this language
perform significantly better than our previous protocols. In some cases, we show
performance improvement of over two orders of magnitude.

Finally, we give an overview of applications and prototypes that have been
developed using SEcrReC 2. We can safely state that SECReC 2 is the most used
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secure multi-party application development language with the largest reusable
standard library. Most of the applications and prototypes benefit from the protocol
language as well because it has now been used to implement the vast majority of

SHAREMIND protocols.
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KOKKUVOTE
(SUMMARY IN ESTONIAN)

PROGRAMMEERIMISKEELED
TURVALISE UHISARVUTUSE
RAKENDUSTE ARENDAMISEKS

Turvaline iihisarvutus on kriiptograafiline tehnoloogia, mis lubab mitmel sdltumatul
osapoolel koos andmeid toddelda neis olevaid saladusi avalikustamata. Kui andmed
on esitatud kriipteeritud kujul, tdhendab see, et neid ei avata arvutuse kdigus kordagi.
Turvalise tihisarvutuse teoreetilised konstruktsioonid on teada olnud juba alates
kaheksakiimnendatest, kuid esimesed praktilised teostused ja rakendused, mis piris
andmeid tootlesid, ilmusid alles veidi enam kui kilmme aastat tagasi. Niilidseks on
turvalist tihisarvutust kasutatud mitmetes praktilistes rakendustes ning sellest on
kujunenud oluline andmekaitsetehnoloogia.

Et turvaline iithisarvutus oleks paremini praktikas kasutatav, peab tehnoloogia
ise ning olemasolevad raamistikud veel palju arenema. Probleeme on kasutus-
mugavusega, joudlusega ning véimekusega toodelda suurtes kogustes andmeid.
Rakendusi on endiselt vdimelised arendama ainult kriiptograafiaeksperdid ning
tehnoloogia on liiga aeglane paljude praktiliste probleemide lahendamiseks.

Meie nidgemus on, et hea joudlusega turvalise lihisarvutuse rakendused peaksid
olema lihtsalt arendatavad tavalise programmeerija jaoks, kes ei ole selle ala ekspert.
Efektiivsed programmid ei tohiks olla liiga keerulised kirjutada. Kéesoleva t66
iks eesmirk on lihtsustada tihisarvutust kasutavate rakenduste arendamist. Selleks
esitleme uut kdrgtaseme programmeerimiskeelt SECREC 2, mille on kavandanud
ning teostanud t60 autor.

Turvalise iihisarvutuse rakendusi arendatakse iildiselt valdkonnaspetsiifilisi
programmeerimiskeeli kasutades, sest tavalised iildlevinud programmeerimiskeeled
ei sobi selleks eesmirgiks kuigi histi. Uhisarvutusrakendustes on viiga oluline
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tipselt kontrollida, millised andmed avalikustatakse ja millised tuleb rangelt salajas
hoida. Mitte mingil juhul ei tohi avalikustada andmeid, mida programmeerija ei ole
ilmutatud kujul tahtnud avalikustada. Selline infovookontroll saavutatakse tavaliselt
keele tiitipide tasemel: andmed on rangelt klassifitseeritud avalikeks ning salajasteks.
Avalikke andmeid tohib alati vaikimisi teisendada salajaseks, aga vastupidine voib
juhtuda ainult ilmutatud kujul. Monede iildlevinud keelte tiiiibisiisteemid on kiill
piisavalt vdimsad, et selliseid infovookitsendusi viljendada, kuid nende kasutamine
sellel eesmargil ei ole kuigi mugav.

Veel iiks oluline aspekt, milles turvalise iihisarvutuse rakendused erinevad
tavalistest rakendustest, on joudlus. Isegi parimad skeemid on endiselt suurusjér-
kudes aeglasemad avalikust arvutusest. Hea joudlus on paljude skeemide korral
saavutatav ainult kui kasutada paralleelsust sageli ning ka véga lihtsate arvutuste
juures. Uhisarvutuse jaoks mdeldud programmeerimiskeeled peavad selle vajaduse-
ga arvestama ning operatsioonid ise peavad samuti olema efektiivsed. Kord korda
kiirem tehe voib tdhendada, et rakendus votab mitmeid péevi vihem aega.

