
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

A Sustainable Autonomic Architecture for Organically A Sustainable Autonomic Architecture for Organically

Reconfigurable Computing Systems Reconfigurable Computing Systems

Rashad S. Oreifej
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Oreifej, Rashad S., "A Sustainable Autonomic Architecture for Organically Reconfigurable Computing
Systems" (2011). Electronic Theses and Dissertations, 2004-2019. 6650.
https://stars.library.ucf.edu/etd/6650

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F6650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6650?utm_source=stars.library.ucf.edu%2Fetd%2F6650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A SUSTAINABLE AUTONOMIC ARCHITECTURE FOR ORGANICALLY

RECONFIGURABLE COMPUTING SYSTEMS

by

RASHAD S. OREIFEJ
B.S. UNIVERSITY OF JORDAN, 2000

M.S. UNIVERSITY OF CENTRAL FLORIDA, 2006

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Engineering

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2011

Major Professor: Ronald F. DeMara

 ii

© 2011 Rashad S. Oreifej

 iii

ABSTRACT

A Sustainable Autonomic Architecture for Organically Reconfigurable Computing System based

on SRAM Field Programmable Gate Arrays (FPGAs) is proposed, modeled analytically,

simulated, prototyped, and measured. Low-level organic elements are analyzed and designed to

achieve novel self-monitoring, self-diagnosis, and self-repair organic properties. The prototype

of a 2-D spatial gradient Sobel video edge-detection organic system use-case developed on a

XC4VSX35 Xilinx Virtex-4 Video Starter Kit is presented. Experimental results demonstrate the

applicability of the proposed architecture and provide the infrastructure to quantify the

performance and overcome fault-handling limitations. Dynamic online autonomous functionality

restoration after a malfunction or functionality shift due to changing requirements is achieved at

a fine granularity by exploiting dynamic Partial Reconfiguration (PR) techniques.

A Genetic Algorithm (GA)-based hardware/software platform for intrinsic evolvable hardware is

designed and evaluated for digital circuit repair using a variety of well-accepted benchmarks.

Dynamic bitstream compilation for enhanced mutation and crossover operators is achieved by

directly manipulating the bitstream using a layered toolset. Experimental results on the edge-

detector organic system prototype have shown complete organic online refurbishment after a

hard fault. In contrast to previous toolsets requiring many milliseconds or seconds, an average of

0.47 microseconds is required to perform the genetic mutation, 4.2 microseconds to perform the

single point conventional crossover, 3.1 microseconds to perform Partial Match Crossover

(PMX) as well as Order Crossover (OX), 2.8 microseconds to perform Cycle Crossover (CX),

 iv

and 1.1 milliseconds for one input pattern intrinsic evaluation. These represent a performance

advantage of three orders of magnitude over the JBITS software framework and more than seven

orders of magnitude over the Xilinx design flow. Combinatorial Group Testing (CGT) technique

was combined with the conventional GA in what is called CGT-pruned GA to reduce repair time

and increase system availability. Results have shown up to 37.6% convergence advantage using

the pruned technique.

Lastly, a quantitative stochastic sustainability model for reparable systems is formulated to

evaluate the Sustainability of FPGA-based reparable systems. This model computes at design-

time the resources required for refurbishment to meet mission availability and lifetime

requirements in a given fault-susceptible missions. By applying this model to MCNC benchmark

circuits and the Sobel Edge-Detector in a realistic space mission use-case on Xilinx Virtex-4

FPGA, we demonstrate a comprehensive model encompassing the inter-relationships between

system sustainability and fault rates, utilized, and redundant hardware resources, repair policy

parameters and decaying reparability.

 v

ACKNOWLEDGMENTS

It is a pleasure to thank those who made this dissertation possible and truly believed in me the

last few years.

I would like to express my deepest gratitude to my advisor, Dr. Ronald DeMara, for his

exceptional guidance, help, valuable time, and advice in providing me with the needed research

grounds to build on, and for keeping me always on the right track.

I would like to thank my respectful committee members; Drs. Samuel Richie, Jun Wang, and

Mansooreh Mollaghasemi for their valuable input, discussions, and generous effort in enhancing

this dissertation.

I would like to thank my friends and colleagues for their sincere and insightful support and

advice. I would also like to thank my parents, sisters and brother for their unremitting love, and

support they surrounded me with to fulfill my ambitions.

Finally, I would like to thank my precious wife for her understanding, encouragement, and

unconditional care and love, and for truly being my best support in the good and bad times.

The research presented in this dissertation was supported in part by NASA Intelligent Systems

NRA Contract NNA04CL07A and by Defense Advanced Research Projects Agency (DARPA)

SBIR topic SB072-009 Contract W31P4Q-08-C-0168.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER 1: IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM 12

1.1. Need for Sustainable Systems ... 12

1.2. Potential for Evolvable Hardware ... 15

1.3. Self-x Properties: An Organic Computing Vision .. 17

1.4. Contributions of Dissertation .. 20

CHAPTER 2: RELATED WORK ... 24

2.1. Evolution of Digital Circuit Design and Repair Tasks ... 24

2.2. Organic Computing Concepts ... 29

2.3. Sustainability Analysis.. 33

2.3.1. Need for Sustainability Analysis ...34

2.3.2. SRAM-based Fault Modeling ..37

CHAPTER 3: MULTI-LAYER HIGH-LONGEVITY ARCHITECTURE 42

3.1. System Architecture .. 42

3.2. Organic Layer Design and Implementation .. 48

3.2.1. Organic Layer Architecture ...48

3.2.2. Intrinsic Evolutionary Repair Platform ...56

3.3. Summary ... 67

CHAPTER 4: ORGANIC SELF-HEALING EXPERIMENTAL RESULTS 68

4.1. Video Edge-Detection Use-Case on Organic Layer ... 68

 vii

4.2. Evolutionary Design and Repair Platform .. 78

CHAPTER 5: CGT-PRUNED REPAIR TECHNIQUE .. 94

5.1. Group Testing Based Fault Location Procedure ... 95

5.2. CGT-Pruned Expedited Genetic Algorithm.. 96

5.3. Experiments .. 98

5.4. Results and Analysis ... 101

5.4.1. Fault Location Using CGT Algorithm ...101

5.4.2. Design in the Presence of Fault ...102

5.4.3. Repair ...103

CHAPTER 6: A NOVEL FRAMEWORK FOR MISSION SUSTAINABILITY 108

6.1. Sustainability Model ... 108

6.1.1. Combining Multiple Faults ..116

6.1.2. Resource Recycling ...117

6.1.3. Reparability and its Relation to Sustainability ..119

6.2. MCNC Benchmarks Case Study ... 123

6.3. Sustainability of a Realistic Mission Use-Case .. 134

CHAPTER 7: CONCLUSION ... 141

7.1. Technical Summary .. 141

7.2. Future Work .. 144

APPENDEX A: AES AND FES USE-CASES .. 147

APPENDEX B: ORGANIC-COGNITIVE COMMUNICATION PROTOCOL 152

APPENDEX C: FPGA HARDWARE FAILURE RATES .. 165

LIST OF REFERENCES .. 168

 viii

LIST OF FIGURES

Figure 1. Autonomous-System-on-a-Chip architecture [22]. ... 31

Figure 2. The Bathtub Curve [73] ... 41

Figure 3. Soar-Longevity Conceptual Architecture .. 43

Figure 4. Organic Layer Architecture ... 49

Figure 5. AES and FES Class Diagram ... 50

Figure 6. Organic Layer Dispatcher Architecture ... 52

Figure 7. Organic Unit Architecture ... 54

Figure 8. Intrinsic Evolution Platform .. 57

Figure. 9. Partially Matched Crossover (PMX) .. 60

Figure 10. Order Crossover (OX) ... 61

Figure 11. Cycle Crossover (CX) ... 62

Figure 12. Initialization: Obtain configuration from .bit File ... 65

Figure 13. Fitness Evaluation: Performed in two phases a and b. .. 66

Figure 14. Video edge-detection use-case. ... 70

Figure 15. FE-PR and Entire OU on FPGA Fabric .. 71

Figure 16. Edge-detection Snap. A: Fault Free/Single Fault, B: Faulty and C: Refurbished 76

Figure 17. Self-Repair Flow Diagram .. 77

Figure 18. Unseeded Design GA Runs ... 91

 ix

Figure 19. Seeded Design GA Runs ... 91

Figure 20. Repair GA Runs .. 92

Figure 21. Sobel Edge-Detector Refurbishment Evolution Progress ... 93

Figure 22. Genetic Algorithm Simulator .. 96

Figure 23. CGT-pruned Genetic Algorithm Repair .. 99

Figure 24. Repair Progress: CGT-pruned vs. Conventional GA ... 104

Figure 25. CGT-pruned vs. Conventional GA Repair ... 105

Figure 26. Three Fast Runs of the CGT-pruned GA Repair ... 106

Figure 27. Sustainability Model Functional Block Diagram .. 109

Figure 28. Resource Recycling ... 118

Figure 29. MCNC Tmax vs. Availability (Conservative, QOR: 100%, Simplex) 127

Figure 30. Resource Required for Refurbishment (Conservative, QOR: 100%, Simplex) 128

Figure 31. MCNC Benchmarks Tmax versus Availability (Conservative, 100%QOR, RARS) .. 130

Figure 32. Resource Required for Refurbishment (Conservative, 100%QOR, RARS) 131

Figure 33. MCNC Benchmarks Tmax versus Availability (Conservative, QOR: 95%, Simplex) 133

Figure 34. MCNC Tmax versus Availability (Conservative, 95%QOR, RARS) 134

Figure 35. Sobel Edge-detector Availability and ARP Consumption (Conservative)................ 137

Figure 36. Sobel Edge-detector Availability and ARP Consumption (Pessimistic) 139

Figure 37. AES Use-Case Diagram .. 150

 x

LIST OF TABLES

Table 1. SRAM-Based FPGA Fault Characteristics ... 39

Table 2. Innovative aspects of the Soar-Longevity approach. .. 45

Table 3. AES and FES Class Description ... 51

Table 4. Fault Injection DIP Switches .. 71

Table 5. Use-case Testing Scenarios .. 72

Table 6. GA Parameters .. 79

Table 7. Sobel Edge-detector Configuration Times in Various Technologies 84

Table 8. Experimental Results Summary for Single Point Crossover and Mutation.................... 85

Table 9. Experimental Results Summary for PMX and Mutation .. 86

Table 10. Experimental Results Summary for OX and Mutation ... 87

Table 11. Experimental Results Summary for CX and Mutation ... 88

Table 12. GA Operators Timing (seconds) .. 90

Table 13. GA Parameters .. 100

Table 14. Design of a 3-bit x 2-bit Multiplier in the Presence of a Fault 102

Table 15. Repair of a 3-bit x 2-bit Multiplier ... 103

Table 16. MCNC Benchmark Circuits on Xilinx Virtex-4 xc4vsx35 FPGA 123

Table 17. ARP-based GA Parameters ... 125

 xi

Table 18. MCNC Benchmark Circuits ARP-based GA Reparability Decay (Conservative) 126

Table 19. MCNC Benchmark Circuits ARP-based GA Reparability Decay (Pessimistic) 126

Table 20. ARP-based GA Evolution Results .. 132

Table 21. RARS Sobel Edge-Detector with ARP-based GA Sustainability Results (Conservative)

... 136

Table 22. RARS Sobel Edge-Detector with ARP-based GA Sustainability Results (Pessimistic)

... 136

Table 23. Actors Interacting with AES ... 148

Table 24. AES and FES Use Cases ... 148

Table 25. AES and FES Class Description ... 151

Table 26. Component Interactions .. 153

Table 27. FES Connection Protocol.. 154

Table 28. AES Connection Messages ... 155

Table 29. AES Connection Messages ... 156

Table 30. Detail of TDDB Lifetime in Years of Each Device [72] .. 166

Table 31. 90nm FPGA MTTF [71] ... 167

12

CHAPTER 1: IDENTIFICATION AND SIGNIFICANCE OF THE

PROBLEM

Attaining high availability, reliability and fault tolerance for digital systems have long been

recognized as a crucial non-functional requisite for mission critical applications. This

significance is further amplified in systems such as deep space and satellite systems. Those

systems target particularly sensitive missions and hence safety and security come first on top of

the priority list. Additionally, the cost, complexity, and restricted visibility associated with such

systems tend to be quite significant, consequently, longevity becomes a highly sought after

objective. This chapter introduces the problem at hand, sheds some light on the approaches

followed herein to tackle the problem and highlights the contributions of this work.

1.1. Need for Sustainable Systems

Deep space missions encounter a very harsh operating environment due to radiation, terrestrial

particles, temperature and pressure stresses, background noise, and immense electromagnetic

fields. Such a deployment environment is inevitably one of the most fault-prone environments

digital systems could be deployed into. Moreover, the limited possibilities to intervene at the

incident of a failure make a self-restoration capability after upsets an extremely imperative

characteristic to have, and the sustained spaceborne operation thus far, an increasingly

challenging problem to solve.

13

Autonomous systems present an attractive space application as they aim to carry out complex

tasks in harsh and more importantly dynamic and uncertain environments. Their capacity of fault

tolerance and self-refurbishment grows in importance as the mission criticality and duration

increases and as the environment becomes out of control and expectancy.

SRAM-based FGPAs, like any semiconductor devices, are subject to hardware faults. These

faults could be soft faults which are transient or persistent Single Event Upsets (SEU) [1-7], or

hard permanent faults [8-14]. Details on FPGA faults are identified and discussed in the

following chapter. SEUs primarily affect storage elements and since FGPAs are built up from

memory cells, historically, SEUs have received significant attention. However, as technology

advances towards smaller nanoscale devices, systems exhibit appealing characteristics of high

densities, low power, smaller size and weight. Yet, technology advances introduce increased

undesirable fault susceptibility. In addition to manufacturing defects, nano-electronic devices are

expected to experience a high occurrence of runtime faults [15]. This trend deprecates traditional

fault tolerance approaches and promotes autonomous innovative ones.

FPGA repair mechanisms have been excessively explored. Repair techniques range from static

approaches involving simple spare replacement to highly sophisticated dynamic heuristics.

Despite the variety of these approaches, they all share a fundamental common goal of

functionality restoration among other characteristics such as latency, redundancy, complexity,

adaptability, coverage and sustainability.

14

Regardless of the repair approach utilized, spare resources provide flexible capacity to replace

broken ones. Being dynamically reconfigurable at runtime, FGPAs enable the spare granularity

to miniaturize from modular redundancy to reconfigurable resource redundancy such as Lookup

Tables (LUT). The amount of unutilized (spare) reconfigurable resources the mission should

carry to sustain through the targeted period is a problem to resolve. This group of unutilized

resources is referred to herein by the Amorphous Resource Pool (ARP). A primary concern when

doing online refurbishment is the Mean Time To Repair (MTTR). The lower the MTTR drops,

the higher the system availability becomes. Depending on the mission requirements, there is a

threshold of MTTR after which the mission falls below the acceptable availability level and

hence fails. As mission progresses, cumulative faults likelihood at best remains flat, but nearly

universally increases monotonically. It is anticipated that repair complexity becomes

increasingly challenging. Time-to-refurbish is anticipated to increase as more parts fail. One of

the main questions to answer becomes: What is the expected duration of a mission with

probability of success is greater than an acceptable threshold? More specifically, how can a

system sustain its functionality within planned mission availability and lifetime specifications

when operating in a failure-prone ecosystem?

A sustainable system is hereby defined as one that is sufficiently capable of achieving mission

objectives under specified ranges of varying conditions within a fault-susceptible deployment

environment. Unbounded survival under degrading conditions can not be possible and hence it is

fallacious to attempt assessing system‟s sustainability for realistic missions over an infinite time

interval. A more useful definition of a sustainable system hence becomes: a system capable to

operate without substantial functional depreciation throughout its expected lifetime enabled by a

15

particular likely finite regeneration strategy. In the electronic systems‟ context however, the

system is said to be sustainable if it is capable of handling imminent failures throughout its

lifetime by taking the actions necessary to maintaining the desired performance minimum

threshold.

1.2. Potential for Evolvable Hardware

Harsh operating environments, manufacturing defects, and component aging are contributing

causes of hardware faults that make sustained availability and performance requirements

difficult. Many hardware reliability approaches have been proposed in the literature such as fault

avoidance, design margin, modular redundancy, and fault refurbishment [16]. Fault avoidance-

based design approaches aim to avoid possible faults that could occur at run time. Such

approaches usually impose minimal size, weight, and power overheads. Meanwhile, design

margin approaches rely on an increased number of redundant system components and

capabilities to enhance reliability by designing with a margin for fault tolerance.

Despite the advantages of the above approaches, anticipating all the possible faults at design-

time may not only be impractical, but also not adaptive to dynamic deployment environments

such as space. On the other hand, modular redundancy approaches utilize multiple identical

modules each of which is capable of delivering the desired functionality. These approaches

increase size, weight, and power consumption. Additionally, the recovery capacity of these

approaches is limited by the number and granularity of the available redundant modules.

16

Fault refurbishment approaches, such as the proposed approach herein, offer a very competitive

option because of the high recovery capacity and adaptability to unforeseen conditions.

However, fault refurbishment is challenging due to the complexity involved in generating

configurations for implementing fault-free digital circuits on reconfigurable devices.

Genetic Algorithms (GAs) [17] are guided trial-and-error search techniques. They use the

principles of Darwinian evolution which target the survival of the fittest. This is essentially done

by casting a net over the entire solution space to find high fitness regions. The

reprogrammability of FPGAs provides an efficient platform highly suitable for evolutionary fault

refurbishment platforms [18]. In the event of faults in FPGAs, a GA can be used to search and

implement alternate configurations that circumvent the faulty resource, thus providing device

refurbishment.

Evolutionary approaches such as Genetic Algorithms (GAs) appear throughout the literature as a

means to realize design and repair strategies on hardware-in-the-loop FPGA-based digital

systems [16-18]. GAs realize search strategies based on the Darwinian evolution principles by

performing genetic operations such as mutation and crossover. Several variations of GAs were

introduced to enhance the performance and speed of convergence to a solution for FPGA-based

systems [19]. However, many of these realizations employ software-in-the-loop simulations

rather than intrinsic implementations in the FPGA fabric. Challenges of realizing practical

intrinsic evolutionary strategies include the mapping of the genotype in the GA into its

corresponding phenotype on the fabric, and the limited control over process automation of

17

altering and downloading safe bitstreams onto the device. These issues are exacerbated when the

critical portions of bitstream representation are proprietary.

Only a handful of intrinsic evolution platforms have been proposed throughout the literature.

However, these platforms are still inadequate since they either support a course granularity

evolution which yields a limited capability and flexibility, or they entail huge resource overhead

to work-around the reconfiguration limitations. This leads to a relatively high area and power

budgets which might not be tolerable in highly constrained applications such as space mission

systems.

An approach that provides a fast hardware/software interface between the GA and the FPGA

device via a straightforward data-structure and Application Programming Interfaces (APIs) is

proposed, developed, tested, and analyzed in this dissertation. A layered design is used to

perform mapping operations at the finest granularity directly on the bitstream to modify LUT

configurations, and reprogram the device. This approach is tailored to be invoked from within

the system upon fault occurrence to achieve autonomous fault tolerance.

1.3. Self-x Properties: An Organic Computing Vision

Current high-performance processing systems are increasingly complex. They frequently consist

of heterogeneous processor subsystems that depend on one another in nontrivial ways, where

each subsystem is itself a multi-component system with diverse capabilities. The organization of

these subsystems is typically static, determined with great care at design time and optimized for a

18

particular mode of operation. This design strategy is appropriate for systems that will be used in

relatively static circumstances and that will be accessible for repair when their components fail.

However, systems that will be used in dynamic situations, or those where human intervention to

reach for repairs once deployed is impractical, present a different set of challenges. In these

systems, the failure of a single component or a change in the desired mode of operation may

result in large-scale inefficiency or even complete system failure.

Electronic systems operating in dynamic environments, therefore, require an increased capability

for fault tolerance and self-adaptation, especially as their system complexities and

interdependencies continue to increase. The realization of systems that are capable of exhibiting

such adaptive behaviors constitutes the vision sought by Organic Computing (OC) by Schmeck

in [20]. The organic computing paradigm places high value on the so-called self-x properties,

which include self-configuration, self-reorganization, and self-healing [20-23]. These objectives

must be maintained in an autonomous fashion, yet sufficiently constrained to avoid undesirable

emergent behaviors.

Several distinct events may necessitate a change in the configuration of a multi-component

system. First, a fault may occur in an individual component, which must then be replaced,

repaired, or otherwise worked around. While we hypothesize that hardware failure would be the

most anticipated trigger for a configuration change, other possibilities, such as a storage device

reaching its capacity or the temperature of a chip becoming dangerously high, could be handled

similarly. Second, the performance level or functional requirements imposed on the system may

change, due to modified mission requirements or a change in the operational environment. In

19

this case, the operation of the system components must be adapted to satisfy new requirements,

not simply restored to a previous operational state. In either case, existing components must be

reconfigured accordingly.

To decide on the appropriate actions to take in response to these events, the system must assess

its performance, comprehend its own current state, and enable mechanisms by which it can be

modified. The degree to which self-reorganization and self-configuration can succeed will be

limited by the degree to which the system is self-aware. A self-aware system would be capable

of matching available resources to mission priorities, maintaining self-awareness by continually

monitoring and evaluating its own state and the state of changing requirements, and using its

self-awareness to enable accurate and up-to-date reallocations of system resources to improve

performance.

