223 research outputs found

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Soft Error Resistant Design of the AES Cipher Using SRAM-based FPGA

    Get PDF
    This thesis presents a new architecture for the reliable implementation of the symmetric-key algorithm Advanced Encryption Standard (AES) in Field Programmable Gate Arrays (FPGAs). Since FPGAs are prone to soft errors caused by radiation, and AES is highly sensitive to errors, reliable architectures are of significant concern. Energetic particles hitting a device can flip bits in FPGA SRAM cells controlling all aspects of the implementation. Unlike previous research, heterogeneous error detection techniques based on properties of the circuit and functionality are used to provide adequate reliability at the lowest possible cost. The use of dual ported block memory for SubBytes, duplication for the control circuitry, and a new enhanced parity technique for MixColumns is proposed. Previous parity techniques cover single errors in datapath registers, however, soft errors can occur in the control circuitry as well as in SRAM cells forming the combinational logic and routing. In this research, propagation of single errors is investigated in the routed netlist. Weaknesses of the previous parity techniques are identified. Architectural redesign at the register-transfer level is introduced to resolve undetected single errors in both the routing and the combinational logic. Reliability of the AES implementation is not only a critical issue in large scale FPGA-based systems but also at both higher altitudes and in space applications where there are a larger number of energetic particles. Thus, this research is important for providing efficient soft error resistant design in many current and future secure applications

    A Sustainable Autonomic Architecture for Organically Reconfigurable Computing Systems

    Get PDF
    A Sustainable Autonomic Architecture for Organically Reconfigurable Computing System based on SRAM Field Programmable Gate Arrays (FPGAs) is proposed, modeled analytically, simulated, prototyped, and measured. Low-level organic elements are analyzed and designed to achieve novel self-monitoring, self-diagnosis, and self-repair organic properties. The prototype of a 2-D spatial gradient Sobel video edge-detection organic system use-case developed on a XC4VSX35 Xilinx Virtex-4 Video Starter Kit is presented. Experimental results demonstrate the applicability of the proposed architecture and provide the infrastructure to quantify the performance and overcome fault-handling limitations. Dynamic online autonomous functionality restoration after a malfunction or functionality shift due to changing requirements is achieved at a fine granularity by exploiting dynamic Partial Reconfiguration (PR) techniques. A Genetic Algorithm (GA)-based hardware/software platform for intrinsic evolvable hardware is designed and evaluated for digital circuit repair using a variety of well-accepted benchmarks. Dynamic bitstream compilation for enhanced mutation and crossover operators is achieved by directly manipulating the bitstream using a layered toolset. Experimental results on the edge-detector organic system prototype have shown complete organic online refurbishment after a hard fault. In contrast to previous toolsets requiring many milliseconds or seconds, an average of 0.47 microseconds is required to perform the genetic mutation, 4.2 microseconds to perform the single point conventional crossover, 3.1 microseconds to perform Partial Match Crossover (PMX) as well as Order Crossover (OX), 2.8 microseconds to perform Cycle Crossover (CX), and 1.1 milliseconds for one input pattern intrinsic evaluation. These represent a performance advantage of three orders of magnitude over the JBITS software framework and more than seven orders of magnitude over the Xilinx design flow. Combinatorial Group Testing (CGT) technique was combined with the conventional GA in what is called CGT-pruned GA to reduce repair time and increase system availability. Results have shown up to 37.6% convergence advantage using the pruned technique. Lastly, a quantitative stochastic sustainability model for reparable systems is formulated to evaluate the Sustainability of FPGA-based reparable systems. This model computes at design-time the resources required for refurbishment to meet mission availability and lifetime requirements in a given fault-susceptible missions. By applying this model to MCNC benchmark circuits and the Sobel Edge-Detector in a realistic space mission use-case on Xilinx Virtex-4 FPGA, we demonstrate a comprehensive model encompassing the inter-relationships between system sustainability and fault rates, utilized, and redundant hardware resources, repair policy parameters and decaying reparability