Turvalise iihisarvutuse platvorme saab vaadelda kui hajusarvuteid, mis pakuvad
instruktsioone, mida kasutajad saavad vélja kutsuda iildise arvutuse tditmiseks.
Instruktsioonide joudluse on ddrmiselt oluline. Nende iihisarvutusraamistike jaoks,
mis pakuvad suures koguses spetsialiseeritud primitiivoperatsioone, pdhjustab see
arendus- ja hooldusprobleeme. Sellist agressiivselt optimeeritud madalatasemelist
vOrgukoodi on keeruline ja veaohtlik teostada. Raske on kontrollida, kas operat-
sioonid on korrektselt teostatud ning ega nad ei sisalda turvavigu. Kiesolevas t60s
esitleme uut valdkonnaspetsiifilise programmeerimiskeelt turvalise iihisarvutuse
madalataseme protokollide teostamiseks. Selle keele peamine eesmérk on protokol-
lide kirjutamist lihtsustada, aga lisaks ka tdsta jodlust ning suurendada usaldust, et
protokollid on korrektsed ja turvalised.

Viidame, et valdkonnaspetsiifiliste programmeerimiskeelte kasutamine vdimal-
dab ehitada turvalise lihisarvutuse rakendusi ja raamistikke, mis on samaaegselt
lihtsasti kasutatavad, hea joudlusega, hooldatavad, usaldatavad ja vdoimelised suu-
ri andmemahtusid tootlema. Too autor on kavandanud ning teostanud kaks uut
programmeerimiskeelt, mis on sammuks selle eesmirgi saavutamise suunas.

Esimene programmeerimiskeel on turvalise iihisarvutuse algoritmide ja ra-
kenduste arendamiseks moeldud korgtaseme keel SECReC 2. Kiesolevas t00s
anname sellest keelest mitteformaalse paljude ndidetega iilevaate, mis on mdeldud
lugejatele, kes on huvitatud keele dppimisest voi lihtsalt sellega tutvumisest. Lisaks
kirjeldame keele tiilibisiisteemi ja diinaamilist kditumist formaalselt ning arutleme
keele turvalisuse teemal. Anname iilevaate koikidest rakendustest, mis kasutavad
SecrEC 2 keelt. Nditame, et SECREC 2 lihtsustab rakenduste arendamist, voimaldab
kirjutada hea joudlusega programme ning saab hakkama suurte andmemahtudega.
Saame julgelt viita, et SECREC 2 on enimkasutatav turvalise {ihisarvutuse jaoks
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moeldud programmeerimiskeel.

Teine programmeerimiskeel on méeldud turvalise {ihisarvutuse protokollide
arendamiseks. Ka sellest keelest anname palju koodinditeid sisaldava mitteformaalse
ilevaate, kus esitame tdisarvulised tehted kolme osapoolega aditiivse ihissalastuse
jaoks. Ulevaade on mdeldud neile, kes soovivad tutvuda keele vdi protokollidega.
Lisaks kirjeldame formaalselt keele tiilibislisteemi ning diinaamilist k&itumist.
Anname iilevaate keele vaheesitusest ning nditame, kuidas protokollide turvalisust
automaatselt kontrollida. Analiilisime pdhjalikult protokollide keeles teostatud
tehete joudlust ja néditame, et vorreldes meie eelmise teostusega kasvab paljude
tehete joudlus mitu suurusjirku. Meie uues keeles kirjutatud protokollid on kergesti
hallatavad, nende kood on kompaktne ja viljendab selgelt programmeerija tahet
ning teostatud protokollid on turvalised.
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