Increasing the self-reliance of deployed systems would dramatically increase their dependability

and domains of applicability. For example, complex monitoring and recording devices able to

operate autonomously for long periods of time without external repair are essential for reducing

the risk involved in space missions, deep-sea missions, manned and unmanned avionic missions,

and deployments to remote or difficult terrestrial areas. A military or commercial satellite that

cannot recover from a hardware failure becomes orbiting space junk, or must be replaced at great

financial cost and societal impact. By contrast, a sustainable, self-aware satellite would offer

increased dependability and extended lifetime. Even partially self-aware solutions could have

enormous practical and economic impact, realized in terms of reduced maintenance costs, longer

operating life, and greater autonomy of deployed hardware systems. Thus became obvious the

20

need for a practical design and implementation, which realizes an organic system platform that

exploits the current available technology to deliver all the awareness and flexibility sought

toward achieving sufficiently high reliability, dependability, and sustainability for critical

systems.

1.4. Contributions of Dissertation

The primary focus of this work is enhancing the fault tolerance capability and quantifying the

sustainability of digital electronic systems. This is achieved through an innovative holistic

architecture that enables organic self-awareness embedded within the different system hierarchy-

levels. By exploiting the dynamic runtime reconfigurablity of SRAM-base FPGA technology,

this approach encompasses an adaptive reconfigurable redundancy scheme augmented with

enhanced intrinsic evolutionary refurbishment platform. Listed below are the dissertation‟s main

contributions. Each innovation is discussed in details in the following chapters.

i. Novel and comprehensive sustainable organic platform for SRAM FPGA-based mission-

critical systems:

A two-layered architecture that integrates autonomous, organic, self-x capable hardware

elements at the chip level with a supervisory software to monitor, diagnose, and refactor

components at the subsystem and system levels is proposed, modeled, simulated, prototyped,

and analyzed. This platform offers system oversight and management at multiple levels

within the component hierarchy combining self-diagnostic capabilities of functional elements

21

with supervision from autonomic supervisory layer. High-level capabilities circumvent most

severe impacts on mission performance, while self-repair capabilities of functional elements

autonomously correct localized immanent hardware failures.

ii. Innovative reconfigurable adaptive redundancy scheme:

The proposed technique leverages the FPGA dynamic partial reconfiguration capability to

autonomously switch between various modes of operation depending on system health at

runtime. This technique optimizes chip area and power utilization over the state-of-the-art

and satisfies the fault tolerance needs. Moreover, it provides an outlier-based fault

identification tool which consistently achieves fault detection with one output-cycle latency

for articulated faults, and eliminates the need for additional test vectors.

The fact that the system runs most of the time in duplex mode results in substantial dynamic

power savings compared to the traditional widely-adopted TMR scheme. This also enhances

the chip capacity to temporally accommodate more functions within unutilized fabric area

while running in duplex mode. Moreover, the instantaneous switching from duplex to triplex

capability provides immediate full throughput recovery upon failure while the faulty design

is placed under refurbishment.

iii. Intrinsic GA evolutionary refurbishment integrated framework:

A GA-based hardware/software framework for intrinsic evolvable hardware is designed and

evaluated for digital circuit repair using a variety of well-accepted benchmarks. Fast GA-

22

based autonomous refurbishment is achieved by exploiting dynamic bitstream compilation

and partial reconfiguration through ultra-fast genetic operators in the micro-seconds range

along with intrinsic fitness assessment on the real PFGA fabric. Three enhanced sorting

genetic operators have been introduced to the digital circuit design for the first time.

Consensus based evolution results in a design-independent, model-free refurbishment

qualification through deterrence from dedicated pre-designed exhaustive testing cycles and

reliance on discrepancy-based evaluation with actual functional stimuli.

iv. Expedited GA using CGT-pruned repair technique:

A novel technique that combines Combinatorial Group Testing (CGT)-based fault location

algorithms with the Genetic algorithms to expedite the evolution convergence time is developed

and analyzed. Knowledge regarding the location of hardware resource faults guides the GA

search process to converge into complete repair in fewer generations than when the knowledge is

unavailable. Experiments have shown that CGT-pruned genetic algorithm yields completely

refurbished FPGA configurations in 37.6% fewer generations on average than a conventional

GA.

v. Quantitative stochastic sustainability model for FPGA-based reparable systems:

A quantitative stochastic sustainability model for FPGA-based reparable systems is formulated

and analyzed. This model estimates at design-time the resources required for refurbishment in

order to meet mission availability and lifetime requirements in a given ecosystem of different

fault types, rates, and impact. Hence, sustainability analysis provides analytical tools to refine

23

design appropriately within budget, area, power, and weight constraints. This model is applied to

circuits from the MCNC benchmark set with variations of parameters for illustration. Moreover,

the sustainability of a realistic space mission use-case is analyzed. The analysis is repeated to

demonstrate how mission‟s sustainability and useful lifetime can be extended by exploiting

FPGA resources available aboard when adopting the aforementioned developed Organic

refurbishment platform.

24

CHAPTER 2: RELATED WORK

Throughout the literature, FPGA technology has been recognized as the best hardware platform

available with the sufficient reconfigurability and flexibility features needed in dynamically

evolving systems. Such systems are reconfigured either to achieve a refurbishment or to meet

changing requirements. Similarly, FPGAs are the best candidates for practical organic computing

implementations. Several fault tolerance paradigms have been explored and perhaps the most

efficient and less limited ones are the evolutionary ones such as the GA based approaches.

2.1. Evolution of Digital Circuit Design and Repair Tasks

Previous work on fault tolerance in FPGA-based systems varies from pre-defined design-time

approaches, to completely adaptive GA-based run-time repair approaches. For example, in the

pre-compiled column-based dual FPGA architecture approach [24], FPGA configurations created

at design-time are utilized for error detection and fault-circumvention. These precompiled

configurations have the same functional design but utilize different set of reconfigurable columns

on the chip through different placement and routing constraints. Loading these configurations

successively emulates shifting configurations‟ columns. The process continues until the column

with the culprit resource is not used by the loaded configuration anymore. In this approach fault

isolation is achieved by using distributed Concurrent Error Detection (CED) checkers while

performing the blind reconfiguration. However, the repair process is not evolutionary and is

limited by the number of available precompiled configurations. Also the solutions obtained

25

might lead to a high subset of resources being excluded from the operational resources as the

granularity of the solutions is at the column level which is considered substantially high.

Moreover, this approach scales quite poorly with multiple faults.

A traditional widely adopted fault tolerance technique is the Triple Modular Redundancy (TMR)

[25]. In [16], fault tolerance is accomplished through TMR by utilizing a voting system that

votes amongst three functionally-identical modules. Upon fault detection, the faulty module

undergoes offline evolutionary repair without the need to perform fault isolation. Other

evolutionary approaches to fault tolerance include [26] and [27], however, it is only in [28] and

[29] that resource performance information is obtained, maintained and then used as feedback in

the repair process. However, in [28] it is the configuration performance information that is

maintained rather than the performance of the resources themselves. In [29] performance

information at the resource level is maintained, however, this approach has issues such as high

fault detection latency, performance degradation in the absence of fault, and increased

operational complexity.

In [30], the authors present results from the adaptation of various CGT algorithms for fault

isolation in FPGAs. Runtime fault detection without using special test vectors is achieved by

repeatedly comparing the outputs of configurations for discrepancies as described in [31]. The

presence of a faulty output ascertained using bit-wise output comparison with an ideal output

provides information regarding the fitness of individual resources used by the configuration.

26

There are two paradigms for implementing GAs in reconfigurable applications: Extrinsic

Evolution via functional models that abstract the physical aspects of the real device, and Intrinsic

Evolution on the actual devices. Extrinsic approaches simplify the evolution process as they

operate on software models of the FPGAs. However for applications like in-situ fault handling

on deep space missions, not all fault types can be readily accommodated within software models.

Additionally, abstracting the physical aspects of the target device complicates rendering the final

designs into actual on-board circuits, for instance, limitations such as routability of the design

cannot be ensured until the final stages of the configuration process. Furthermore, fitness

evaluation on hardware usually requires less time than software simulations, and that makes

intrinsic evolution mostly considered for its higher performance and scalability as an efficient

approach to realizing physical designs in critical systems.

Several previous research efforts have addressed intrinsic evolution. A successful attempt on

Field Programmable Transistor Array (FPTA) chips was carried out by [18]. The authors

proposed new ideas for long-term hardware reliability using evolvable hardware techniques via

an evolutionary design tool named EHWPack that facilitates intrinsic evolution by incorporating

the PGAPack genetic engine with Labview test-bed running on UNIX workstation. They were

able to intrinsically evolve a Digital XNOR Gate on two connected FPTA boards. In this

dissertation, we target FPGAs rather than FPTAs and specifically the popular Xilinx Virtex

family device.

Miller, Thomson, and Fogarty [17] previously addressed the importance of direct evolution on

the Xilinx 6216 FPGA devices; the research explored the effect of the device physical constraints

27

on evolving digital circuits. A mapping between the representation genotype and the device

phenotype was proposed, however, no implementation details were presented. Hollingworth,

Smith, and Tyrrell developed intrinsic evolution platform for a 2-bit adder on a Xilinx FPGA

with partial reconfiguration to improve evolution time [32]. However, they used the JBits

interface for run-time reconfiguration. JBits is Java-based, and being interpreted can face

scalability and performance issues and is no longer supported.

Another way to achieve online reconfigurability is proposed by Upegui, Peña-Reyes, and

Sanchez in [33]. In this approach, the system is divided into sub-modules, and several different

partial reconfiguration bitstreams are generated in advance for each module using Xilinx Module

Based Partial Reconfiguration flow. GA combines partial bitstreams that best perform the

required task optimally or sub-optimally. This simulated approach is constrained by the limited

number of possible combinations generated beforehand. Furthermore, its course granularity

makes it only suitable for certain applications where the system can be divided into well-defined

modules with fixed interfaces such as the neural network use case discussed by the authors.

A promising technique called the Virtual Reconfigurable Circuit (VRC) method was proposed by

Sekanina in [34] and [35] and also in a similar work by Glette and Torresen [36]. This method

does not change the bitstream of the FPGA itself, but rather changes the register values of a

reconfigurable circuit already implemented on the FPGA, and obtains virtual reconfigurability.

Although this method provides online reconfigurability, it incurs a very high area and power

overhead and could increase the number of elements that can break from a fault tolerance point

of view. Moreover, these schemes implement phenotype abstraction by predefining several

28

functions that can be performed by a computational cell. Although, this abstraction has shown

benefit in convergence time in some cases [10], it incurs mapping overhead and adds constraints

to the flexibility which limits the search space and does not fully exploit the hardware capability.

In several previous works [4, 37, 38], methodologies are proposed to enable runtime FPGA

reconfiguration while keeping the Xilinx CAD tools out of the loop to achieve smaller

reconfiguration delays. Such approaches can be used as platforms to achieving tractable intrinsic

evolution.

In a previous work within our research group, a Multilayer Runtime Reconfiguration

Architecture (MRRA) was developed for Autonomous Runtime Partial Reconfiguration of

FPGA devices [39]. The tool comprises three layers, namely Logic, Translation, and

Reconfiguration layers, with well-defined interfaces for modularity and reuse. In addition, a

standard set of Application Programming Interfaces (APIs) was utilized for communication with

the target device. Results had shown the ability of the framework to support autonomous and

dynamic reconfiguration operations. We have extended the MRRA platform to support two

basic genetic operators [40] which is further extended herein to support five enhanced genetic

operators namely: Single point conventional crossover, Partial Match Crossover (PMX) [41],

Order Crossover (OX) [41, 42], Cycle Crossover (CX) [42, 43], and Genetic Mutation directly to

realize intrinsic evolution on Xilinx Virtex-4 devices. All five genetic operators are evaluated

experimentally and results are compared for their ability to achieve fault repair in a number of

fault handling scenarios. This intrinsic evolution platform is used as part of the proposed solution

29

to achieve evolutionary refurbishment of the faulty configurations reported by the organic layer

as will be discussed later in Chapter 3.

2.2. Organic Computing Concepts

The field of organic computing is beginning to demonstrate promising results at the level of

single chips. A widely known generic OC platform called the Autonomous System-on-a-Chip

(ASoC) architecture, proposed in [22], is depicted in Figure 1. The ASoC platform consists of

two layers: the Functional Layer and the Autonomic Layer. The ASoC Autonomic Layer

contains Autonomic Elements (AEs) that are responsible for correct operation of the

corresponding Functional Elements (FEs) present on the Functional Layer. Each FE (e.g., CPU,

RAM, and Network Interface) has a counterpart Monitor / Evaluator / Actuator component

within the Autonomic Layer.

Within the ASoC architecture, the Autonomic Layer also contains an Autonomic Supervisor

(AS), which has no counterpart on the Functional Layer. The autonomic supervisor is

responsible for maintaining the correct functionality of all the elements on the Autonomic Layer.

The manner in which it operates is not specified by the ASoC architecture. Thus, the current

proposal is largely concerned with defining the AS role and capabilities of the autonomic

supervisor in more detail as comprehensive Cognitive Layer.

OC systems adhering to the ASoC architecture rely on self-organization to respond to internal

imbalances and changing environmental conditions [21, 44, 45]. Reconfigurable logic devices

30

such as FPGAs are known to offer an attractive hardware platform for these systems, and provide

the organic architecture with sufficient capability for exhibiting self-adaptive behavior [20-23].

Specifically, SRAM-based FPGA devices can realize self-adaptation within their reconfigurable

logic fabric [28, 46, 47]. These approaches are capable of detecting certain types of internal

errors as well as initiating reconfiguration when necessary within a single FPGA [40].

Beyond self-monitoring and self-repairing at the level of a single chip, we seek to confer these

properties to the larger mission-level systems which utilize them. In order to incorporate the

System-on-a-Chip autonomy into an organic-computing subsystem, system, or system-of-

systems, it is necessary to monitor the functionality of the AEs within each chip, and to manage

the impact of reduced chip functionality due to either permanent or transient faults while repairs

are ongoing. Within the single-chip architecture, no provisions are attempted for maintaining the

correctness of the AS‟s behavior. Finally, the self-repair process within an individual chip may

be intractable due to larger than local permanent damages, so a strategy is needed for handling

the impact of chip-level failures.

Within a complex system composed of many components, self-repair can take place at multiple

levels. First, individual components may be able to repair themselves without changing their

roles within the overall system. Second, the system may be able to restore its overall

functionality by assigning new roles to different components.

31

Figure 1. Autonomous-System-on-a-Chip architecture [22].

The system may also be able to optimize its overall operational performance by applying both

approaches concurrently. These approached can be applied within the Organic Layer.

Recent efforts in organic computing, as already discussed, address primarily the first type of

recovery, in which components repair themselves in an application-independent fashion. This

application-independent repair is quite appropriate for the lowest-level components of the system

that perform primitive functions. The primary goal towards attaining sustainability at the

component-level is refurbishment of individual components to their original functionality. When

this is tractable, a single-chip repair is sufficient to recover functionality and maintain

performance.

32

These circumstances do not apply to composites of subsystems, let alone for an entire system

like a satellite containing over 100 FPGA devices dedicated to tasks ranging from signal

processing to encryption. At the system level, repair strategies may be more diverse and become

more closely coupled with mission requirements. Acceptable behavior may be defined by an

envelope of metric values rather than a single function, and different types of suboptimal

performance can be assigned different valuations depending on mission requirements.

Approaches to guaranteeing correct functionality of the mission are complexly correlated with

the performance of individual elements. These complexities can be addressed within the

Cognitive Layer in our proposed architecture discussed in the following chapter.

In the Cognitive Layer, an application-dependent knowledge-based approach can be utilized to

perform fault detection, system repair, and resource reallocation activities reliably and in a

reasonable amount of time. Simultaneously, at the resource level, components ranging from

sensors and actuators to processors and memory elements must individually operate within their

specified tolerances to maintain acceptable performance levels.

33

2.3. Sustainability Analysis

The term sustainability is repeatedly used in ecology, economics, sociology, and environmental

sciences and their interactions [48-50]. It refers to the equilibrium state of consumption versus

regeneration within some open or closed system. The term Sustainability, has been applied to

computer applications on a limited scale. For example, in [51], Seacord, et al. developed a

sustainability model for computer software planning and management which enables the balance

between the sustainment team and the customer modification requests. In [52], Watari, et al.

proposed a solution to increase the sustainability of computer networks which defines the

sustainability as the balance between failure events and the autonomous dynamic reconfiguration

to retain connectivity. In [53], Mocigemba explains the transfer of the term Sustainability into the

IT world as being the balance between economic, social and ecological interests. The term can

be further studied and refined [54]. This dissertation formulates the sustainability concept into

the digital electronics domain and specifically with pertinent use cases of autonomous designs

deployed into error-prone unpredictable environments. In this context, Sustainability refers to the

equilibrium state of failure and repair events the system undergoes while retaining functionality

over mission lifetime. To the best of our knowledge, sustainability is yet to be addressed from

the proposed perspective.

34

2.3.1. Need for Sustainability Analysis

Sustainability analysis in this context might be analogous to what is referred to in the literature

by reparable systems mission reliability. Mission system reliability of reparable and non-

reparable systems has been addressed in plethora of published articles in the literature. In

general, the approaches can be divided into two main categories: topological or combinatorial

modeling and state-space modeling.

In the combinatorial modeling, the system is mapped into a fixed structure or network. Such

approaches primarily use fault trees and reliability block diagrams. Fault tree is the logical

mapping of system‟s physical design. It depicts the relations between certain causes and basic

events that lead to major failure events so called “Top events” [55-57]. There are two main

approaches to calculate system reliability from fault trees: qualitative based on the min-cut

analysis as electrical circuits have s-coherent fault trees [58, 59] and quantitative based on

probabilistic evaluation [60]. In the qualitative techniques, Boolean equations are formulated for

top-level failure events. Then Boolean algebra is used to calculate the exact time of failures.

Alternatively, simulations can be used. On the other hand, the quantitative approaches, build the

s-coherent fault tree for the design by calculating the probability of basic events based on

component‟s failure probability density function (pdf). And then a probabilistic evaluation can

be constructed for top-level events by evaluating the min-cuts of the fault tree. To reduce the

complexity, the min-cuts can be approximated by calculating the upper and lower bound

probabilities for top-level events.

35

In summary, combinatorial modeling techniques have high computational complexity that could

become intractable for large systems. Furthermore, its complexity scales up exponentially with

design size despite the proposed enhancements such as reduced-edges and importance sampling

[61]. Additionally, these techniques are only suitable for static designs and can only address

failure modes known at design time. Therefore, this class of approaches falls short with

reconfigurable systems deployed in dynamic environments.

On the other hand, in the state-space modeling techniques [34, 35, 38, 62], all system states get

defined based on component possible states. A component has two states: functional, or

degraded. For non-reparable systems, the probability of a component going from degraded state

to functional state is zero. In reparable systems a component can go back and forth between these

two states with certain failure and repair probabilities. After that time, a probabilistic modeling

for component state transition is formulated and accordingly a probabilistic system state

transition is formulated to find the probabilities of the top-level failure events. These mainly

employ Markov chains and Petri-nets.

This class of approaches works well for simple systems with few components or for large

systems but at a coarse granularity as subsystem-level, i.e. failures and repairs are considered as

per subsystem and no consideration is made to intra-subsystem events at the component-level.

Otherwise, it may end up with a very large state space that may require lumping to become

tractable such as mergeable Markov states and non-effective edge elimination [33], or splitting

and simulation such as Markov Chain Monte-Carlo MCMC [63].

36

Although the aforementioned techniques from both categories tackle the problem of system

reliability calculation differently, they can be all computationally intensive, fairly complex to

formulate and exhibit NP-hard time complexity to resolve when applied at component

granularity. Moreover, they are poorly scalable and best fit for either small systems with very

limited number of components or being applied at a coarse granularity in which failures are

considered at sub-system level. Real-life applications include FPGA designs with hundreds or

thousands of reconfigurable resources that can span multiple chips. For example, NASA

THEMIS mission has a reconfigurable payload called ARTEMIS of 3 Xilinx V4LX160 FPGA

devices to perform configurable band-pass processing and Fast Fourier Transformations (FFT)

on instrument data [64]. This represents an example of a mission critical application deployed in

a very harsh environment with high number or reconfigurable resources that can be intractable to

analyze using the aforementioned techniques.

The presented work aims at practically estimating the sustainability of FGPA-based reparable

systems. It benefits from the particular FGPA‟s trait being built up from highly interconnected

identical resources: Lookup Tables (LUT), Input/Output Blocks (IOB), nets, flip-flops, and

MUXs”. These resources have identical and statistically independent probabilistic failure

distributions.

The majority of FPGA reliability calculation and enhancement related work targeted

manufacturing defects or soft faults [65]. Being built from SRAM cells, FPGAs are subject to

many runtime failures due to environmental and structural reasons. There are several approaches

in the literature to enhance the reliability of the FPGA-based systems [66]. Few have addressed

37

the runtime reliability of FPGA-based systems in realistic mission use cases, and much less are

those which have explored the reparable fault tolerant system‟s varying reliability throughout the

mission lifetime. In this dissertation we introduce a concept called the sustainability of reparable

fault tolerant FGPA-based systems. It provides a practical topology-agnostic stochastic method

for evaluating the repair technique and the resource allocation to attain certain level of system

availability for targeted mission duration.

2.3.2. SRAM-based Fault Modeling

FGPAs are subject to two main categories of faults: Soft and Hard faults as shown in Table 1.