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Analysis and Mitigation of Remote Side-Channel and Fault Attacks on the Electrical Level

    Get PDF
    In der fortlaufenden Miniaturisierung von integrierten Schaltungen werden physikalische Grenzen erreicht, wobei beispielsweise Einzelatomtransistoren eine mögliche untere Grenze fĂŒr StrukturgrĂ¶ĂŸen darstellen. Zudem ist die Herstellung der neuesten Generationen von Mikrochips heutzutage finanziell nur noch von großen, multinationalen Unternehmen zu stemmen. Aufgrund dieser Entwicklung ist Miniaturisierung nicht lĂ€nger die treibende Kraft um die Leistung von elektronischen Komponenten weiter zu erhöhen. Stattdessen werden klassische Computerarchitekturen mit generischen Prozessoren weiterentwickelt zu heterogenen Systemen mit hoher ParallelitĂ€t und speziellen Beschleunigern. Allerdings wird in diesen heterogenen Systemen auch der Schutz von privaten Daten gegen Angreifer zunehmend schwieriger. Neue Arten von Hardware-Komponenten, neue Arten von Anwendungen und eine allgemein erhöhte KomplexitĂ€t sind einige der Faktoren, die die Sicherheit in solchen Systemen zur Herausforderung machen. Kryptografische Algorithmen sind oftmals nur unter bestimmten Annahmen ĂŒber den Angreifer wirklich sicher. Es wird zum Beispiel oft angenommen, dass der Angreifer nur auf Eingaben und Ausgaben eines Moduls zugreifen kann, wĂ€hrend interne Signale und Zwischenwerte verborgen sind. In echten Implementierungen zeigen jedoch Angriffe ĂŒber SeitenkanĂ€le und Faults die Grenzen dieses sogenannten Black-Box-Modells auf. WĂ€hrend bei Seitenkanalangriffen der Angreifer datenabhĂ€ngige MessgrĂ¶ĂŸen wie Stromverbrauch oder elektromagnetische Strahlung ausnutzt, wird bei Fault Angriffen aktiv in die Berechnungen eingegriffen, und die falschen Ausgabewerte zum Finden der geheimen Daten verwendet. Diese Art von Angriffen auf Implementierungen wurde ursprĂŒnglich nur im Kontext eines lokalen Angreifers mit Zugriff auf das ZielgerĂ€t behandelt. Jedoch haben bereits Angriffe, die auf der Messung der Zeit fĂŒr bestimmte Speicherzugriffe basieren, gezeigt, dass die Bedrohung auch durch Angreifer mit Fernzugriff besteht. In dieser Arbeit wird die Bedrohung durch Seitenkanal- und Fault-Angriffe ĂŒber Fernzugriff behandelt, welche eng mit der Entwicklung zu mehr heterogenen Systemen verknĂŒpft sind. Ein Beispiel fĂŒr neuartige Hardware im heterogenen Rechnen sind Field-Programmable Gate Arrays (FPGAs), mit welchen sich fast beliebige Schaltungen in programmierbarer Logik realisieren lassen. Diese Logik-Chips werden bereits jetzt als Beschleuniger sowohl in der Cloud als auch in EndgerĂ€ten eingesetzt. Allerdings wurde gezeigt, wie die FlexibilitĂ€t dieser Beschleuniger zur Implementierung von Sensoren zur AbschĂ€tzung der Versorgungsspannung ausgenutzt werden kann. Zudem können durch eine spezielle Art der Aktivierung von großen Mengen an Logik Berechnungen in anderen Schaltungen fĂŒr Fault Angriffe gestört werden. Diese Bedrohung wird hier beispielsweise durch die Erweiterung bestehender Angriffe weiter analysiert und es werden Strategien zur Absicherung dagegen entwickelt

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section
    • 

    corecore