Soft faults are mainly Single Event Upsets (SEU) caused when a high-energy particle such as

proton, neutron, alpha, or heavy ion strikes a storage element e.g. LUT, IOB, Flip-Flop, etc. This

fault is manifested by a logical value inversion of that element. When the SEU occurs in the

datapath flops or memories, it is transient in the sense that it only affects the data being

processed at the time of the SEU and usually disappears after that. On the other hand, if the SEU

impacts a configuration memory element, it causes the design to malfunction and hence called

Firm Soft Faults. Firm soft errors can be readily recovered by reprogramming the device with the

original configuration known as scrubbing [67]. Firm soft faults in the reconfiguration circuitry

could disrupt any further scrubbing attempts and hence require total system re-initialization

which may not be possible during mission. We call such faults Persistent Soft Faults. These

faults are treated as permanent hard faults from reliability point of view [7].

38

Hard faults, on the other hand, entail permanent physical damage to the device substrate. There

are three main causes of hard faults: manufacturing defects due to process imperfections known

as the Infant Mortality defects, Total Ionization Dose (TID) radiation-induced and aging-induced

faults [68]. Aging induced faults include: Electromigration (EM), Time-Dependent Dielectric

Breakdown (TDDB), Hot Carrier Effect/Injection (HCE/HCI), and Negative Bias Thermal

Instability (NBTI). EM is the phenomenon of electron depletion in very thin wires with increased

temperature. This creates a highly resistive path which entails high net delays that causes the

system to fail to meet timing or can result in open circuit “stuck at open” [11, 12]. TDDB is the

incident when electrons are trapped in the imperfections of the oxide well enough to create a

very low resistive path “short circuit” at the transistor gate terminal which results in flipping

transistor state and sluggish transistor switching characteristics. TDDB rate increases at high

temperatures and thin oxide layers [8-10]. HCI describes the phenomenon in which carriers gain

sufficient energy to be injected into the gate oxide. The damage results in degradation in the

transistor switching frequency, which can affect design frequency limit as well as functional

malfunction as the path seizes to meet timing [11, 13]. NBTI occurs when holes in the

PMOSFET inverted channel interact with Si compounds to produce donor type interface states

and possibly positive fixed charge [11, 14].

39

Table 1. SRAM-Based FPGA Fault Characteristics

Cat. Type Cause Affected

Resources

Volatility Refurbish-

ment Source Description

Soft SET Radiation Soft Error Transient. Cause: SEU (high-

energy particle “proton, neutrons, alpha,

heavy ion” striking a storage element)

Design flops

and memory

Transient Not needed

Firm Radiation Cause: SEU Configuration

Memory*

Semi-

Permanent

Scrubbing

PCSE Radiation Power Cycle Soft Error [69].

Cause: SEU

Reconfiguration

Circuitry

Persistent Power-on-

reset

Hard Manufacture Infant

Mortality

Process Imperfections All Permanent Mask out

TID Radiation Change switching char. LUT, IOBs,

MUXs, FF

Permanent Avoid

TDDB Aging Electrons trapped in imperfections of the

oxide well enough to create very low resistive

path “short circuit” at the transistor gate

LUT, IOBs,

MUXs, FF

Permanent Avoid

EM Aging Electron depletion in very thin wires with

increased temp. creates a highly resistive path

Interconnect Permanent Avoid

HCI Aging Traps at oxide surface, change of VTh of

transistors

LUT, IOBs,

Mem

Permanent Avoid on

Critical Path

NBTI Aging Temperature distribution, PAR dependent LUT, IOBs,

BRAM

Permanent Avoid on

Critical Path

* 95% of memory elements including BRAM is configuration memory.

40

In this work, Soft faults will not be considered in our analysis due to their transient nature and

straightforward resolution. Likewise, Infant Mortality faults will be disregarded too since they

can be identified through exhaustive testing in design qualification and bring-up process.

Radiation induced hard faults will also be ignored due to the assurance from the FPGA

manufacturers through their published reliability reports [3]. For example, in [70] Alfke et al.

indicate that XQR4000XL radiation-hardened device family exhibits latch-up immunity at

LET>100 MeVcm2/mg at 125°C.

Therefore, the analysis herein will consider aging induced faults only. These faults exist and

need to be address [67, 71]. This requires refurbishment techniques that involve reconfiguring

the device to avoid using the broken components. Hard faults may occur during the operational

phase flat region of the bath tub shown in Figure 2. However, since the use cases of interest in

this research exceed the useful life we concentrate on the wear out period in the following

analysis. For instance, a 90-nm SRAM-based FPGA device indicates 3-year useful life under

125°C [72] while the use case discussed in Chapter 6 has a 8-year lifetime requirement under

stressful conditions. Furthermore, runtime hard faults are anticipated to become more frequent as

CMOS-based devices are shrinking in size and hence reliability has become the most critical

challenge facing future nanoelectronics [15].

41

Figure 2. The Bathtub Curve [73]

42

CHAPTER 3: MULTI-LAYER HIGH-LONGEVITY ARCHITECTURE

In order to address the limitations of existing approaches, as discussed in the previous chapter, a

two-layered architecture that integrates autonomous, organic, self-x capable hardware elements

at the chip level with supervisory software to monitor, diagnose, and refactor components at the

subsystem and system levels is proposed, developed, and evaluated. This approach makes use of

the self-monitoring and self-healing properties of the individual chips, while providing an

additional cognition capability for higher-level fault detection, mission-specific optimization,

and adaptation to changing mission priorities.

3.1. System Architecture

This novel architecture consists of a hardware-based organic layer and a software-based

cognitive layer. Components at the organic layer are organized into overlapping functional

groups, each of which bears responsibility for a particular set of mission-relevant tasks. Within

the cognitive layer, monitoring and diagnostic processes continually track the behavior of these

functional groups and determine whether their behavior characteristics fall within expected

profiles.

As shown in Figure 3, the Cognitive Layer consists of four components: Process Model,

Operation Manager (OM), Performance Monitor (PM), and Autonomic Supervisor (AS). The

Organic Layer, on the other hand, consists of organic units each has one Autonomic Element

(AE) and three Functional Elements (FEs) reside on the FPGA fabric. Starting in the lower left

43

corner of FPGA 1, two FEs process the inputs in duplicate using a Concurrent Error Detection

arrangement while the third FE is a cold standby to conserve power over a Triple Modular

Redundancy (TMR) [25] configuration. The functional outputs of the duplicate FEs are

monitored by the AE on FPGA 1 for autonomous fault detection, isolation, resolution, and

possibly self-repair using the intrinsic evolutionary repair platform discussed in the proceeding

section.

Figure 3. Soar-Longevity Conceptual Architecture

Simultaneously, the same FE outputs are sent as Observations to the PM in the Cognitive Layer.

The PM normalizes the FEs performance information on an absolute scale ranging from 0 to 1,

and passes the normalized value to the OM. The OM detects any discrepancy between the

requirements dictated by process model and the observed performance. When their difference

exceeds tolerances, the OM reacts accordingly.

44

Thus, the Cognitive Layer interacts with the Organic Layer by:

 Managing multiple organic units on multiple FPGAs, each containing one AE, two active

FEs and one dormant FE

 Receiving status reports from AEs via the Cognitive Layer Stub (CLS).

 Determining whether output conforms to expected profiles via the PM

 When tolerances are exceeded or mission priorities change, reasoning over knowledge in

the Process Model about what to do next:

o Wait for affected FPGAs to self-repair?

o Reroute traffic to a redundant FPGA?

o Redistribute work load across viable components?

Finally, key components of the Cognitive Layer can be implemented as an organic FPGA device

to provide it with certain self-x properties.

Realization of the Soar-Longevity architecture would enhance the ability of organic computing

systems to monitor system capability during execution, by incorporating a cognitive

understanding of how the performance of individual components can combine to generate overall

system performance. It would also improve organic computing systems‟ ability to manage and

45

configure system resources, by allowing system-level reorganization in response to component-

level hardware failures. This approach combines a number of innovative aspects within an

overall solution. Some of the novel features of the developed architecture are outlined in Table 2.

Table 2. Innovative aspects of the Soar-Longevity approach.

Feature Innovation

System oversight and management at
multiple levels within the component
hierarchy

Combining self-diagnostic capabilities of functional elements with
oversight from autonomic supervisor; high-level capabilities circumvent
most severe impacts on mission performance, while self-repair
capabilities of functional elements autonomously correct localized
failures

Uniform AE design Pre-determined design for Autonomic Elements (AEs) despite the fact
that they monitor different types of Functional Elements (FEs)

Outlier-based Fault Identification Elimination of additional test vectors while detecting first discrepant
output.

Model-free Refurbishment Qualification Deterrence from dedicated pre-designed exhaustive testing cycles for
refurbished design qualification and reliance on discrepancy-based
evaluation with actual functional stimuli.

Intrinsic Evolutionary self-heal Fast GA-based autonomous refurbishment with intrinsic fitness
assessment on the real PFGA fabric

Another important aspect is the orientation of the Cognitive Layer on the board outside of the

critical path of execution. Consequently, while a blocking failure will remove the ability of the

Cognitive Layer to provide part of the self-x capabilities to the system, the system‟s primary

functionality and hardware-realized organic properties are not affected.

Typically, the Organic Layer should resolve any upset upon failure by itself and regain full

functionality. This self-repair is performed by reconfiguring the component using pre-generated

configuration bitstreams that provide comparable performance to the initially loaded

configuration, or through evolutionary repair supported by the intrinsic evolution platform

46

proposed herein. However, depending on the scope and severity of the fault, this option may not

be available. Consider the case where the board‟s image filtering FPGA has a logical stuck-at-

zero fault on the input of one of its look-up tables. The chip has detected a local failure, and has

already informed the Cognitive Layer of the fault, and attempted to circumvent that failure.

However, by examining the chip‟s performance after refurbishment and comparing it against its

process model, it turns out that the new configuration is only allowing the chip to achieve 15dB

SNR, which is less than the 20dB specified in the mission requirements. Here, the cognitive

layer uses its knowledge of the board-level capabilities and any flexibility defined within the

mission requirements to determine and implement a course of action.

The Cognitive Layer needs to know the level of impairment and the repair status of each

autonomous element. Some of this information can be derived by observing functioning

autonomous elements and comparing their behavior characteristics to acceptable ranges.

However, since the autonomous elements gather extremely detailed data as to their functioning

and use this data to produce quantitative measures of their fitness, they themselves are the best

source of information as to their current capabilities. In the other direction, the autonomous

elements need to be informed of reorganization requests.

The autonomous functional elements have the ability of self-monitoring through Concurrent

Error Detection (CED) with Stand-by (SB) [74]. To invoke its self-healing mode, it must be able

on its own to detect errors during run-time [75-77]. Reconfiguration and detection techniques

explored include scrubbing, which is the continuous reconfiguration of the bitstream to refresh

47

the stored configuration [78], Built-In-Self-Test (BIST) techniques [79] on-chip hardware test

benches [80], and Triple Modular Redundancy (TMR) [25, 74].

The information regarding the current state of the autonomous elements present within the

Organic Layer is conveyed upward to the Cognitive Layer through an interface, as shown in

Figure 2. To the extent that quantitative information can be made available to the Cognitive

Layer, it can be used to weigh the utility of reconfiguring components against the cost of waiting

for a temporarily impaired component to finish refurbishing itself. In order for this information

to be transferred between the Cognitive Layer and the Organic Layer, we have designed and

developed an interlayer data exchange protocol described in the following sections.

Mission priorities will be higher for some types of tasks than for others, or for some performance

metrics applied to individual tasks. This will influence the allocation of resources in various

ways. For instance, autonomous elements are only partially available during self-repair, so

partially impaired elements may be temporarily taken off-line or reassigned by the Cognitive

Layer, depending on their mission criticality. Similarly, self-repair may not completely succeed,

and repaired elements may be considered less reliable than pristine elements. This will also

affect the allocation of resources. The overall goal is that the system becomes self-aware at the

chip level as well as the system level and thus able to respond appropriately to problems arising

at all levels.

Cognitive Layer design is beyond the scope of this dissertation. The focus hereafter will be

primarily on the Organic Layer design, implementation, and evaluation.

48

3.2. Organic Layer Design and Implementation

It is implied from the discussion in the previous chapters that the Organic Layer should be

designed and implemented in a structured manner that not only would allow the layer to exhibit

its self-x properties such as the self-reporting, self-diagnosis, and self-repair, but also should be

able to perform all these tasks in a timely manner that copes with the criticality of the target

application. Furthermore, the Organic Layer should carry out the communication with the

Cognitive Layer concurrently while monitoring its elements and delivering the required

functional output.

3.2.1. Organic Layer Architecture

The Organic Layer is exclusively implemented on hardware. However, it is accompanied with

three software components which provide the interface with the Cognitive Layer. The Organic

Layer consists of one or more Organic Units (OU) and Dispatchers configured on one or

multiple FPGA chips as shown in Figure 4. The OU is the smallest integrated unit in the organic

layer. It consists of one AE and three FEs. Initially, it is configured to be in duplex mode in

which only two FEs are online and the third is a cold-spare standby. If a fault is detected, the AE

switches to TMR mode (i.e. puts the cold-spare FE online and implements a voting scheme). An

FPGA can accommodate one or more organic unites based on the unit complexity and the FPGA

resources. The Dispatcher on the other hand is responsible for directing the full duplex

communication flow from the JTAG port to the destination AE in the selected OU and vice

49

versa. One Dispatcher is needed per FPGA chip to handle all the communication routing

amongst the OUs implemented on that chip.

Figure 4. Organic Layer Architecture

The first Organic Layer – Cognitive Layer interfacing component is the Autonomic Element Stub

(AES), responsible for polling the messages from the AEs through a physical link (JTAG

connection) and delivering them to the Cognitive Layer through sockets. The second component

is the Functional Element Stub (FES), responsible for polling the messages concerning the FEs

performance through a physical link (JTAG connection) and delivering them to the Performance

Monitor (PM) module in the cognitive layer through software sockets.

50

Figure 5. AES and FES Class Diagram

51

The last software component is the Reconfiguration Manager (RM), which is responsible for

performing reconfiguration requests as well as running refurbishment algorithms (e.g. Genetic

Algorithm). Figure 5 shows the class diagram design for the AES and the FES. A concise

description of each of the classes shown in the class diagram is listed in Table 3.

Table 3. AES and FES Class Description

Class Description

Connection Responsible for managing the physical communication with

the external modules. It supports two implementations (USB,

Socket).

CommunicationController Manages one or many connections (e.g. multiple USB

connections to different AEs). Instantiated and used by the

module managers.

Message Simple class that carries message information.

Timer Responsible for firing cyclic events to module managers to

support periodic processes (e.g. polling messages, manage

Inbox, etc…)

Dispatcher Added to implement asynchronous communication between

module managers

AEManager Holds detailed view of the organic layer (could be read from a

configuration file that contains the organic layer structure such

as available AEs/FEs and their addresses) and manages

sending and receiving messages to/from AEs.

ASManager Responsible for sending and receiving messages to/from AS.

RMManager Controls initiating refurbishment and reporting results.

FEManager Holds details of the FEs in the organic layer and manages

receiving functional output from the FEs.

PMManager Responsible for sending messages to the PM in the CL.

52

Figure 6 shows the architectural details of the OL Dispatcher module.

FPGA Chip
JTAG

Xilinx Parallel Cable IV

In
b

o
x

 F
IF

O

..
.

32-bit

1
6

-E
n

trie
s

O
u

tb
o

x
 F

IF
O

..
.

32-bit

1
6

-E
n

trie
s

GNAT

OL

Dispatcher

From AEsTo AEs

PC

LPT

AES
FES

RM

SW Socket

Figure 6. Organic Layer Dispatcher Architecture

The idea of grouping the AE and its associated three FEs within the logical concept of the

Organic Unit rather than assigning one AE per FPGA chip makes possible to have several

Organic Units coexisting in the same chip. This increases the flexibility of the system to

efficiently accommodate several heterogeneous organic functional elements simultaneously on

53

the same chip, or even to divide one large functional element into multiple organic small

functional elements within their corresponding Organic Units to increase fault tolerance at a finer

granularity.

In each Organic Unit, initially, only two FEs are operational while the third is kept offline as a

cold spare. This configuration mode is called the Duplex mode of operation. It is possible to

instantly detect any functional fault under the duplex mode by simply monitoring the outputs of

the two identical FEs. Upon discrepancy between the two outputs, which indicates fault

occurrence, the AE switches to Triplex mode of operation by putting the standby third FE online

and enabling a voting scheme amongst the three FE‟s to elicit the correct output and identify the

faulty FE. The identified faulty FE is placed under in situ refurbishment immediately by the

means the intrinsic Genetic Algorithm. This autonomous localized organic behavior inherent

within the OU is referred to hereafter by Reconfigurable Adaptive Redundancy Scheme (RARS).

While the duplex mode has a shortcoming of wasting one clock cycle upon fault occurrence till

the correct functional output is regained, it saves 33% of the dynamic power over the industry

standard TMR arrangement in the no fault running situation. Power savings are quantified for a

realistic space mission use-case in Chapter 6. Moreover, the fact that the standby FE is normally

offline makes its resources available for use by other functional elements.

The proposed architecture for the Organic Unit is shown in Figure 7. The functional input is

delivered directly to the three FEs for evaluation. The outputs of the FEs are then sent to the AE

to be processed by three modules: the Discrepancy Detector, Voter, and the Output Actuator.

54

Figure 7. Organic Unit Architecture

The Discrepancy Detector detects the occurrence of a discrepancy between the two online AEs.

This module is only active when the Organic Unit is running in the duplex mode and is disabled

otherwise to save power. From its name, the Voter module performs the bitwise voting between

the three FEs outputs and produces the majority vote output. It also generates a report that

indicates which of the three FEs is the faulty one in the case of a single faulty FE or indicates

that the three FEs are discrepant in the case of multiple faulty FEs. Because the Voter is

performing bitwise voting, the probability of getting a correct majority vote is still very high

even in the cases when multiple FEs are faulty since it is unlikely that two FEs will articulate

their faults similarly. The Voter is enabled only in the triplex mode and is disabled otherwise

55

again to save power. The Output Actuator is controlled by the Autonomic Controller to pass

through one of its four inputs and possibly mask output portions according to the Voter report.

On the other hand, the Autonomic Controller is the Finite State Machine (FSM) that orchestrates

the AE different modules interactions. It is responsible for all the awareness needed about the

FEs health status, performance, current state of the unit, and the organic decision making.

Furthermore, it is responsible for conducting status reports and receiving control signals from/to

the Cognitive Layer. In order for such communication to take place gracefully and be able to

handle the one-to-many (Cognitive Layer to multiple OUs) two way communication, a message-

based full duplex protocol is developed that satisfies the currently proposed features and yet

expandable to incorporate new messages to support additional features. This protocol can

become the basis for a standard inter-layer communication protocol in multi-layer organic

systems. The design for sixteen protocol messages is listed in APPENDEX B.

Within the autonomic computing context, golden elements which represent a single point of

failure are not tolerable. However, eliminating them given the numerous probable fault scenarios

is not possible. The existence of single points of failure in the system reduces its reliability and

could jeopardize its chances to demonstrate its organic properties. Although golden elements

cannot be eliminated from a given design, their effect can be minimized by minimizing their

articulation probability. Such state can be achieved by creating a cross-monitoring capability

among the system‟s golden elements.

56

In the organic systems generally, and in the organic architecture proposed herein specifically, the

Autonomic Element is a golden element of which functionality cannot be restored upon failure.

Therefore, and in order to build a highly sustainable organic system, the autonomically

sustainable architecture described in this dissertation enables the cognitive layer to catch

potential problems within the AEs and reconfigure with alternative bitstreams to work-around

the issue.

3.2.2. Intrinsic Evolutionary Repair Platform

We have developed an intrinsic evolutionary repair platform in [40]. This platform is further

tailored to run in partial reconfiguration mode and is integrated with the proposed organic

system. This platform is triggered either externally by the Cognitive Layer or internally from

within the Organic Layer itself to perform evolutionary repair. The developed platform consists

of MRRA components that reside on the FPGA chip, and software components on the host PC,

however, they are developed into layered modules that can be readily migrated to an on-chip

general purpose microprocessor such as the IBM PowerPC available in commercial FPGAs. The

main components of the platform are shown in Figure 8 as follows:

57

Figure 8. Intrinsic Evolution Platform

JTAG Port: This is the standard JTAG (IEEE 1149.1) serial port for boundary scan and

configuration operations. Its circuitry is implemented on the non-reconfigurable area of the

Xilinx FGPA device and is embedded in most of the Xilinx Virtex and Spartan device families.

GNAT: This is the General-purpose Native jtAg Tester component [81] which has been

developed as part of the bitstream on the reconfigurable area of the chip. It connects to the JTAG

58

from one side and to the targeted circuit via a simple read/write bus interface. The bus width can

be customized to match the circuit‟s peripherals.

Evolved Circuit: This is the subject circuit to be evolved on the FPGA chip. The circuit

peripherals are connected to the read/write bus of the GNAT to receive input signals and confer

the corresponding output signals. The software components shown in Figure 8 are as follows:

GA Engine: This is a C++ based console application implemented using an object oriented

architecture. It contains classes which model the GA such as Individual and Generation classes

along with the GA parameters such as the Mutation, Crossover, and Elitism rate. This module

implements the conventional GA and is an independent component which can be replaced by any

other enhanced algorithm variations. A conventional population-based GA was selected to

demonstrate the applicability of the intrinsic genetic operators on the actual hardware. The

handshaking between the GA Engine module and the Chromosome Manipulator module is done

through a common data-structure that holds the genotype representation of the genetic

individual.

Chromosome Manipulator: This is a C-based library that contains the functional genetic

operators performed on chromosomes along with fitness evaluation functions as follows:

 GetConfiguration: Populates the chromosome‟s genotype representation data-structure

from the configuration bitstream via the MRRA Module.

59

 PerformCrossover: Performs a probability-driven single point genetic crossover on the

two parent chromosomes. Crossover point is randomly assigned for both parents

according to a random number generator. The offspring yielded is loaded back to the

calling GA Engine.

 PerformPMX: Performs a probability-driven two-point genetic partially matched

crossover (PMX) on the two parent chromosomes. Crossover points are randomly

assigned for both parents according to a random number generator. The offspring inherits

the chromosomal section between the two crossover points (Matching Section) from one

parent and the rest of the chromosomal content is inherited from the other parent. The

inheritance from the second parent is done in such a way that prevents any duplication of

the same genetic material as shown in the example in Figure. 9. In this example, the

rectangles in each chromosome represent the FPGA LUT‟s individual fields, and the

number inside the rectangle denotes the logic configuration (the bit content that the LUT

holds) assigned to that LUT. This number is assigned to the initial configuration of each

LUT in order to keep track on that configuration during the evolution process and avoid

its duplication. PMX operator was originally designed for solving permutation problems

such as the well known Traveling Salesman Problem (TSP) [43, 82]. The cities in the

TSP are analogous to the LUTs in this problem. Hence the PMX operator reorders the

different configurations among the LUTs without duplicating the same configuration on

multiple LUTs. This operator is more preservative to the genetic material of the

chromosome than the conventional crossover, and therefore may find a faster

functionality refurbishment by simply assigning the original configuration of a faulty

60

LUT to another unused one. This is especially true when a higher routing capability is

achieved. The offspring yielded is loaded back to the calling GA Engine.

Figure. 9. Partially Matched Crossover (PMX)

 PerformOX: Performs a probability-driven two-point genetic Order Crossover (OX) on

the two parent chromosomes. Crossover points are again randomly assigned for both

parents according to a random number generator. One parent is selected and holes (i.e.

LUTs with no assigned configurations) are assigned to the LUTs that hold the same

Matching Section configurations of the other parent as shown in Figure 10b. Next, the

configurations from the Matching Section taken from the first parent are assigned to the

first LUTs from the left and the holes are then assigned to the contiguous LUTs as shown

in Figure 10c. Holes are then filled with the matching section configurations from the

other parent and the rest of the LUTs are assigned the rest of the left configurations as

shown in Figure 10d. OX operator entails similar effect as the PMX however; it carries

61

out bigger shuffles in configurations across LUTs than the PMX does. Again, the

offspring yielded is loaded back to the calling GA Engine.

b.) Insert Holes

c.) Group Holes

a.) Parent Chromosomes

 d.) Assign Configurations to

Holes

Figure 10. Order Crossover (OX)

 PerformCX: Performs a probability-driven genetic cycle crossover (CX) on the two

parent chromosomes. No crossover points are assigned. Instead, LUT configurations

taken from one parent are selected, and in the second phase the rest of the LUT

configurations are inherited from the second parent. In the example shown in Figure 11,

and starting from the left hand side, the first configuration is assigned to the first LUT of

62

the offspring. Then it continues by selecting the configuration number of the same LUT

position in the second parent chromosome. The whole process continues until all the LUT

configurations taken from the first parent are assigned as shown in Figure 11b. In the

second phase all the blank configurations are filled directly from the corresponding

locations in the second parent as shown in Figure 11c. The offspring yielded is loaded

back to the calling GA Engine.

b.) Configurations from Parent 1

a.) Parent Chromosomes c.) Add Configurations from

Parent 2

Figure 11. Cycle Crossover (CX)

 PerformMutation: Performs a probability-driven single-bit genetic mutation. A single bit

of the binary chromosome content is flipped according to the mutation probability

threshold value being exceeded by a random number generator on the interval [0,1].

63

 ConfigureIndividual: Maps the chromosome‟s genotype representation back into its

corresponding phenotype via the MRRA module. It then opens the host PC parallel port

and programs the FPGA device with the resultant bitstream via the JTAG port.

 EvaluateInput: Receives the test input pattern from the GA Engine. The input pattern is

then applied to the circuit on chip via the GNAT module. Once the output is evaluated,

the Chromosome Manipulator module reads it and sends it back to the GA Engine for

fitness assessment.

In summary, the Chromosome Manipulator layer provides a logical abstraction of genetic

operators to the GA Engine module. This facilitates the integration of any GA at the top layer by

making the hardware implementation details transparent.

MRRA: This platform developed by our team is a Multilayer Runtime Reconfiguration

Architecture for Autonomous Runtime Partial Reconfiguration of FPGA devices [39]. MRRA

operations are partitioned into a Logic, Translation, and Reconfiguration layers along with a

standardized set of Application Programming Interfaces

Bitstream File: In the developed platform, an initial pre-compiled bitstream is generated using

the Xilinx CAD tools. It contains the interconnected LUTs to be configured by the platform to

evolve and realize an original circuit Design or restore functionality via Repair the functionality

sought. The platform then manipulates this bitstream file to carry out the physical mapping of the

crossover or mutation performed on the genotype representation.

64

The task-flow of the platform is divided into three phases:

Initialization: This process aims at obtaining the configuration from the baseline bitstream file

which has been manually designed using the Xilinx CAD tools. As depicted in Figure 12, the GA

requests the genotype representation of the baseline configuration from the Chromosome

Manipulator layer. As a result, the Chromosome Manipulator requests the LUTs configuration

information from the bitstream file via the MRRA. The MRRA directly accesses the bitstream

file and extracts the LUTs configuration information from the column-based vertical

configuration frames using the Frame based Partial Reconfiguration Flow [39], and sends that

information back to the Chromosome Manipulator. Finally, the Chromosome Manipulator layer

restructures the bitstream data into the genotype data-structure mentioned earlier and sends it

back to the GA Engine.

GA Operations: Operations are performed by the Chromosome Manipulator module directly on

the chromosome genotype. They are invoked by the GA Engine to supply the new generation

with new individuals. When the GA Engine needs to execute a genetic operator such as the

Crossover or Mutation, it calls the PerformCrossover, PerformPMX, PerformOX, PerformCX, or

PerformMutation functions from the Chromosome Manipulator layer and passes the target

chromosome(s) data-structure. The Chromosome Manipulator layer performs the operation

requested and sends back the resultant offspring to the GA Engine.

65

Figure 12. Initialization: Obtain configuration from .bit File

Fitness Evaluation which is carried out in two phases: FPGA Reconfiguration and Pattern

Evaluation as shown in Figure 13. The FPGA Reconfiguration phase starts the moment the GA

initiates the fitness evaluation process for an individual. The Chromosome Manipulator module

issues a download command to the MRRA module. The MRRA writes-back the individual‟s

physical representation to the bitstream file by directly manipulating the binary content of that

file. The bit file is then downloaded to the FPGA via the JTAG port.

66

a.) FPGA Reconfiguration b.) Pattern Evaluation

Figure 13. Fitness Evaluation: Performed in two phases a and b.

On the other hand, the Pattern Evaluation phase starts by sending the input patterns serially to the

FPGA chip via the JTAG according to the JTAG clock frequency. After that, the GNAT module

groups back the serial bits of each input and applies them to the corresponding circuit‟s input

ports. Having the circuit‟s output evaluated at the output ports, the GNAT sends it back to the

MRRA via the JTAG which then passes it to the GA via the Chromosome Manipulator layer.

A central modification to this platform might be to delegate the fitness evaluation process

completely to the AE instead of shifting testing input patterns serially through the JTAG. The

67

moment the evolutionary repair is invoked at the Organic Layer, and each time a new individual

is downloaded onto the FPGA by the means of the Partial Reconfiguraion for fitness evaluation,

the AE evaluates its fitness under functional inputs while running in the TMR mode. The fitness

of the under-repair FE is evaluated using the Voter Report over a customizable window of

functional input evaluations. Doing so is expected to speed up the evolution and to eliminate the

need to have exhaustive testing patterns for each function across the multiple OU.

3.3. Summary

In summary, an efficient architecture for an autonomous organic layer capable of demonstrating

organic self-x properties including self-monitoring, self-reporting, and self-healing is presented.

The proposed design is implementable on the commercially available FGPA devices which

makes it a practically viable realization of the organic systems concepts. Moreover, an intrinsic

evolutionary platform for digital circuit repair is proposed as an integrated means of autonomous

organic system refurbishment.

68

CHAPTER 4: ORGANIC SELF-HEALING EXPERIMENTAL RESULTS

In order to verify the applicability of the proposed architecture, and to identify the risks and

limitations, the organic layer has been prototyped on the actual FPGA fabric. Limitations include

the impact the AE imposes on the functional flow due to augmenting additional non-functional

monitoring modules in the datapath, the system capability to gracefully switch between different

modes according the health status, the Organic-Cognitive communication infrastructure, and

many others. The Organic Unit prototype has been implemented with Sobel video edge-detection

FE use-case, an image processing function commonly found on satellites. Moreover, the

software-hardware communication designed protocol is verified along with a complete

implementation of an intrinsic evolution platform for evolutionary refurbishment.

4.1. Video Edge-Detection Use-Case on Organic Layer

In order to test and demonstrate the Organic Unit capabilities, the Organic Unit architecture

depicted in Figure 7 was implemented on XC4VSX35 FPGA on Xilinx Virtex-4 Video Starter

Kit. A Sobel 2-D spatial gradient measurement video edge-detector was implemented as the

organic FE. Sobel algorithm was selected because of its simplicity compared to the other

advanced edge-detection techniques.

The developed Organic Unit prototype supports the following RARS features:

 Duplex mode (2 FEs online, 1 FE standby).

69

 Discrepancy-based error detection.

 TMR mode (3 FEs online, Voter enabled).

 FE health status reporting.

 Fault detection and refurbishment with duplex mode restoration.

 Message-based inter-layer communication modules.

The communication protocol Experiments have shown that a transmission rate of 5mbps is

achievable using the Xilinx Parallel Cable 4. Due to the relatively small protocol message length

(typically 16-bit), the system can handle more than 300,000 messages per second per FPGA

board. Hence no communication bandwidth congestion is expected.

The use-case diagram is shown in Figure 14. The Video Source block is a regular personal

computer running a pre-recorded video and thus providing the video stream through its VGA-

OUT port which is connected to the VGA-IN port on the FPGA board via a standard 15-pin

VGA cable. Alternatively, a camcorder capturing live video can be used instead. The video

stream is captured and buffered by the VGA-IN module on frame basis. The edge-detected frame

produced by the FEs is sent to the AE and then is buffered and finally sent out to the target

monitor denoted by the Monitor block connected to the VGA output port of the FPGA board via

a standard 15-pin VGA cable. Communication with the Cognitive Layer is carried out through

the Dispatcher module which is connected to the PC running the cognitive Layer software

70

through the on-board JTAG port using Xilinx Parallel Cable IV. The status of each FE is also

encoded and is displayed using two on-board LEDs. The possible statuses are: online and

healthy, online and faulty, offline and healthy, and offline and faulty. Similarly, the Voter report

is also encoded and is displayed using three LEDs. The possible report messages are: no

discrepancy, FE1 discrepant, FE2 discrepant, FE3 discrepant, all discrepant, and Voter disabled

which indicates the system is running in duplex mode.

Dispatcher

FPGA Board

Virtex-4 FPGA

Organic

Unit

AE Control

Status

JTAG

VGAVGA

VGA-IN

VGA-OUT

Monitor

Edge-Detected Video Stream

Video Source

(PC/VGA-Cam)

Original Video Stream

PC

Control/Status

Cognitive

Layer

Parallel Port

FE-1

FE-2

FE-3

Figure 14. Video edge-detection use-case.

Fault Injection is done by introducing stuck-at one or stuck-at zero faults at an LUT output.

Special HDL was developed to define the location of the fault and its type (0 or 1) for each FE at

design-time. On board DIP switches are used for run-time fault injection into any of the three

71

FEs selectively; it is also used to enable/disable the AE activities. DIP switch configurations are

shown in Table 4.

Table 4. Fault Injection DIP Switches

DIP Purpose

1
When asserted, the organic activities are turned on. When de-asserted only functional

behavior is demonstrated. (for malfunction visibility to the human-eye)

2 Stuck-at fault injected in FE1

3 Stuck-at fault injected in FE2

4 Stuck-at fault injected in FE3

The place-and-routed design of the use-case on the FPGA fabric is shown in Figure 15. The

figure shows each FE implemented in its own Partial Reconfiguration (PR) and all FEs are

plugged into the final OU by the means of the Bus-Macros technique.

Figure 15. FE-PR and Entire OU on FPGA Fabric

Several scenarios were conducted to test the capability of the platform to accommodate and

circumvent system failures. These scenarios are listed in Table 5.

72

Table 5. Use-case Testing Scenarios

Scenario 1: Fault Free

As indicated in the Cognitive Layer screenshot below, the system runs in duplex mode,

where two FEs are running the edge-detection algorithm and the third one is in „cold

standby‟ inactive mode. The system performance is at 100%. The edge detected image

is shown in Figure 16-A.

73

Scenario-2: Fault injection (Single Faulty FE)

The system runs in duplex mode. DIP-switch 1 is ON, indicating that the AE is enabled

monitoring faults in the FES. DIP-switch 2 (FE-1 fault injection) is turned ON. The

edge detected image in Figure 16-A shows NO faulty pixels and the quality of the

image remains the same, this is due to the AE intervention which can be summarized as

the following:

o AE detects discrepancy between FE1 and FE2.

o AE enables FE3 and changes its status from Offline to Online. It also enables the

Voter (TMR).

o Voter identifies FE1 as the culprit and its status becomes (Online and faulty)

o The output is streamed out from the majority vote result and hence no degradation

happens to the detected image.

74

Scenario-3: Fault injection (Two Faulty FEs)

Starting from Scenario-2 last step, DIP-switch 3 (FE-2 fault injection) is turned ON.

The voter reports discrepant outputs of the three FEs. Nevertheless, the voter is

intelligent enough to discern the pristine FE. This is done by keeping history of

successful voting epochs. Pristine FE is the one that always voted correctly. The

detected image quality deteriorates as shown in Figure 16-B. It can be seen that

reasonable performance (81%) is still achievable with two defective FEs.

75

Scenario-4: Fault injection (Three Faulty FEs)

Starting from Scenario-3 last step, DIP-switch 4 (FE-3 fault injection) is turned ON.

The voter reports discrepant outputs of the three FEs. The voter reports three defective

FEs.

Figure 17 shows the organic layer state transitions flowchart. The sequence of events, status, and

actions that controls the organic behavior discussed earlier is depicted.

76

Figure 16. Edge-detection Snap. A: Fault Free/Single Fault, B: Faulty and C:

Refurbished

77

Figure 17. Self-Repair Flow Diagram

78

4.2. Evolutionary Design and Repair Platform

As mentioned earlier, the organic system exploits the intrinsic evolutionary approach as a

legitimate highly flexible technique to achieve functionality regain. For that, several experiments

were performed to verify the platform‟s evolution capability. The circuit used to demonstrate the

platform workflow is a 4-bit arithmetic adder. It provides a tractable circuit for the GA to evolve

that exhibits characteristics for large arithmetic circuits including a variable amount of

redundancy and combinational logic behavior. The GA parameters used throughout the

experiments are shown in able 6. A total of 8 LUTs were used in the design experiments. This

number was increased to 13 LUTs in the repair experiment to add a redundancy margin for the

GA to evolve within. All GA parameters were extracted by running extrinsic evolution of the GA

and finding out the optimal values. The table shows the range of tested values for each parameter

along with the optimal one. Population sizes between 5 and 20 were evaluated and best results

were achieved using population size of 10. Crossover rates in the range of 30% to 90% in

increments of 10% were evaluated indicating the GA performed well when the value was near

60%. Therefore, a rate of 60% was used for the four different types of crossover used in the

experiments: Single-Point crossover, PMX, OX, and CX. Similar analysis was used to determine

baseline values for the other parameters summarized in able 6.

79

Table 6. GA Parameters

Parameter Range Evaluated Value Selected

Number of LUTs for design 8 8

Number of LUTs for repair 8-13 13

Population Size 5-20 10

Mutation Rate 5%-90% 50%

Crossover Rate 30%-90% 60%

Tournament Size 1-8 6

Elitism Size 1-2 1

There are three types of experiments performed as follows:

 Unseeded Design: In this experiment, the GA evolved the 4-bit adder circuit with only a

randomly-seeded initial population. The purpose of this experiment is to demonstrate the

capability to intrinsically evolve 100% functional circuits starting from a random bitstream. A

baseline bitstream was generated manually using Xilinx ISE Project Navigator. This bitstream

contains the 8 interconnected LUTs on which the circuit is to be evolved along with the GNAT

core connected to the JTAG component.

Seeded Design: In this experiment, the GA evolved the 4-bit adder circuit starting with a

population of partially functional seeded individuals in addition to completely random ones. The

partially functional seeds were originally fully functional designs which were altered by

deliberately exposing them to mutation operator. This arrangement emulates a fault-scenario in

80

real life avionics in which the configuration bitstream is partially affected by Single Event Upset

(SEU) due to radiation burst or any other severe environmental event. Typically, scrubbing is

used to replace bitstream with an intact version stored on nonvolatile storage. However, this

experiment could operate even in the event of permanent damage to the underlying fabric and

with the absence of intact stored baseline configuration for scrubbing.

Repair: A single stuck-at fault was adopted as a case study to show the capability of the

platform to repair a faulty circuit. Two aspects should be highlighted here:

I. Fault Injection: Since an actual fault can neither be readily nor precisely introduced into

the device, the circuit is stimulated to behave as if the fault actually exists. This technique

becomes more complicated considering the fact that the platform allows only functional

logic manipulation without the possibility of altering the device interconnects. Hence, the

bitstream was processed directly before configuring the device to modify the contents of

one LUT so that it behaves as if a stuck-at fault is present. Alternatively, in the Sobel

Edge-detector use-case, special logic was implemented to control fault injection through

on-board DIP switches as described in the previous section.

II. Degree of Redundancy: During the initial runs, the GA failed to achieve complete repair.

It turned out that the search space given to the GA was exceedingly narrow, and

consequently, the GA failed to avoid the faulty resource by constructing alternative paths.

To remedy this limitation, redundancy was introduced by adding extra unused LUTs to

the original design. This was performed within the standard partial reconfiguration flow

81

presented by Xilinx [83] which has a module-level granularity that requires each module

to be arranged at slice column level with a four-slice boundary requirement. A bus macro

is also required to establish a communication means amongst modules. Besides the

restricted flexibility due to the coarse granularity, this module-based partial

reconfiguration flow can only be controlled at a very high level during design time.

Hence, mostly depending on the Xilinx tool sets to interpret the placement and routing

process, which may encounter some illegal implementations especially when the partial

configuration module‟s size requires extensive routing resources.

For the four aforementioned crossover operators, each combined with the mutation operator; five

intrinsic evolutions were achieved for each of the three experiments: the unseeded, seeded, and

repair using the presented platform. The GA parameters listed in able 6 were used. The following

aspects were measured to quantify the capability of the platform to carry out the evolution

process:

maxF : The numerical measure of the fitness for the best individual of the final generation of the

run. The maximum fitness for the 4-Bit adder is calculated as shown in Eq. 1.

MaxFitness dth)(Output WiPatterns)Input of No.(…………Eq. (1)

 1280(5))2(8 .

82

finalF : The arithmetic mean for the fitness of all the individuals in the final generation of the run.

G : The total number of generation evolved during the run.

Timing Information: The timing information for each run and is divided into four metrics:

totalCM : The time elapsed to perform the GA crossover and mutation during the entire run.

FE : The time elapsed to apply the input patterns and read back the corresponding outputs for

all the fitness evaluations during the entire run.

C : The average time taken by a single genetic crossover for a certain GA run. The crossover

could be a single point conventional crossover, PMX, OX, or CX.

M : The average time taken by a single genetic mutation for a certain GA run.

Experimental results are listed in Table 8, Table 9, Table 10, and Table 11. It can be seen from

the results that the intrinsic GA operators‟ time is in the range of the micro-seconds. Operators‟

time is small compared to the fitness measurement time which is around one millisecond for

each pattern evaluation. In this dissertation the JTAG serial port is used which imposes a

substantial time delay that reaches up to 22 seconds to configure the entire device using the

Xilinx Parallel Cable III which is reduced to 1 second using the Xilinx Parallel Cable IV. This

performance overhead can be considerably reduced if other interfaces are used such as the

83

SelectMap parallel port or the Internal Configuration Access Port (ICAP) on a System-on-Chip

(SoC) implementation using the IBM PowerPC on-chip processor.

Device programming time is high due to two main reasons; the first one is the fact that the JTAG

port was used to download the bitstream to the chip. Theoretically, the JTAG interface with the

Parallel Cable III has a maximum download speed of 300Kbps [84]. The measured data transfer

rate using JTAG in our experiments was 205Kbps because of the data transfer overhead between

the host PC and the board. On the other hand, with the Parallel Cable IV which has a maximum

download speed of 5Mbps [84], a 4.28Mbps average data transfer rate was measured in our

experiments, again due to the data transfer overhead between the PC and the board.

Alternatively, the SelectMap interface with Xilinx Virtex device family can work at a maximum

of 66MHz clock speed loading one byte per clock cycle, i.e. 528Mbps [85]. Hence the device

programming time can reach as low as 8 milliseconds if the SelectMap is used.

The second reason is due to the large bitstream file used of 548Kbytes. The partial configuration

bitstream file for the 4-Bit adder circuit along with the GNAT component is only 80Kbyte. When

this file is used instead of the full configuration bitstream the device programming time is

drastically reduced to 16 milliseconds using the JTAG with Xilinx Parallel Cable IV and to 150

microseconds using the SelectMap interface. Comparison between configuration times using the

different schemes is shown in Table 7.

84

Table 7. Sobel Edge-detector Configuration Times in Various Technologies

Approach Virtex-2 [86] Virtex-4 Full Virtex-4 Partial

Device Virtex-II Virtex-4 Virtex-4

Bitstream Size 548 KB 1.633 MB 30.61 KB

JTAG Cable
parallel cable III

300Kbps

parallel cable IV

5Mbps

parallel cable IV

5Mbps

Config time (msec) 22000 2613 48

In Table 8, the timing measurement of the probability-driven single point crossover and mutation

operators for each run is listed. Similarly, Table 9 lists the experimental results of the

probability-driven PMX and mutation operators for each run. On the other hand, Table 10 lists

the experimental results of the probability-driven OX and mutation operators for each run, and

finally, Table 11 lists the experimental results of the probability-driven CX and mutation

operators for each run.

85

Table 8. Experimental Results Summary for Single Point Crossover and Mutation

Experiment

Type
Run

maxF
finalF G

Timing Information

(seconds)

totalCM FE C
M

Unseeded

1 1280 1265 185 1.147 472 4.158 x 10
-6

 0.46 x 10
-6

2 1280 1260 207 1.326 161 4.302 x 10
-6

 0.46 x 10
-6

3 1280 1254 63 0.417 362 4.265 x 10
-6

 0.49 x 10
-6

4 1280 1254 142 0.884 311 4.274 x 10
-6

 0.46 x 10
-6

5 1280 1254 122 0.766 117 4.225 x 10
-6

 0.48 x 10
-6

Seeded

1 1280 1263 46 0.296 263 4.115 x 10
-6

 0.44 x 10
-6

2 1280 1265 103 0.651 36 4.199 x 10
-6

 0.46 x 10
-6

3 1280 1247 14 0.091 97 4.153 x 10
-6

 0.47 x 10
-6

4 1280 1254 38 0.234 186 4.291 x 10
-6

 0.47 x 10
-6

5 1280 1254 73 0.472 428 4.361 x 10
-6

 0.46 x 10
-6

Repair

1 1280 1270 168 1.059 260 4.208 x 10
-6

 0.46 x 10
-6

2 1280 1265 102 0.609 638 4.317 x 10
-6

 0.51 x 10
-6

3 1280 1265 250 1.568 240 4.342 x 10
-6

 0.47 x 10
-6

4 1280 1260 94 0.603 408 4.299 x 10
-6

 0.46 x 10
-6

5 1280 1263 160 1.021 161 4.152 x 10
-6

 0.45 x 10
-6

86

Table 9. Experimental Results Summary for PMX and Mutation

Experiment

Type
Run

maxF
finalF G

Timing Information

(seconds)

totalCM FE C
M

Unseeded

1 1280 1255 258 5.44 x 10
-3

 660 3.13 x 10
-6

 0.46 x 10
-6

2 1280 1244 119 2.58 x 10
-3

 312 3.22 x 10
-6

 0.46 x 10
-6

3 1280 1260 109 2.3 x 10
-3

 280 3.11 x 10
-6

 0.49 x 10
-6

4 1280 1258 189 3.95 x 10
-3

 490 3.1 x 10
-6

 0.46 x 10
-6

5 1280 1254 85 1.78 x 10
-3

 223 3.13 x 10
-6

 0.44 x 10
-6

Seeded

1 1280 1265 232 4.86 x 10
-3

589 3.11 x 10
-6

 0.46 x 10
-6

2 1280 1247 140 2.94 x 10
-3

 359 3.1 x 10
-6

 0.47 x 10
-6

3 1280 1254 238 5 x 10
-3

 618 3.12 x 10
-6

 0.46 x 10
-6

4 1280 1251 56 1.16 x 10
-3

 148 3.02 x 10
-6

 0.5 x 10
-6

5 1280 1254 128 2.72 x 10
-3

 336 3.15 x 10
-6

 0.46 x 10
-6

Repair

1 1280 1246 430 8.95 x 10
-3

 1067 3.06 x 10
-6

 0.49 x 10-
6

2 1280 1257 126 2.65 x 10
-3

 323 3.16 x 10
-6

 0.46 x 10
-6

3 1280 1265 239 5.03 x 10
-3

 620 3.12 x 10
-6

 0.45 x 10
-6

4 1280 1241 182 3.81 x 10
-3

 493 3.05 x 10
-6

 0.53 x 10
-6

5 1280 1239 145 3.03 x 10
-3

 372 3.09 x 10
-6

 0.48 x 10
-6

87

Table 10. Experimental Results Summary for OX and Mutation

Experiment

Type
Run

maxF
finalF G

Timing Information

(seconds)

totalCM FE C
M

Unseeded

1 1280 1247 546 11.9 x 10
-3

 1341 3.15 x 10
-6

 0.46 x 10
-6

2 1280 1236 253 5.61 x 10
-3

 656 3.22 x 10
-6

 0.57 x 10
-6

3 1280 1218 312 6.64 x 10
-3

 784 3.16 x 10
-6

 0.47 x 10
-6

4 1280 1005 485 10.4 x 10
-3

 1244 3.2 x 10
-6

 0.48 x 10
-6

5 1280 1113 764 16.2 x 10
-3

 1982 3.14 x 10
-6

 0.46 x 10
-6

Seeded

1 1280 1138 319 6.78 x 10
-3

 810 3.15 x 10
-6

 0.47 x 10
-6

2 1264 1177 1000 21.4 x 10
-3

 2484 3.18 x 10
-6

 0.47 x 10
-6

3 1280 1254 627 13.3 x 10
-3

 1609 3.14 x 10
-6

 0.47 x 10
-6

4 1280 1253 422 8.95 x 10
-3

 1036 3.15 x 10
-6

 0.47 x 10
-6

5 1280 1244 461 9.78 x 10
-3

 1184 3.16 x 10
-6

 0.47 x 10
-6

Repair

1 1280 816 677 15 x 10
-3

 1700 3.3 x 10
-6

 0.46 x 10
-6

2 1264 805 1000 21.2 x 10
-3

 2566 3.14 x 10
-6

 0.47 x 10
-6

3 1280 1037 533 11.3 x 10
-3

 1323 3.15 x 10
-6

 0.46 x 10
-6

4 1276 879 1000 21.4 x 10
-3

 2539 3.17 x 10
-6

 0.48 x 10
-6

5 1274 943 1000 21.3 x 10
-3

 2511 3.14 x 10
-6

 0.48 x 10
-6

88

Table 11. Experimental Results Summary for CX and Mutation

Experiment Type Run
maxF

finalF G

Timing Information

(seconds)

totalCM FE C
M

Unseeded

1 1280 1244 137 2.61 x 10
-3

 352 2.79 x 10
-6

 0.46 x 10
-6

2 1280 1265 448 8.72 x 10
-3

 1113 2.85 x 10
-6

 0.47 x 10
-6

3 1280 1265 373 7.2 x 10
-3

 958 2.83 x 10
-6

 0.46 x 10
-6

4 1280 1046 293 5.67 x 10
-3

 728 2.84 x 10
-6

 0.47 x 10
-6

5 1280 1252 205 4.02 x 10
-3

 526 2.83 x 10
-6

 0.52 x 10
-6

Seeded

1 1280 1248 289 5.61 x 10
-3

 717 2.85 x 10
-6

 0.47 x 10
-6

2 1280 1252 178 3.45 x 10
-3

 462 2.84 x 10
-6

 0.47 x 10
-6

3 1280 1254 199 4.22 x 10
-3

 494 3.14 x 10
-6

 0.53 x 10
-6

4 1280 1265 292 5.7 x 10
-3

 741 2.87 x 10
-6

 0.46 x 10
-6

5 1280 1260 258 5 x 10
-3

 648 2.85 x 10
-6

 0.46 x 10
-6

Repair

1 1280 1267 403 7.77 x 10
-3

 1057 2.83 x 10
-6

 0.47 x 10
-6

2 1280 1266 169 3.5 x 10
-3

 420 3.07 x 10
-6

 0.46 x 10
-6

3 1280 1236 43 0.82 x 10
-3

 110 2.79 x 10
-6

 0.51 x 10
-6

4 1280 1265 125 2.55 x 10
-3

 310 3.0 x 10
-6

 0.48 x 10
-6

5 1280 1264 101 1.92 x 10
-3

 259 2.78 x 10
-6

 0.47 x 10
-6

While the conventional single point crossover favors the genetic material that yields high fitness

and opts to find higher fitness offspring by propagating this material regardless of its

chromosomal position to the next generation, the other ordering crossover operators such as the

PMX, OX, and CX favor the combination of certain genetic material used in a certain

chromosomal position that yields high fitness and proceed to finding higher fitness individuals

by propagating that combination to the offspring. This kind of behavior leads to a finer grained

of search which may increase the GA time to converge into a solution as can be seen from the

89

experimental results. It has more potential, however, to find higher quality solutions than the

conventional crossover. This explains why the number of generations needed to reach full fitness

using the conventional crossover has proved to be the fastest among the rest of the crossover

types in the three experiments unseeded design, seeded design, and repair.

In order to estimate the robustness and overall performance of each candidate chromosomes,

fitness evaluation needs to be carried out at the end of each generation. For a full set of hardware

testing vectors, its size is directly related to the total number of input bits of the testing module.

Since for a hardware bit the input will be always „0‟ or „1‟, the total possible input vector

combination will be l2 , where l is the bit width of the total inputs. Hence the time complexity of

the fitness evaluation per generation will be O(p* l2), where p is the population size of the

generation.

To measure the exact time the mutation and crossover operations take, another experiment was

carried out by setting the mutation and crossover rates to 100% to ensure that the operators are

performed with certainty. This allowed measurement of the time for each operation individually.

The results of this experiment and similar experiments using Xilinx design tool driven flow and

using JBITs are listed in Table 12. It can be seen from the results that more than seven orders of

magnitude enhancement over Xilinx design tool driven flow and three orders of magnitude

enhancement over JBITs was achieved by the developed platform.

90

Table 12. GA Operators Timing (seconds)

This Platform Xilinx Tool Flow JBITS

C M C M C M
4 x 10-6 0.5 x 10-6 12.56 9.9 4.8 x 10-3 4.6 x 10-3

It can also be seen from the results that the conventional single point crossover takes the highest

time amongst the other crossover types which is around 4.2 microseconds. On the other hand, the

PMX and the OX require equal time around 3.1 microseconds, while the CX requires the least

amount of time around 2.8 microseconds. It is very intuitive that the CX operator takes less time

than the others as it has no crossover points to choose and consequently has only one algorithmic

loop that produces the whole offspring chromosome. On the other hand, the other operators have

to randomly assign crossover points and treat every part of the broken chromosomes in a

different way which requires more time. Figure 18 shows five runs that demonstrate the

capability of the platform to evolve to fully working 4-Bit adder designs starting from scratch.

The maximum fitness starts as low as 716-out-of-1280, and rapidly increases during the first few

generations.

91

700

800

900

1000

1100

1200

1300

2

1
4

2
6

3
8

5
0

6
2

7
4

8
6

9
8

1
1

0

1
2

2

1
3

4

1
4

6

1
5

8

1
7

0

1
8

2

1
9

4

2
0

6

Generations

M
a

x
 F

it
n

e
s

s

Run 1 Run 2 Run 3 Run 4 Run 5

Figure 18. Unseeded Design GA Runs

1170

1190

1210

1230

1250

1270

1290

2 11 20 29 38 47 56 65 74 83 92 101

Generations

M
a
x
 F

it
n

e
s
s

Run 1 Run 2 Run 3 Run 4 Run (5) Run 5

Figure 19. Seeded Design GA Runs

Figure 19 shows five runs where a fully working 4-Bit adder was designed from a partially

working seed. Five different seeds were used in the five runs.

92

Figure 20 shows five runs in which the platform was used to repair the broken 4-Bit adder. A

stuck-at zero fault was randomly injected in the first input pin of the third LUT of the original

design. The fault injected reduces the circuit‟s fitness to 1152 out-of 1280. The fastest run was

Run 4, which reached full fitness after 94 generations.

1150

1170

1190

1210

1230

1250

1270

1290

2

1
6

3
0

4
4

5
8

7
2

8
6

1
0
0

1
1
4

1
2
8

1
4
2

1
5
6

1
7
0

1
8
4

1
9
8

2
1
2

2
2
6

2
4
0

Generations

M
a
x
 F

it
n

e
s
s

Run 1 Run 2 Run 3 Run 4 Run 5

Figure 20. Repair GA Runs

Figure 21 shows the GA evolution progress of the organic Sobel video edge-detector

refurbishment using the developed intrinsic repair platform. The edge-detector was hit by a

stuck-at one fault in an LUT output port that caused its fitness to drop from 2048 down to 1178

or 57%. As can be seen from the figure, the platform was able to achieve a refurbishment quality

of 88% in as few as 20 generations. In excess of 300 generations were needed to evolve the

remaining 12%. This behavior of fast fitness ramp-up in the early stages of the evolution process

93

that shifts into a miniature steps towards approaching the full fitness is common to all GA

implementations.

Figure 21. Sobel Edge-Detector Refurbishment Evolution Progress

94

CHAPTER 5: CGT-PRUNED REPAIR TECHNIQUE

Knowledge regarding the location of hardware resource faults guides the GA search process to

converge to complete repair in fewer generations than when the knowledge is unavailable. In

particular, information regarding the location of the fault effectively reduces the search space.

The GA can also avoid creating and analyzing solutions that use the suspected faulty resource.

Information regarding the location of the fault can be obtained using a Combinatorial Group

Testing (CGT) [87] based fault location algorithms.

Formally, the CGT problem is defined as that of identifying a subset of d defectives from a set of

n items. Items can be sampled, and subset of items, known as groups can be tested to identify

the presence of defectives. Group testing techniques have been used in medical, chemical, and

electrical testing, coding, drug screening, pollution control, multi-access channel management,

and recently in data verification, clone library screening and blood testing. The fault location

problem in FPGA logic elements closely approximates the generic group testing problem. A set

of functionally-identical but physically-distinct configurations provide the groups, and evaluation

of the outputs provides the tests for the identification of defectives in the groups-under-test. The

accumulated correctness behavior of resources can be used to locate the physical resource fault.

Once sufficient information is obtained regarding the location of the physical fault, it is passed

on to the GA which can use the information to identify a refurbished solution.

95

5.1. Group Testing Based Fault Location Procedure

CGT algorithms are a class of solutions to the problem of identifying individual defective

members from a large population by conducting a minimal number of tests on sub-groups or

blocks of elements. The fault-location algorithm used in this dissertation is obtained from the

Dueling with Modified Halving algorithm described in [31].

In this algorithm individual configurations are evaluated based on their output to identify

discrepancies between the expected output and the observed output. The presence of an output

discrepancy implies that the resources used by the configuration are suspect of being fault-

affected. The set of all competing configurations is represented by S. Each competing

configuration k, 1 < k < |S| has a unique binary Usage Matrix Uk, 1 < k < p, with elements

Uk[i,j], 1 < i < m, 1 < j < n, where m and n represent the rows and columns in the device layout

respectively. Elements Uk[i,j] = 1 denote the usage of resource (i, j) by configuration k.

Discrepant outputs lead to a unit increment in the value of all H[i,j] where Uk[i,j] = 1. The

History Matrix H, with elements H[i,j] 1 < i < m, 1 < j < n, is an integer matrix used to

represent the relative fitness of individual resources. In case of a single fault, fault location is

complete when a single element in H has the maximum value in H. The output of the fault

location procedure is the coordinates of the suspected-faulty resources. The CGT-pruned GA

presented in this dissertation utilizes the output from the fault location procedure to avoid the

suspected faulty resource during the process of searching for alternate solutions.

96

5.2. CGT-Pruned Expedited Genetic Algorithm

The CGT-pruned GA presented in this dissertation utilizes resource performance information

obtained by using combinatorial group testing techniques. This information is incorporated

within the GA to evolve faster refurbishment and consequently yield higher availability. In order

to assess the advantages of the CGT-pruned genetic algorithms over previous methods, a

simulator was created. The architecture of this simulator is shown in Figure 22.

Figure 22. Genetic Algorithm Simulator

The simulator is a C++ based console application that consists of two main components: the

CGT procedure and the GA. The CGT algorithm uses the GNU Scientific Library (GSL) and

97

simulates the fault location method. The GA is implemented using an object oriented architecture

that contains classes which model the FPGA resources with flexible geometries such as the

Configurable Logic Block (CLB) and Look-Up Table (LUT) classes, and others that model the

GA such as Individual and Generation classes. When this simulator is run in the CGT-pruned

GA mode, the CGT component simulates the desired FPGA chip and obtains resource

performance information which is an input to the GA. The GA then performs evolutionary

design or reads the Seed Configuration file and performs evolutionary repair according to the

active mode of operation. In the Conventional GA mode, the CGT component is not invoked and

no resource performance information is available to the GA. The simulator has three input files

as follows:

Settings: This file contains all the parameterized settings that control the way the simulator works

such as the geometry of the simulated FPGA chip, GA settings such as the population size and

crossover rate, and the mode of operation.

Truth Table: This file contains the input/output truth table for the circuit under evolution. This

describes the desired behavior of a fully-fit configuration and is used to evaluate the correctness

of the simulated circuit‟s outputs.

Seed Configuration: This file contains the bitstream representation of the initial configuration

that the GA should start with in case of repair, i.e. the faulty design that is sought to be repaired.

This file is not required in the design mode of operation.

98

The following two output files are produced by the simulator:

Fitness Report: This file contains the history of each generation of the GA process, detailing the

maximum fitness of its best individual and its average fitness.

Best Configuration: This file contains the bitstream representation of the configuration with the

highest fitness the GA could evolve at the end of the run.

5.3. Experiments

Three experiments, each targeting a different problem, were conducted to analyze differences

between the CGT-pruned GA and conventional GAs. The first involved comparing the

performance of the two for repair. In the second, the CGT-pruned GA was enhanced using the

cell-swapping operator. The third experiment quantifies the differences in performance of the

two for the problem of designing configurations from scratch. Also, by comparing results from

the refurbishment and the design problem, the hypothesis that the repair problem is more

tractable than the design problem can be verified.

Figure 23 shows two configurations on an FPGA, where the dark squares represent resources

currently used by the configuration and the light squares represent the unused resources. The

configuration shown on the left utilizes a resource that has been affected by a fault. This

suspected faulty resource that has been identified using the CGT algorithm is indicated by a

cross. In the CGT-pruned genetic algorithm, the faulty resource is isolated and is no longer

regarded in the genetic operations that evolve a repair. Thus, all the faulty configurations which

99

involve the faulty resource will be avoided. The crossover and mutation operators are used by

the GA to modify the bitstring representation of the FPGA configurations. Crossover points can

only occur on the CLB boundaries to prevent destructive intra-CLB crossover. The mutation

operator is defined as probabilistic inversions of bits in the bitstring. A mutation might change

either the functional logic implemented in the LUT, or the inter-LUT connections.

Figure 23. CGT-pruned Genetic Algorithm Repair

A total of 120 experiments were conducted to explore the advantage of the CGT-pruned genetic

algorithms in both repair and design problems in the presence of a randomly inject single stuck at

one fault on the input of an LUT. Results have shown that CGT-pruned GA yields faster

evolved solution for both cases.

In all the experiments, the circuit evolved was a 3-bit x 2-bit multiplier which is a tractable

circuit size for the GA to evolve.

100

Table 13. GA Parameters

CLBs 15

LUTs/CLB 4

Population Size 25

Mutation Rate 0.05

Crossover Rate 0.4

Tournament Size 6

Elitism 2

The parameters shown in Table 13 were used in all the experiments. The GA parameters were

obtained by varying the parameters to optimize performance. Elitism, wherein two best-fit

individuals are carried forward to the next generation without any genetic modification, is used

to increase continuation of enhancements realized by the GA. A low crossover rate of 0.4 was

chosen since it was observed that higher values were too disruptive to the exploration of alternate

configurations.

Four types of experiments were conducted, and for each type, 30 identical experiments were

carried out to ensure statistical significance. In the first experiment, the multiplier was evolved

from scratch in the presence of fault using conventional GA. The same experiment was then

repeated using the CGT-pruned GA in the place of the conventional GA. In the repair

experiments, the multiplier was repaired using the conventional GA, and then again using the

CGT-pruned GA.

101

The simulated FPGA geometry through all the 120 different experiments has 15 Configurable

Logic Blocks (CLBs) with each CLB containing four Look Up Tables (LUTs). Each LUT has

two inputs and one output which in turn can be configured to realize one of the OR, AND, NOR,

NAND, NOT, and XOR basic logic functions. The interconnect follows a strict Feed-Forward

topology architecture. The LUTs are numbered sequentially with the lowest numbers being

connected to the inputs. The output of LUTs with higher index numbers cannot be the inputs of

LUTs with numbers lower than them as described in [17]. The fault simulated in the

experiments was a single functional logic fault in one of the LUTs.

5.4. Results and Analysis

5.4.1. Fault Location Using CGT Algorithm

In experiments involving the CGT-pruned GAs, fault location information was gained by using

the CGT algorithm. The CGT algorithm used a simulated array of 15 CLBs, with 4 LUTs in

each CLB. Thus each Usage Matrix, Uk has 60 elements. A single functional fault was simulated

in one of the 60 LUTs on the simulated FPGA. On average, over a set of 30 fault-isolation

simulations, the procedure required only 12 evaluations to correctly identify the location of the

fault, as denoted by a single element with the maximum value in the H matrix. The number of

evaluations required by the fault-location algorithm is as low as 0.02% of the average number of

generations required by the GA to design the circuit, and 0.11% of the average number of

generations CGT-pruned GA takes to realize a complete refurbishment. Thus, the isolation

102

procedure imposes a very low temporal overhead in exchange for the speedup obtained in the

refurbishment process.

5.4.2. Design in the Presence of Fault

A 3-bit x 2-bit multiplier was designed in the presence of a faulty LUT by a conventional GA

and the CGT-pruned GA. The results are listed in Table 14.

Table 14. Design of a 3-bit x 2-bit Multiplier in the Presence of a Fault

Experiment Type Conventional design CGT-pruned design

Circuit 3-bit x 2-bit Multiplier 3-bit x 2-bit Multiplier

Number of Experiments 30 30

Arithmetic Mean (Generations) 64500 53900

Standard Deviation 36000 37300

Standard Error of the Mean 7200 7450

68% Confidence Interval [57300 → 71700] [46450 → 61350]

The experimental results listed in Table 14 show that the CGT-pruned GA yields a complete

design after an average of 53,900 generations as opposed to the 64,500 generations required by

the conventional GA. However, this enhancement is not consistently substantial as shown by the

relatively standard deviations.

103

5.4.3. Repair

This experiment analyzes the effect of incorporating resource performance information in the

GA for evolutionary repair. The results are listed in Table 15.

Table 15. Repair of a 3-bit x 2-bit Multiplier

Experiment Type Conventional Repair CGT-pruned Repair

Circuit 3-bit x 2-bit Multiplier 3-bit x 2-bit Multiplier

Number of Experiments 30 30

Arithmetic Mean (Generations) 17150 10700

Standard Deviation 15650 12550

Standard Error of the Mean 2850 2300

68% Confidence Interval [14300 → 20000] [8400 → 13000]

From Table 15, and as shown in Figure 24, it is seen that the CGT-pruned GA yields

substantially faster repair than the conventional GA. Again the range of the actual mean for a

high confidence level is still wide, yet not as wide as in the design case. Since GAs in general

have a probabilistic nature, the standard deviation is large which in turn widens the range of

possible values the actual mean could fall within. The standard error of the mean can be reduced

by increasing the number of experiments conducted. The 68% confidence interval ranges for the

conventional and the CGT-pruned GAs do not intersect in the repair experiment which makes the

results more statistically significant.

104

Figure 24. Repair Progress: CGT-pruned vs. Conventional GA

Figure 25 compares the performance of the CGT-Pruned GA with that of a conventional GA for

the 3-bit x 2-bit multiplier repair experiments. In experiment 15, the CGT-pruned GA requires

only 526 generations to realize a complete refurbishment, as opposed to the 66,735 required by

the conventional GA, which corresponds to a 99.2% reduction. However, in about one third of

the experiments, the CGT-pruned GA does not always outperform the conventional GA. For

example, in experiment 25, the conventional GA performs the CGT-pruned GA by refurbishing

the faulty configuration in 76.76% fewer generations. As listed in Table 15, on average, the

CGT-pruned GA requires 10,700 generations as opposed to the 17,150 generations required by

105

the conventional GA to realize complete configuration refurbishment. This confirms Hypothesis

1 at a 68% confidence level.

Figure 25. CGT-pruned vs. Conventional GA Repair

106

Figure 26. Three Fast Runs of the CGT-pruned GA Repair

Figure 26 shows repair progress of three runs which achieved repair within 1,200 generations,

where a maximum fitness of 160 is attained at the end of 512 generations in the best case. It can

be seen in general that the GA evolves to a relatively very high fitness within the first few

hundreds of generations, but it takes it significantly more generations to reach the maximum

fitness.

In addition to the 3-bit x 2-bit multiplier, a 2-to-4 decoder was also designed and repaired using

the CGT-pruned GA. The experimental results show that the CGT-pruned GA yields a complete

design after an average of 152 generations as opposed to the 220 generations required by the

conventional GA. In the refurbishment experiments, the CGT-pruned GA converges to a

107

complete repair in 70 generations on an average, as compared to the 102 generations required by

the conventional GA.

Experiments have quantified the benefit of the CGT-pruned genetic algorithm which yields a

completely refurbished FPGA configuration in 37.6% fewer generations on average than a

conventional GA. The CGT-pruned genetic algorithm is approximately 16% faster in the case of

designing in the presence of a fault. Benefits of the CGT-pruned GA are more pronounced in

repair than in design. This is related to the fact that the search space is reduced by eliminating

faulty FPGA logic resources from the pool of unused resources in the case of repair.

108

CHAPTER 6: A NOVEL FRAMEWORK FOR MISSION

SUSTAINABILITY

As discussed in Chapter 1, sustainability is the core target of the organically computing research.

It has become very imperative to build a mathematical model to quantify this property. In this

chapter, a thorough sustainability analysis is conducted and a mathematical representation is

derived to quantify system‟s sustainability property.

6.1. Sustainability Model

Figure 27 depicts the black-box diagram view of the sustainability model presented in this

dissertation. The first input is the design resource information. It provides details of the design

FPGA resources which are subject to the faults considered in the analysis. The second input is

the distribution of each fault that might affect the mission. The third input is the repair policy

information. It includes parameters such as detection and refurbishment latencies and

depreciation. The fourth input is the Availability threshold which represents the minimum

availability level below which the mission fails. The last input is the mission duration. The

outcome from the model is the quantity of unutilized reconfigurable resources, referred to the

size of the ARP introduced in Chapter 1, which need to be budgeted for in order for the subject

design to sustain its mission lifetime. Additionally, the model shows the maximum duration the

mission can sustain above the desired availability threshold given sufficient unutilized resources

are incorporated.

109

Sustainability

Model

Design Resource Info

Fault Distribution

Repair Policy

Maximum Mission LifetimeAvailability Threshold

Mission Duration

Quantity of Reconfig.

Resources to Budget for

Figure 27. Sustainability Model Functional Block Diagram

As depicted in the diagram in Figure 27, Sustainability is acquired for a predetermined system

lifetime interval, opposite to the traditional unbounded perception of the term. Moreover,

Sustainability herein is not a number or a percentage associated with the system capability to

survive. The system cannot, for example be 70% sustainable, since that does not correspond to

any real-world condition. When planning a deployment in fault prone environment, the system

either overcomes all the failures throughout its mission lifetime, and hence remain sustainable,

or else it fails to maintain its minimum level of acceptable performance upon faults and as a

result be unsustainable.

It is important to note that the class of systems considered in this analysis is the non-reproducing

closed system. An electronic system is a system that has a fixed number of physical resources

identified at design time. These resources cannot reproduce or regenerate and likewise, cannot

emigrate from or to other systems outside the system‟s boundary. System resources include all

110

those resources directly used by the design as well as those indirectly used resources for fault

handling modules and redundant blocks.

To analyze to the crux of the problem, lets layout some fundamental definitions pertaining

system sustainability:

f(t): Fault probability distribution density as a function of time. Whether the fault distribution

follows linear, Poisson, normal, Gaussian, binomial, hypergeometric, etc distribution, it is a

significant factor that can impact system sustainability.

Ci: Cost in unit resource which denotes the fault impact as the number of resources damaged by

that fault. Different fault types may entail different resource damage patterns and therefore may

incur different cost values. Moreover, if the repair technique employed sets resources in spatial

groups “tiles” in which when a resource within a tile becomes faulty the entire tile is marked out

faulty, then the cost is equal to the number of resources in a tile.

Rd: Resources actually utilized by the design.

Rc(t): Resources consumed as function of time. This quantity represents the number of originally

unutilized resources consumed for fault recovery at any instance of time.

Ravail(t): Resources available for repair as function of time.

111

Availthr: Availability threshold which represents the minimum availability level below which the

mission fails.

T: System targeted lifetime.

Tmax: maximum duration the mission can sustain within the desired availability threshold given

sufficient Ravail.

Rrep(t): System reparability which refers to the capability of a fault-tolerant-system to repair itself

and recover from a fault. This value may degrade over time as the mission progresses.

MTTR0: Mean time to refurbish at t0, i.e. the beginning of the mission.

η: Reparability depreciating factor.

Sustainability Hypothesis: A system can be sustainable if and only if the number of resources

available for fault refurbishment at time t0, equals or exceeds the number of resources actually

needed for fault recovery throughout the mission lifetime T as shown in Eq. (2). This statement

assumes the capability of the repairing mechanism to always achieve fault repair given the

availability of resources. The characteristic that such capability to repair degrades over time as

the system undergoes faults is taken into account in the subsequent discussion.

112

Tn

n

cavail tRnR)()(

Eq. (2)

Proof: By contradiction.

The expression shown in Eq. (2) is a special case which assumes a discrete Rc(t). However, fault

incidents are modeled to occur with a continuous probability distribution function in time. If the

repair process is triggered only at discrete points in time corresponding to a “periodic check”

procedure, then Eq. (2) still holds true. If otherwise, then Eq. (2) is transformed to reflect the

general case Eq. (3).

Tn

nt

cavail dttRnR)()(Eq. (3)

Re-writing Eq. (3) into a ratio format, we get the expression shown in Eq. (4).

1

)(

)(

Tn

nt

c

avail

dttR

nR

Eq. (4)

Hence, a system could be sustainable if and only if the ratio in Eq. (4) is satisfied. Rc(t) is the

number of resources consumed on system recovery at time t. Since this is a forward-looking

value that can only be measured with certainty after such event occurs, a probabilistic model

)(
~

tRc is used to approximate the number beforehand.

113

Definition of Resource Consumption Estimator:

)(
~

tRc : Estimates the number of resources to be consumed on system recovery at time t.

Given the fault probability density function (pdf) and the cost associated with the fault event we

obtain an estimate of the number of resources consumed on system recovery over T as shown in

Eq. (5).

I

i

ii

Tn

nt

c CTdttR
1

)(
~

 Eq. (5)

Where i is the rate of the fault of the type “i”. Fault rate is the reciprocal of the Mean Time To

Failure (MTTF).

MTTF

1

Eq. (6)

MTTF can be calculated from the fault‟s pdf using the analysis which follows. From the

probability theory, the expected value of a random variable x is given by:

 dxxxfXE)(][Eq. (7)

Since the random variable discussed herein is time, the negative part of the integration is omitted

as shown in Eq. (8):

114

0

)(][dtttfTEMTTF Eq. (8)

As a result, Eq. (4) becomes:

1

)(
~

)(

Tn

nt

c

avail

dttR

nR
,

substituting for)(
~

tRc from Eq. (5) and Eq. (8):

1

)(

)(

1

I

i

n

i

i

avail

dtttf

C
T

nR

Eq. (9)

If f(t) represents the resource fault pdf instead of the design fault pdf, Eq. (9) becomes:

1

)(

)(

1

I

i

n

i

di

avail

dtttf

RC
T

nR

Eq. (10)

Eq. (10) does not take into account the fact that unutilized resources are fault prone too. Hence,

it becomes:

115

1

)(

)]([

)(

1

I

i

n

i

availdi

avail

dtttf

nRRC
T

nR

Eq. (11)

Let ρ denote the faulty resource ratio throughout the mission:

I

i

n

i

i

dtttf

C
T

1
)(

Eq. (12)

Rewriting Eq. (11) accordingly:

1

1

)(

d

avail

R

nR

Eq. (13)

 Eq. (13) hereafter is called the Sustainability Test Ratio (STR). It holds true under the following

assumptions:

Assumption 1: Faults are independent.

Assumption 2: Successful reparability given sufficient number of unutilized resources.

Assumption 3: Constant fault arrival rate. Most common analysis assumes the “Exponential

Failure Law” in which the fault rate is assumed constant. This is based on the bathtub curve

relationship between the fault rate and time where the fault rate is very high in the beginning

116

“Infant Mortality Phase” then it stabilizes “Useful Life Period” and finally it grows high again

“Wear-Out Phase.”

Assumption 4: MTTR < MTTF. Once MTTR becomes greater than MTTF, the system becomes

unavailable.

6.1.1. Combining Multiple Faults

When multiple independent fault types exhibit different pdfs impact the same resource type with

the same cost factor, then f(t) that represents the combined pdf of all the faults can be obtained to

simplify the analysis. For example, if we have two independent types of faults, the combined pdf

is calculated as follows:

)()())(1)(())(1)(()(211221 tftftftftftftf Eq. (14)

To limit the scope of this analysis to a tractable boundary, the single fault model is assumed. In

the single fault model, only one fault can occur at a certain instance of time. In that case, the

exclusivity of fault occurrence makes faults no longer independent. Under the single fault

model, Eq. (14) reduces to:

))(1)(())(1)(()(1221 tftftftftf Eq. (15)

117

For N different pdfs and under the single fault model, the combined pdf becomes:

N

i

N

in
n

ni tftftf
1 1

))(1()()(Eq. (16)

Substituting in Eq. (12), the failed resource percentage throughout the mission for the combined

faults becomes:

0 1 1

))(1()(dttftft

C
T

N

i

N

in
n

ni

combined Eq. (17)

6.1.2. Resource Recycling

When a fault occurs, the resources impacted can be affected by the fault differently. Some

resource can be totaled while others could become partially broken. For example, when a TDDB

fault occurs in a 4-input LUT in an FPGA chip on one of its input pins, it can cause a stuck-at

fault on that input port. This incident renders that LUT failing to serve its functionality as a 4-

input function generator. Nevertheless, this same defective LUT can still be used in another part

of the system logic as a 3-input function generator that doesn‟t exploit the faulty input as shown

in Figure 28 below.

118

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

MSB

LSB

A

B

C

D

(stuck-at-1)

F

Un-addressable

region due to

fault

4-input OR gate

F=A|B|C|D

Broken Function

x

x

x

x

x

x

x

x

0

1

1

1

1

1

1

1

MSB

LSB

A

B

C

D

(stuck-at-1)

F

Un-addressable

region due to

fault

3-input OR gate

F=B|C|D

Recycled Function

Figure 28. Resource Recycling

Nonetheless, not every failed resource may be recyclable. For example, a stuck-at-(zero, one or

open) fault at the output pin of an LUT leaves that output insensitive to its inputs variations and

hence makes it un-refurbishable for use as any downgraded part and consequently averts its

leveragability. Another example is the fault that causes a stuck-at-open or a slow switching gate

on any of the LUT‟s input ports. This creates a meta-stability behavior in the address decoding

logic with which output consistency becomes no longer guaranteed.

119

Upon repair, unused resources could be used by the repair mechanism to replace broken ones.

This loss of preserved resources is considered resource consumption or positive-cost in the

closed system model. Likewise, and again upon repair, some partially broken resources which

have been already retired and deemed unusable might be recycled and rehabilitated again after

being knocked out in previous repair episodes. This reemployment of a previously retired

resource is considered resource production or negative-cost in this context. Reflecting this

argument to the model we obtain the new ρ shown in Eq. (18) below:

I

i

ii

dtttf

CC
T

producedconsumed

1

0

)(

Eq. (18)

6.1.3. Reparability and its Relation to Sustainability

System‟s reparability refers to the capability of the fault-tolerant-System to repair itself and

recover at the incident of a fault. Reparability degrades exponentially by time as the system

undergoes faults during its operational lifetime. When system is placed under repair, the services

the system presents become unavailable during the repair process. Hence, it is not enough for a

sustainable system to repair itself upon fault occurrences but equally importantly do that in a

timely manner that maintains its availability. System availability in this context is the percentage

of time the system is delivering its services as shown in Eq. (19).

120

MTTRMTTF

MTTF
tyAvailabili

 Eq. (19)

 As the system might be prone to multiple fault types, the more generic availability expression is

given in Eq. (20) below.

I

i ii

i

MTTRMTTF

MTTR

lityUnavialabityAvailabili

1

1

1

 Eq. (20)

The summation in the equation above adds up the percentage of time the system is unavailable

due to all subject fault types. From the discussion in section-2.3, we will only consider TDDB

and EM hard faults. The availability equation including these faults is shown in Eq. (21).

EMEM

EM

TDDBTDDB

TDDB

MTTRMTTF

MTTR

MTTRMTTF

MTTR
tyAvailabili 1 Eq. (21)

TDDB and EM faults are repaired using complicated techniques such as cell swapping and

Genetic Algorithms or re-placement and routing. Time to repair in such cases has an increasing

trend with time. The system undergoes hard faults as time goes by and that decreases the number

of possible solutions for the repair mechanism to restore lost functionality. This leads to

increasing MTTR and hence a decaying system Availability over time. The increase in MTTR

depends on the repair mechanism. However, in general it increases exponentially with time as

shown in Eq. (22).

121

teMTTRtMTTR
0)(Eq. (22)

Where MTTR0 is the initial mean time to repair at the beginning of the mission and λ.t is

basically the cumulative number of faults the system has had up to time t. As a result, system

Availability becomes a reducing function with time as shown in Eq. (23).

)(

)(

)(

)(
1)(

tMTTRMTTF

tMTTR

tMTTRMTTF

tMTTR
ttyAvailabili

EMEM

EM

TDDBTDDB

TDDB Eq. (23)

If the minimum acceptable availability for a given mission is denoted by Availthr, then

Availablity(t) ≥ Availthr, t Є [0,Tmax] is desired. Substituting for Availthr in Eq. (23), Eq. (24) is

obtained:

max

max

max

max

1min T

EMoEM

T

EMo

T

TDDBoTDDB

T

TDDBo

EMEM

EMEM

TDDBTDDB

TDDBTDDB

eMTTRMTTF

eMTTR

eMTTRMTTF

eMTTR
Avail

 Eq. (24)

To solve Eq. (24), let
min1 Availk , C1=MTTRTDDB0, X1=ηTDDB . λTDDB, Y1 = MTTFTDDB, C2 =

MTTREM0, X2 = ηEM . λEM, Y2 = MTTFEM,

Substituting in Eq. (24) we get:

max2

max2

max1

max1

22

2

11

1

TX

TX

TX

TX

eCY

eC

eCY

eC
K

 Eq. (25)

Let maxT
ez , Eq. (25) becomes:

122

0)2()1()1(21

)(

212121
2121

YkYzCCkzCYkzYCk

xxxx
 Eq. (26)

The polynomial equation can be solved to obtain Tmax which represents the maximum lifetime in

which the subject system maintains Availmin. If only one fault type is considered for example,

Tmax can be simply calculated using Eq. (27).

0min

min
max

1
ln

1

MTTR

MTTF

Avail

Avail
T

 Eq. (27)

As a result, a system is anticipated to be sustainable if and only if T ≤ Tmax and STR ≥ 1. In

the next section, these metrics are applied to realistic benchmark circuits for illustration.

123

6.2. MCNC Benchmarks Case Study

To illustrate the sustainability model, we consider the circuits in MCNC benchmark set. Table 16

lists the resource utilization numbers of the benchmark circuits implemented on Xilinx Virtex-4

XC4VSX35 FPGA device.

Table 16. MCNC Benchmark Circuits on Xilinx Virtex-4 xc4vsx35 FPGA

Circuit Slices LUTs IOB Gates

alu4 331 645 22 4005

spex2 459 904 41 5502

spex4 441 775 28 4995

ex1010 452 754 20 4857

misex3 357 672 28 4152

seq 480 895 76 5457

spla 482 890 62 5841

pdc 338 616 56 4071

As we are targeting harsh environment and stressful operating conditions, we obtained the MTTF

numbers for TDDB and EM faults for a 90-nm technology node from [68, 71, 72]. From [72],

table-19 shows the high sensitivity of the MTTF numbers to temperature. For example, the

MTTF of XC3S5000 device drops from 49 years down to 3 years when the temperature rises

from 85°C to 125°C. In [71], the authors considered the worst case numbers in their analysis.

Their results show a TDDB failure rate of 10% LUT/year and EM failure rate of 0.2%/year in the

124

first 12-years of the MCNC benchmark circuits. On the other hand, [68] reported less sever

failure rates. For the sake of analysis and without the loss of generality, we considered two sets

of failure rate values for harsh environments: a conservative of (λTDDB 1%/year, λEM 0.2%) and a

pessimistic of (λTDDB 5%/year, λEM 0.4%). The pessimistic numbers are obtained by prorating the

rates from [71] considering a space mission where extreme temperatures may be encountered as

satellites shined upon or shadowed by sun with no atmosphere.

Genetic Algorithms are considered as the repair mechanism. Without the loss of generality,

we will assume that all the configuration bits are “essential bits” i.e. bits that make the design

erroneous when flipped. This is a strictly conservative assumption that can be relaxed given the

mission criticality. This can be replaced by a de-rating factor if tools that can extract the essential

bits of a design are available such as COSMIC, SEUPI, or Essential Bit Technology from Xilinx.

Moreover, we will assume that IiCi ,1 . This means when a fault occurs, it affects one

resource. In reality, a fault may affect parts of the resource. E.g. a TDDB fault in one transistor

of an LUT may damage one of its SRAM cells and not necessarily the entire array. Initially,

let‟s assume that the faulty LUT is completely unusable “worst case” and hence no resource

recycling is considered i.e. 0producedC . In the GA used, the circuit is divided into N groups of

contiguous resources called Tiles. Each tile has a Concurrent Error Detection CED mechanism

to detect erroneous outputs. GA convergence time grows exponentially with increased number of

genomes in the chromosomal representation. Hence, partitioning the design into multiple tiles,

each evolved separately, substantially reduces the GA scalability issues. Redundant resources are

sparse across the design in Amorphous Resource Pool ARP arrangement. Resources in ARP do

125

not have a designated functionality in design. GA makes use of ARP resources to restore lost

functionality due to fault by evolving a new functional bitstream from the FPGA fabric after

taking into account the fault. A C++ simulator was built to evaluate the GA convergence time

for a tile of 40-LUTs with 1 to 8 faults. The GA parameters are listed in Table 17. They were

selected based on preliminary runs to evaluate the optimal set of parameters for the problem in

hand.

Table 17. ARP-based GA Parameters

Parameter Value

Population Size 50

Mutation Rate 0.5%

Crossover Rate 60%

Tournament Size 5

Elitism 2

The GA convergence time is translated from simulation generations into intrinsic evolution

time using numbers previously obtained in [40]. An Arena discrete simulation model was built

for each of the aforementioned MCNC benchmarks to evaluate the reparability decay based on

the GA simulations. The simulation points were fitted into corresponding exponential curve.

MTTF and MTTR results for the conservative and pessimistic cases are listed in Table 18 and

Table 19 respectively. Should another repair mechanism be considered, similar experiments need

to be conducted to evaluate the reparability decay expression and then be plugged into the

model.

126

Table 18. MCNC Benchmark Circuits ARP-based GA Reparability Decay (Conservative)

Circuit

Conservative: λTDDB=1%, λEM=0.2%

Time unit: years

MTTFTDDB MTTRTDDB(t) MTTFEM MTTREM(t)

alu4 0.155 1.97e0.2214t 0.7752 1.97e0.0443t

spex2 0.1106 2.95e0.1783t 0.5531 2.95e0.0357t

spex4 0.129 2.77e0.1904t 0.6452 2.77e0.0381t

ex1010 0.1326 2.76e0.1852t 0.6631 2.76e0.037t

misex3 0.1488 2.66e0.1709t 0.744 2.66e0.0342t

seq 0.1117 2.25e0.2307t 0.5587 2.25e0.0461t

spla 0.1124 2.24e0.2294t 0.5618 2.24e0.0459t

pdc 0.1623 2.86e0.1687t 0.8117 2.86e0.0337t

Table 19. MCNC Benchmark Circuits ARP-based GA Reparability Decay (Pessimistic)

Circuit

Pessimistic: λTDDB=5%, λEM=0.4%

Time unit: years

MTTFTDDB MTTRTDDB(t) MTTFEM MTTREM(t)

alu4 0.031 1.97e1.1072t 0.3876 1.97e0.0886t

spex2 0.0221 2.95e0.8914t 0.2765 2.95e0.0713t

spex4 0.0258 2.77e0.9518t 0.3226 2.77e0.0761t

ex1010 0.0265 2.76e0.9261t 0.3316 2.76e0.0741t

misex3 0.0298 2.66e0.8544t 0.372 2.66e0.0684t

seq 0.0223 2.25e1.1534t 0.2793 2.25e0.0923t

spla 0.0225 2.24e1.1469t 0.2809 2.24e0.0918t

pdc 0.0325 2.86e0.8433t 0.4058 2.86e0.0675t

127

First the model is applied to calculate Tmax for several AvailThr values [99.6% – 80%] where

complete refurbishment was mandated given the conservative deployment parameters listed in

Table 18. The results are depicted in Figure 29. The model is then used to calculate Ravail lower

bound values required to sustain the corresponding Tmax. The results are depicted in Figure 30.

As can be inferred from the results, as the AvailThr is relaxed to lower values, the mission

sustains longer durations. For instance, spex2 benchmark deployed in such an environment with

the aforementioned GA technique employed, and Availthr of 99% is anticipated to sustain for 5

years during which it will require an ARP size of around 50 un-utilized reconfigurable resources

for repair. The same mission sustainable duration drops down to a 1 year for a Availthr of 99.6%.

0

4

8

12

16

20

24

28

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 0.99 0.996

Availability Threshold

T
m

a
x

 (
Y

rs
)

alu4 spex2 spex4 ex1010
misex3 seq spla pdc

Figure 29. MCNC Tmax vs. Availability (Conservative, QOR: 100%, Simplex)

128

It can also be inferred from Figure 29 and Figure 30 that in general the missions with smaller

designs are sustainable for longer periods. Yet they require ARP sizes which makes sense

because they will sustain longer and hence will lead to more refurbishment episodes.

0

50

100

150

200

250

300

350

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 0.99 0.996

Availability Threshold

R
e
s
o

u
rc

e
s
 (

L
U

T
)

alu4 spex2 spex4 ex1010

misex3 seq spla pdc

Figure 30. Resource Required for Refurbishment (Conservative, QOR: 100%, Simplex)

Availability threshold requirements vary from one mission to another. For example, if the

mission involves a real-time live broadcast such as audio/video conversations or surveillance

missions in which continuous coverage is sought after, high availability threshold is required.

Whereas, if it is a data collection and transmission task in which there is little time sensitivity

associated, a relatively low availability threshold can be tolerated. Moreover, although high

availability thresholds might appear sufficient, the implied downtime might be more substantial

129

when taking the mission duration into consideration. For example an availability threshold of

99% implies a downtime of 15-minutes a day, 876-hours in a 10-year mission, and a complete 1

year in a 100-year mission.

In order to extend mission lifetime in which high availability thresholds are sustained, the

organic GA-based RARS architecture described in Chapter 3 can be used. Upon failure of one

Functional Element (FE), the Autonomic Element (AE) places the system into triplex mode. This

will guarantee a correct output if at least two of the three FEs are working properly. This

arrangement leads to increased fault tolerance in the system as a whole, and consequently results

in an extended mission lifetime with high availability threshold sustained.

In order to better understand the advantage of using the RARS scheme to extend the mission

lifetime, let the availability of the three FEs be: A1, A2, and A3 respectively. Then the

availability of the organic unit becomes:

321132231321)1()1()1(AAAAAAAAAAAAARARS Eq. (28)

Eq. (28) combines the incidents in which the three or any two of the three FEs are available.

Since the three units are identical and are implemented on the same device, it is reasonable to

assume that A1 = A2 = A3. In this case Eq. (28) becomes:

32 23 AAARARS Eq. (29)

130

From Eq. (29) above, if the mission availability threshold requirement is 99.9% for example,

then each unit needs to maintain a threshold of only 98% which is a considerable gain. Figure 31

and Figure 32 show the extended mission lifetime of the MCNC benchmarks under RARS setup

and the resource requirements respectively. It can be seen from the figure that higher availability

levels such as 99.99% that were intractable in the simplex configuration are now achievable

under RARS. Another look at the spex2 benchmark numbers with RARS configuration, it can be

seen that the same reference point of 99.6% Availthr, TMax went up from 1 year in simplex to

more than 9 years in triplex which represents an order of magnitude enhancement.

0

4

8

12

16

20

24

28

32

0.
8

0.
82

0.
84

0.
86

0.
88 0.

9
0.

92
0.

94
0.

96
0.

98
0.

99

0.
99

6

0.
99

99

Availability Threshold

T
m

a
x

 (
Y

rs
)

alu4 spex2 spex4 ex1010

misex3 seq spla pdc

Figure 31. MCNC Benchmarks Tmax versus Availability (Conservative, 100%QOR,

RARS)

131

The extended mission lifetime due to RARS does not come at no expense, on the contrary, it

entails area and power penalties over the simplex configuration. From sustainability point of

view, RARS scheme requires larger ARP sizes in order to refurbish the three units. Figure 32

shows the number of resources needed for refurbishment for the RARS version of the circuits

from the MCNC benchmark. Considering spex2 circuit again, the resources required went up

from 11 in simplex to 300 under TMR for 99.6% Availthr. This is not solely due to RARS

topology, but also due to the extended mission lifetime under RARS which incurs more

refurbishment episodes.

0

200

400

600

800

1000

1200

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 0.99 0.996 0.9999

Availability Threshold

R
e
s
o

u
rc

e
s
 (

L
U

T
)

alu4 spex2 spex4 ex1010

misex3 seq spla pdc

Figure 32. Resource Required for Refurbishment (Conservative, 100%QOR, RARS)

Another important attribute to consider is the Quality-Of-Refurbishment (QOR), which

represents the fitness level at which refurbished design is qualified for functional operation. In

132

many cases, mission can still make use of a partially refurbished design. For example, in video

processing applications the system may be useful despite the missing or clobbered few pixels in

a frame. Since fitness is what guides the evolutionary search, the GA focuses on the genes of

features that give the highest contribution to the fitness of the individuals. These genes - quite

interestingly - converge relatively early in the evolution process and then it takes most of the GA

time to resolve the remaining finer parts of the problem. This property is clearly inferred from

the results listed in the fourth column in Table 20.

Table 20. ARP-based GA Evolution Results

Faults
Ave. # Generations

95% Fitness

Ave. # Generations

100% Fitness

% of the GA Runtime

to evolve 95% Fitness
Runs

1 114 3962 2.88% 100

2 1230 31352 3.92% 50

3 3920 38601 10.16% 50

4 9238 63307 14.59% 30

5 11958 88746 13.47%
Interpolated

(Curve Fitting)

6 19527 133248 14.65%
Interpolated

(Curve Fitting)

7 31887 200066 15.94%
Interpolated

(Curve Fitting)

8 51981 290643 17.88% 10

Figure 33 shows how various MCNC benchmark lifetimes are substantially extended when

repair process stops once partial refurbished designs with QOR of 95% are evolved.

133

0

5

10

15

20

25

30

35

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 0.99 0.996

Availability Threshold

T
m

a
x

 (
Y

rs
)

alu4 spex2 spex4 ex1010

misex3 seq spla pdc

Figure 33. MCNC Benchmarks Tmax versus Availability (Conservative, QOR: 95%,

Simplex)

Considering spex2 benchmark numbers again, it can be seen that the same reference point of

99.6% Availthr, TMax went up from 1 year to about 12 years. It goes further up to 19 years with

RARS and QOR of 95% as shown in Figure 34. Similar results were obtained for the

pessimistically severe environment parameters listed in Table 19. The pessimistic numbers are

discussed for the real-life use-case in the following section.

134

0

5

10

15

20

25

30

35

40

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 0.99 0.996 0.9999

Availability Threshold

T
m

a
x

 (
Y

rs
)

alu4 spex2 spex4 ex1010

misex3 seq spla pdc

Figure 34. MCNC Tmax versus Availability (Conservative, 95%QOR, RARS)

6.3. Sustainability of a Realistic Mission Use-Case

FPGAs have been commonly deployed in space. Examples are plenty such as MARS Rovers [88],

THEMIS [64], NASA DAWN [89], SpaceCube [90], and many others. There is a policy for all

future US space missions to be "reprogrammable". This indicates the growing importance

autonomous FPGA-based systems are gaining in this domain.

The use-case presented in this section is based on the MESSENGER space mission [91]. This is

an on-going 8-year mission to explore planet Mercury. The harshness of the environment this

mission undergoes is immense. The sunny side of the planet is at (800°F) while the dark side is

at (-300°F). Due to the limited payload technical details, we are hypothesizing an FPGA payload

135

of the edge-detector design described in Chapter 3 under the organic GA-based RARS

architecture. A RARS-based 256x256pixels 50MHz Sobel Video Edge Detector implemented on

XCV4SX35 Xilinx Vertex-4 FPGA is considered. RARS can run under simplex, duplex, or

triplex Functional Element (FE) configurations depending on the fitness of its FEs and the

resource availability. It implements intrinsic GA that places the actual FPGA chip in the loop for

online fitness assessment. Evolution takes place using the random single point crossover and

mutation genetic operators. After partitioning the edge-detector‟s design into ARP tiles of 40-

LUT each, and using the GA times obtained in [40] after scaling to Vertex-4 and the partial

reconfiguration latency from [92], we obtained MTTR(t) = 0.571e
0.0306λt

. GA parameters used are

listed in Table 17. The mission is assumed to be tolerant to soft faults through radiation-

hardening techniques and through scrubbing inherent in RARS. Since the MTTRsoft <<

MTTRhard, we are not including soft-faults in the analysis.

Again, we used the MTTFTDDB and MTTFEM values reported in [71] which corresponds to the

same 90-nm technology node. Using the sustainability model, we obtained the results for the

conservative and pessimistic environments shown in Table 21 and Table 22 respectively.

136

Table 21. RARS Sobel Edge-Detector with ARP-based GA Sustainability Results

(Conservative)

Conservative: λTDDB=1%, λEM=0.2%

Time unit: years

Constant Model

Inputs

Variable Model Inputs
Sustainable Ravail

(LUT)
Tmax

QOR MTTRTDDB(t) MTTREM(t) AvailThr

T = 8
MTTFTDDB=0.17

MTTFEM=0.83

Rd=600

LUT/FE

100% 6.4E-4e0.156t 6.4E-4e0.032t
99.99% × 53 2.71

99.9% 231 10.9

95% 6.5E-5e0. 183t 6.5E-5e0. 037t 99.99% 289 13.27

Table 22. RARS Sobel Edge-Detector with ARP-based GA Sustainability Results (Pessimistic)

Conservative: λTDDB=5%, λEM=0.4%

Time unit: years

Constant Model

Inputs

Variable Model Inputs
Sustainable Ravail

(LUT)
Tmax

QOR MTTRTDDB(t) MTTREM(t) AvailThr

T = 8
MTTFTDDB=0.03

MTTFEM=0.42

Rd=600

LUT/FE

100% 6.4E-4e0.782t 6.4E-4e0.063t

99.6% × 61 0.60

90% × 423 3.52

80% × 520 4.15

50% × 722 5.30

95% 6.5E-5e0.729t 6.5E-5e0.073t

99.6% × 356 3.05

90% × 761 5.5

50% 1415 8.15

137

As can be seen from the results in Table 21, where conservative deployment conditions are

assumed, the design can sustain the 8-year mission with 99.9% availability and QOR of 100%

under RARS configuration. Furthermore, it can sustain that level of performance for around

11years. It requires an ARP of 231 resources to be budgeted for refurbishment. The Availability

degradation and ARP resources consumed during the 8-year Messenger mission with the

hypothetical Sobel Edge-detector in RARS are shown in Figure 35.

Figure 35. Sobel Edge-detector Availability and ARP Consumption (Conservative)

For QOR of 95%, which is equivalent to 3k bad pixels in an edge detected frame of 65k-pixels,

the mission can sustain up to 13.27 years. A triplex configuration with modules of individual

138

QOR of 95% has a higher resultant QOR on the voted output given the probability of different

failure articulation amongst the three modules. Therefore, the numbers above represent the worst

case values.

On the other hand, if we assume the pessimistically severe conditions which might represent the

conditions in which the satellite is close to the sun-shined upon surface of Mercury, we notice

that mission sustainability drops to significantly shorter periods. As can be seen in Table 22, with

no QOR degradation, the design could barely sustain 99.6% availability for as short as 0.6 years.

The longest period the design is able to sustain is around 5-years with 50% availability. This

means a downtime of 2.5years. To achieve that, an ARP size of 722 resources is needed which is

40% of the actual design size in triplex configuration. The mission is only sustainable QOR of

95% and availability threshold of 50% is tolerable. Although this might be considered a very

poor system performance, yet, under such severe conditions, where aging is expedited at such

high rates, systems typically become un-usable. With the fault tolerance built in RARS, the

system will intermittently continue capturing images 50% of the time for Mercury with QOR of

95% which is by far better than total shutdown. The Availability degradation and ARP resources

consumed during the 8-year Messenger mission with the hypothetical Sobel Edge-detector in

RARS under the pessimistically sever conditions are shown in Figure 36.

Moreover, higher availability can be sustained at the expense of quality. Hence, using the

sustainability model presented herein, such Availability-QOR trade-offs can be analyzed and

favored between according to the mission needs at design time.

139

Figure 36. Sobel Edge-detector Availability and ARP Consumption (Pessimistic)

Besides the sustainability benefits RARS offers, it also incurs less power consumption compared

to the widely-adopted Triple Modular Redundancy (TMR) industry standard. Due to the

capability to toggle between duplex and triplex modes, RARS consumes less dynamic active

power over TMR. In order to quantify the power benefits of RARS, we will consider the TMR

platform described in [16] augmented with our enhanced intrinsic evolution. A percentage of

33% power savings result from RARS when the organic unit is running in duplex mode. RARS

140

operates in duplex when the three FEs are healthy and available. Hence, the probability of

running in duplex mode denoted by Pduplex is shown in Eq. (30).

321 AAAPduplex Eq. (30)

From Table 21, RARS is able to attain AvailThr of 99.9% for the 8-year mission to Mercury

under conservative failure model. This requires Availability of 98.2% for each individual FE

using Eq. (29). Since the three FEs have identical Availability, Pduplex = 94.7%. This means that

RARs consumes 33% less active power during 7.5 years out of the 8-year mission lifetime over

TMR. Since Availability is a decreasing function with time as shown in Eq. (24), similarly power

savings are also decreasing with time as the system spends more time in triplex mode.

It is worth mentioning that we don‟t consider Availability numbers less than 50% for triplex

voting systems. The availability of the entire system falls below the availability of a single

module under simplex configuration once the availability of the individual modules falls below

50%. This can be inferred from Eq. (29).

141

CHAPTER 7: CONCLUSION

This dissertation introduces a novel sustainable autonomic architecture for organically

reconfigurable FGPA-based computing systems. The following sections summarize the work

done, provide research-related discussions on points of interest, and identify several directions

for future extensions to this work.

7.1. Technical Summary

A novel architecture consists of a hardware-based organic layer and a software-based cognitive

layer is presented. Components at the organic layer are organized into overlapping functional

groups called Organic Units (OU). Each OU bears responsibility for a particular set of mission-

relevant tasks. Self-monitoring and self-healing is demonstrated at the OU level. Within the

cognitive layer, monitoring and diagnostic processes continually track the behavior of these

functional groups and determine whether their behavior characteristics fall within expected

profiles.

Challenges include the AE impact on the functional flow due to augmenting additional non-

functional monitoring modules within the datapath, the system capability to gracefully switch

between different modes according the health status, Organic-Cognitive communication

infrastructure, and others were addressed and undertaken. To verify the architecture validity, an

organic layer is prototyped on XC4VSX35 FPGA on Xilinx Virtex-4 Video Starter Kit. A Sobel

2-D spatial gradient measurement video edge-detector was implemented as the organic

142

functional element use-case. This represents a class of applications commonly found on

satellites. Moreover, the software-hardware communication mechanism is implemented and

verified along with a complete implementation of an intrinsic evolution platform for evolutionary

repair. Stuck-at one and stuck-at zero hardware faults are introduced in several potential

scenarios. An appropriate and smooth transition from the different redundancy modes is

demonstrated.

A 16-bit wide serial message-based communication protocol between the cognitive and organic

layers is developed. Experiments have shown that a transmission rate of 5mbps is achievable

using the Xilinx Parallel Cable 4. The efficiently concise protocol message allows the system to

handle more than 300,000 messages per second per FPGA board. Hence no communication

bandwidth congestion is observed.

A Genetic Algorithm (GA)-based hardware/software platform for intrinsic evolvable hardware is

designed and evaluated for digital circuit repair using a variety of well-accepted benchmarks.

Dynamic bitstream compilation for enhanced mutation and crossover operators is achieved by

directly manipulating the bitstream using a layered toolset. Experimental results on the edge-

detector organic system prototype have shown complete organic online refurbishment after a

hard fault. In contrast to previous toolsets requiring many milliseconds or seconds, an average of

0.47 microseconds is required to perform the genetic mutation, 4.2 microseconds to perform the

single point conventional crossover, 3.1 microseconds to perform Partial Match Crossover

(PMX) as well as Order Crossover (OX), 2.8 microseconds to perform Cycle Crossover (CX),

and 1.1 milliseconds for one input pattern intrinsic evaluation. These represent a performance

143

advantage of three orders of magnitude over the JBITS software framework and more than seven

orders of magnitude over the Xilinx design flow. Combinatorial Group Testing (CGT) technique

was combined with the conventional GA in what is called CGT-pruned GA to reduce repair time

and increase system availability. Results have shown a substantial speedup enhancement of up to

37.6% convergence advantage using the pruned technique.

Graceful degradation was achieved with the existence of multiple faults and relatively fast

refurbishment of 95% of functionality in the few hundreds of generations has resulted in fast

system recovery even under multiple faults even when the three functional elements were

malfunctioning.

Lastly, in this dissertation a quantitative stochastic sustainability model for FPGA-based

reparable systems is formulated. This model estimates at design-time the resources required for

refurbishment in order to meet mission availability, quality and lifetime requirements in a given

fault-prone ecosystem. This model is applied to circuits from the MCNC benchmark set with

variations of parameters for illustration. Results show the estimated capability of these designs to

sustain harsh environments with the means of GA-based evolutionary repair. Various

Availability, Longevity, and Quality trade-offs are discussed. Additionally, the sustainability of a

real-life space mission is analyzed. The analysis demonstrates how mission‟s sustainability and

useful lifetime can be extended by exploiting FPGA resources available aboard when applied to

our organic sustainable platform. Results show how mission availability drops from 99.9% to

50% with 5% degradation in quality in order to sustain an 8-year mission as the aging-induced

144

failure rates jump from conservative value (MTTFTDDB=0.17years , MTTFEM=0.83years) to rather

pessimistic values (MTTFTDDB=0.03years , MTTFEM=0.42years).

Furthermore, un-utilized resources budgeted for refurbishment purposes are arranged into

Amorphous Resource Pools (ARP) are estimated using the model. The overhead of ARP can

range from relatively small values of 12% in the conservative environment up to large

percentages of 78% in the pessimistic assumed environment on top of the triplex overhead to

cover the loss in resources due to hard faults.

7.2. Future Work

The work presented in this dissertation introduces a comprehensive platform that closes the loop

from theory, to implementation, and ending by evaluation and analysis. However, as in other

scientific fields, the research does not stop at a certain point, and the call for enhancement and

advancement shall go on. Likewise, the work herein builds on previous research efforts and

technology improvements, and also serves as a framework for future efforts to carry out new

breakthroughs and research directions. Below are few directions that I would like to pursue

within my post-graduate research activities:

i. Complete System-on-Chip (SoC) Platform:

The organic architecture implementation presented in this dissertation incorporated a PC to

host the cognitive layer software stubs and the GA engine. This implementation entails many

overheads and limitations such as the weight, area, and power overheads of the host PC, and

145

the noisy bandwidth-bound communication medium. The sustainability of the entire PC

components becomes another hurdle to worry about.

The proposed architecture, however, is not limited to this implementation, and those software

stubs are likely to perform better should they be implemented on the same chip where the

organic layer they monitor resides. Thankfully, most of the recent FPGAs come equipped

with a general purpose microprocessor on chip such as IBM PowerPC. If GA is carried out

on the on-chip processor, and uses the Internal Configuration Access Port (ICAP) for faster

reconfiguration, this will naturally yield a much faster evolution and smaller MTTR and

consequently better system sustainability. Having that done, on-chip software stubs fault-

tolerance becomes another horizon to explore.

ii. Fault Tolerant Golden Element:

Within the autonomic computing context, golden elements which represent a single point of

failure are not tolerable. However, eliminating them given the numerous probable fault

scenarios is not possible. The existence of single points of failure in the system reduces its

reliability and could jeopardize its chances to demonstrate its organic properties. Although

we cannot eliminate the golden elements from the organic system, we can still minimize their

effect by minimizing their failure articulation probability. Such state can be achieved by

creating a cross-monitoring capability among the system‟s golden elements.

In the proposed organic architecture, the Autonomic Element (AE) is a golden element within

the Organic Unit (OU). Therefore, the organic architecture described in this dissertation

146

enables the cognitive layer to catch potential problems within the AEs and reconfigure with

alternative bitstreams to work-around the issue. This approach will be limited by the capacity

of the alternative bitstreams. A better approach to pursue is by leveraging the identical AEs

of the multiple OUs on the same chip into a triplex configuration similar to the current FE

configuration. This will enable AE intrinsic evolutionary refurbishment. Similarly, the

identical AE design property leveraged to investigate cycling one AE temporally to monitor

all the OUs within a chip. The scheduling of the AE monitoring time allocation to the various

OUs can be prioritized according to the criticality of the task the OU performes.

iii. CGT-Pruned GA with Multiple Faults:

CGT-Pruned GA repair technique was evaluated for a single fault scenario. Nevertheless, as

time goes by, the system is likely to get hit with more faults and consequently the culprit

resources number increases. This implies that a wider portion of the un-useful evolution

search space will likely be pruned out which leads to even higher convergence speedup

advantage.

iv. Sustainability Model for Multi-Phase Missions:

Many missions are staged into multiple phases. Each phase may have its specific availability

and performance needs and may experience different deployment environment

characteristics. The sustainability model shall be further extended to cover multi-phase

missions where different Availability, Quality, and Longevity trade-offs take place in each

phase.

147

APPENDEX A: AES AND FES USE-CASES

148

Table 23. Actors Interacting with AES

Actor Description

CLS (Autonomous
Supervisor)

This is the module from the cognitive layer interacting with the AES
stub.

AE (Autonomic Element) AE Hardware circuitry that resides on the FPGA, communicates
with AES via USB port.

FE (Functional Element) Functional module that resides on the FPGA.

PM (performance monitor) The module in the cognitive layer responsible for organic layer
performance monitoring.

RM (Refurbishment
Manager)

Another software module responsible for refurbishing AEs and FEs
upon the request of CLS.

Timer Responsible for firing periodical events to the AES to synchronize
its functionality with other modules.

Table 24. AES and FES Use Cases

Use Case Actor Description

Establish Connection with AE AE The AES should be able to establish connection with the AEs through USB
ports. This connection will be used later to carry messages between the organic
layer and the AES.

Send Message to AE AE AES needs to send messages to AEs in order to send commands, request
status, and control the overall operation of the organic layer.

Receive Message from AE AE AES should be able to poll the USB port for messages coming from the
hardware, including reporting and status messages.

Establish Connection with CLS CLS This connection should be initialized for communication between the AES and
the cognitive layer.

Send Message to CLS CLS AES collects statistics and reporting messages from the organic layer and
pushes it to the CLS through the available socket connection.

Receive Message from CLS CLS Control messages from the CLS to the organic layer is collected by the AES
and marshaled with the required parameters to the AEs and RM.

Initiate Refurbishment RM The AES should be able to command the RM to start the refurbishment
process; all the settings should be specified along with the bit files that have to
be used.

149

Use Case Actor Description

Read Refurbishment Results RM Upon refurbishment completion, the RM reports the results to the AES who in
turn sends them to the CLS to facilitate decision making in the cognitive layer.

Check Queue Timer The AES checks the message queues periodically searching for new messages
from the various modules; this event should be triggered by a timer module that
can be customized to support different level of responsiveness.

Establish Connection with FE FE The FES should be able to establish connection with the FEs through USB
ports. This connection will be used later to carry messages between the organic
layer and the FES.

Receive Message from FE FE FES should be able to poll the USB port for messages coming from the FEs.

Establish Connection with PM PM This connection should be initialized for communication between the FES and
the cognitive layer.

Send Message to PM PM FES sends functional output from the organic layer and pushes it to the PM
through the available socket connection.

Figure 37 depicts the Use-Case diagram of the AES and FES. Unified Modeling Language

(UML) notation is used where the ovals represent use cases. The multiplicity of the relations is

shown on the arrows to describe the numerical aspect of the relation.

150

AE

Establish

Connection with AS

AS

1

1

Recieve Message

from AS

1

1

Send Message to AS

1

1

Recieve Message

from AE

Establish

Connection with AE

Send Message to AE

1

1..*

1

1..*

1

1..*

Timer

Check Queue

1..*

1

RM

Initiate

Refurbishment

Read Refurbishment

Results

1
1

1
1

Establish

Connection with FE

FE

1
1..*

Receive Message

from FE
1 1..*

PM

Establish

Connection with PM

Send Message to PM

1
1

1
1

Figure 37. AES Use-Case Diagram

151

Table 25. AES and FES Class Description

Class Description

Connection Responsible for managing the physical communication with the external modules. It
supports two implementations (USB, Socket).

CommunicationController Manages one or many connections (e.g., multiple USB connections to different AEs).
Instantiated and used by the module managers.

Message Simple class that carries message information.

Timer Responsible for firing cyclic events to module managers to support periodic processes
(e.g., polling messages, manage inbox, etc.)

Dispatcher Implements asynchronous communication between module managers.

AEManager Holds detailed view of the organic layer (could be read from a configuration file that
contains the organic layer structure such as available AEs/FEs and their addresses)
and manages sending and receiving messages to/from AEs.

CLSManager Responsible for sending and receiving messages to/from CLS.

RMManager Controls initiating refurbishment and reporting results.

FEManager Holds details of the FEs in the organic layer and manages receiving functional output
from the FEs.

PMManager Responsible for sending messages to the PM in the CL.

152

APPENDEX B: ORGANIC-COGNITIVE COMMUNICATION PROTOCOL

153

Table 26. Component Interactions

Component Description

Organic Unit

This is the smallest integrated unit in the organic layer. It consists of one AE and three FEs.
Initially, it is configured with only two FEs online and one cold-spare standby. If discrepancy is
detected, the AE switches to TMR mode (i.e., puts the cold-spare FE online and implements a
voting scheme).

An FPGA can accommodate one or more organic unites based on the unit complexity and the
FPGA resources.

FES
Functional Element Stub: This is a software component responsible for polling the messages
from the FEs through a physical link (e.g., USB connection) and delivering them to the PM
module in the cognitive layer through sockets.

AES
Autonomic Element Stub: This is a software component responsible for polling the messages
from the AEs through a physical link (e.g., USB connection) and delivering them to the CLS
module in the cognitive layer through sockets.

RM
Refurbishment Manager: This is a software component responsible for running refurbishment
algorithms (e.g., Genetic Algorithm).

CLS
Cognitive Layer Stub. This is a software component in the cognitive layer responsible for
delivering status messages and refactoring instructions to/from the cognitive layer

154

Table 27. FES Connection Protocol

Protocol Attribute Description

Implementation Socket communication

Purpose Report functional outputs of organic units

Direction Unidirectional from FES to CLS

Communication Type Asynchronous (Producer/Consumer)

Message Type String

Message Format

D

n-bit Functional

Output

b0b1b2bn-1

Discrepancy

Bit

TIME_STAMP

TBD

Message Trigger(s) Functional output ready

Message Description
Message sent from the FES to the CLS at every functional output
production. The Discrepancy bit is asserted upon discrepant outputs
indicating the invalidity of the current output.

155

Table 28. AES Connection Messages

No. Message Name Description

From CLS To AES

1 FE_STATUS_REQUEST Message sent from the CLS to the organic layer to query the status of
any FE.

2 TMR_ACTIVATION_REQUEST The CLS sends this message whenever TMR is needed; this could be
due to performance degradation.

3 REFURBISH _REQUEST The CLS sends this message when refurbishment is needed, either
due to faulty FE(s) or performance degradation below mission
requirements.

4 FE_STATUS_CHANGE _REQUEST The CLS sends this message whenever FE status change is needed.

5 PING _REQUEST The CLS sends this message to check the health of the AE(s)

6
RECONFIGURATION_REQUEST

The CLS sends this message to reconfigure an FE and change its
 functionality.

7 DUPLEX_ACTIVATION_REQUEST The CLS sends this message to revert TMR mode into the normal
duplex mode upon successful repair or broken FE decommission.

8 GET_OL_CONFIGURATION_REQUEST The CLS sends this message to request the configuration of the
organic layer.

From AES To CLS

9 DISCREPANCY_REPORT This message is sent when an AE detects discrepancy among its FEs.
The message contains the input that articulated the discrepancy along
with the FE configuration at that time (TMR or duplex).

10 FE_STATUS_REPORT Response to message 1 and 4

11
TMR_ACTIVATION_REPORT

Either as a response to message 2 or an acknowledgment of the TMR
activation in case it is autonomously done by the organic layer.

12 REFURBISH _REPORT Response to message 3. The message includes the final fitness of the
refurbished AE(s).

13 PING_REPLY Response to Message 5

14 RECONFIGURATION_REPORT Response to Message 6

15 DUPLEX_ACTIVATION_REPORT Response to Message 7

16 OL_CONFIGURATION_REPORT Response to Message 8

156

Table 29. AES Connection Messages

Protocol Attribute Description

Implementation Socket communication

Direction Bidirectional

Communication Type CLSynchronous (Producer/Consumer)

Message – 1

Message Name DISCREPANCY_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

AE_ID FE_ID TMR FAULT_ ARTICULATION_ INPUTMSG_ CODE

5
Log2 |AE|

2 1 n- bit Functional Input

TIME_STAMP

TBD

Message Trigger(s) Discrepancy detected by the AE

Message Description

Message sent whenever an AE detects discrepancy among its FEs. The
TMR flag is used to specify the configuration of the organic unit when
the discrepancy was detected. A TMR flag value of 1 indicates that the
3 FEs were simultaneously used in voting scheme, and the FE_ID in
this case specifies the discrepant FE, whereas a 0 value indicates the
original configuration of two online FEs and one Cold-spare standby
(duplex mode), the FE_ID reflects the address of the cold-standby FE in
this case. The n-bit FAULT_ARTICULATION_INPUT provides the CLS
with the actual input that articulated the discrepancy; this could be
useful for the CLS and/or RM to regenerate the fault scenario during the
refurbishment process.

157

Protocol Attribute Description

Message – 2

Message Name FE_STATUS_REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) CLS initiated according to the Cognitive Layer logic.

Message Description

This message is sent from the CLS to the organic layer to query the
status of any number of FEs. The addresses of the AEs/FEs can be
specifically provided to target specific FE or a broadcast address (e.g.
address zero) can be used to query multiple FEs. For example, if the
AE_ID is 3 and the FE_ID is 0, the AE that has the address of (3) has to
respond with three FE_STATUS_REPORT messages (Message-3) for
each one of its FEs. Also, if the AE_ID field is zero and the FE_ID is 2,
all AEs in the organic layer have to report the status of their FE with the
address 2. It is apparent that an FE_STATUS__REQUEST message
with both AE_ID and FE_ID fields filled with zero means a full broadcast
to the organic layer to send the status of every single FE to the
cognitive layer.

158

Protocol Attribute Description

Message – 3

Message Name FE_STATUS_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

TIME_STAMP

TBD

AE_ID FE_ID STATUSMSG_CODE

5
Log2|AE|

2 3

Message Trigger(s) Response to Message-2

Message Description

Responding to Message-2, an AE has to send one
FE_STATUS_REPORT message per FE to the CLS. Contrary to
message-2, The AE_ID and FE_ID fields cannot specify a broadcast
address in this message; they have to explicitly indicate the sender
identity.

Message – 4

Message Name TMR_ACTIVATION_REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

TIME_STAMP

TBD

AE_IDMSG _CODE

5
Log2 |AE|

Message Trigger(s)

CLS initiated according to the Cognitive Layer logic. It could be due to
performance degradation below the mission requirements for this
organic unit (FEs and AE).

Message Description

CLS can send this message to one/all AEs in the organic layer to trigger
TMR configuration activation. The targeted AE(s) respond by activating
TMR among FEs and confirm back by sending Message-5
(TMR_ACTIVATION_REPORT)

159

Protocol Attribute Description

Message – 5

Message Name TMR_ACTIVATION_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

TIME _STAMP

TBD

AE_IDMSG_CODE

5
Log2 |AE|

Message Trigger(s)
- Response to Message-4

- Autonomous response taken by the AE itself.

Message Description

As described in message-4, this message is a confirmation from AE to
CLS that TMR has been configured among the three FEs as requested
or a notification to the CLS that the AE has autonomously activated the
TMR mode.

Message – 6

Message Name REFURBISH _REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

TIME_STAMP

TBD

AE_ ID FE_IDMSG_CODE

5
Log2 |AE|

2

Message Trigger(s)
CLS initiated according to the Cognitive Layer logic. It could be due to
one of the FEs was reported faulty, or due to performance degradation
below the mission requirements.

Message Description

This message is sent from the CLS whenever refurbishment is needed.
For example this call can initiate running GA to repair faulty FE(s). The
same principle of broadcast addressing described in Message-2 is
applicable to this message.

160

Protocol Attribute Description

Message – 7

Message Name REFURBISH _REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

TIME_STAMP

TBD

AE_ID FE_IDMSG_ CODE

5
Log2 |AE|

2

FITNESS_ VALUE

Log2|Fitness|

Message Trigger(s) Refurbishment process is finished.

Message Description
This message is sent from the AE to CLS upon refurbish completion.
The final fitness value of the refurbished FE is reported in the message
so that it can be used in future mission-specific decision making.

Message – 8

Message Name FE_STATUS_CHANGE _REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

TIME _STAMP

TBD

AE _ID FE_IDMSG_CODE

5
Log2 |AE|

2

STATUS

Log2|STATUS|

Message Trigger(s)

- FE is put under-repair.

- FE was refurbished and the CLS decides that it is eligible to be put
online.

- FE has failed to be refurbished and claimed un-reparable and hence
should be decommissioned

Message Description

The CLS can send this message to change the status of FE(s).
Broadcasting can be used to specify more than one FE in a single
command, provided that they will be changed to the same status. The
target AE will respond by changing the status of the addressed FE(s)
and send a confirmation of the change to the CLS (as described in
Message-2).

161

Protocol Attribute Description

Message – 9

Message Name PING _REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2 |AE|

Message Trigger(s) CLS checks that the AE is alive.

Message Description

The Ping message is used by the CLS to check the health of the AEs to
check if it is minimally responsive. The broadcast addressing can be
used to ping all the AEs in the organic layer. AEs respond to the Ping
message by sending a PING_REPLY to the CLS (As described in
Message-10)

Message – 10

Message Name PING_REPLY

Message Type String

Message Source AES

Message Destination CLS

Message Format

TIME _STAMP

TBD

AE_IDMSG_ CODE

5
Log2 |AE|

Message Trigger(s) Response to Message-9

Message Description
This message is sent from the AE to the CLS as a reply for the
PING_REQUEST (Message-9).

162

Protocol Attribute Description

Message – 11

Message Name RECONFIGURATION_REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

CONFIG_ID_

TBD

Message Trigger(s)

- AE is not responding properly (Any failure to respond such as ping
failure)

- CLS decided to change the functionality of the organic unit.

Message Description

This message is sent from the CLS to the AE(s) to change the
configuration of the corresponding FE(s). The broadcast addressing can
be used in this message. The AE will respond by downloading the
requested configuration and reply with the
RECONFIGURATION_REPORT message (Message-12)

Message – 12

Message Name RECONFIGURATION_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) Response to Message-11

Message Description
This message is a response to the RECONFIGURATION_REQUEST
(Message-11).

163

Protocol Attribute Description

Message – 13

Message Name DUPLEX_ACTIVATION_REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s)
Take one FE offline in order to: refurbish, decommission, or switch back
to normal duplex operation due to fault recovery achievement.

Message Description

As the CLS has the capability to instruct AES to switch to TMR mode
(Message-4), it can also switch it back to duplex mode under the
situations mentioned above in (Message Triggers). FE_ID field specifies
the FE module that will be taken offline (the other two FEs will be
running in duplex mode)

Message – 14

Message Name DUPLEX_ACTIVATION_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format

AE_ID FE_IDMSG_CODE

5
Log2|AE|

2

TIME_STAMP

TBD

Message Trigger(s) Response to Message-13

Message Description
Once the AE changes the configuration to duplex mode, it reports back
the new configuration to the CLS, the FE_ID fields indicates the offline
FE.

164

Protocol Attribute Description

Message – 15

Message Name GET_OL_CONFIGURATION_REQUEST

Message Type String

Message Source CLS

Message Destination AES

Message Format

AE_IDMSG_CODE

5
Log2|AE|

TIME_STAMP

TBD

Message Trigger(s)
CLS initiated when it needs information about how the organic layer is
organized

Message Description
The CLS sends this message to request the configuration of the
Organic Layer.

Message – 16

Message Name OL_CONFIGURATION_REPORT

Message Type String

Message Source AES

Message Destination CLS

Message Format Adjacency list

Message Trigger(s) Response to message-15

Message Description
The AES sends this message to report the configuration of the Organic
Layer, the organization of the organic units is sent in the format of an
adjacency list.

165

APPENDEX C: FPGA HARDWARE FAILURE RATES

166

Table 30. Detail of TDDB Lifetime in Years of Each Device [72]

167

Table 31. 90nm FPGA MTTF [71]

a: TDDB b: EM

168

LIST OF REFERENCES

[1] E. Normand, "Single event upset at ground level," Nuclear Science, IEEE Transactions

on, vol. 43, pp. 2742-2750, 1996.

[2] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, "Evaluating TMR techniques in the

presence of single event upsets," presented at the 6th Annu. Int. Conf. Military and

Aerospace Programmable Logic Devices (MAPLD), NASA Office of Logic Design,

AIAA, Washington, D.C, Sep 2003.

[3] Xilinx, "UG116 Device Reliability Report v5.11," Available At:

http://www.xilinx.com/support/documentation/user_guides/ug116.pdf, Nov 2010.

[4] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan, B. H. Pratt, H.

M. Quinn, and M. J. Wirthlin, "SRAM FPGA Reliability Analysis for Harsh Radiation

Environments," Nuclear Science, IEEE Transactions on, vol. 56, pp. 3519-3526, 2009.

[5] JEDEC, "JESD89A JEDEC STANDARD " Available at:

http://www.jedec.org/sites/default/files/docs/JESD89A.pdf, Oct 2006.

[6] L. D. Edmonds, "Analysis of Single-Event Upset Rates in Triple-Modular Redundancy

Devices," NASA Jet Propulsion Laboratory. Available at: http://trs-

new.jpl.nasa.gov/dspace/bitstream/2014/41123/1/09-6.pdf, 2009.

[7] S. Straulino, "Results of a beam test at GSI on radiation damage for FPGAs Quick-Logic

QL12x16BL and Actel 54SX32," Available at:

http://ams.cern.ch/AMS/Beamtest/doc/tof.pdf, 2000.

[8] E. Rosenbaum, P. M. Lee, R. Moazzami, P. K. Ko, and C. Hu, "Circuit reliability

simulator-oxide breakdown module," in Electron Devices Meeting, 1989. IEDM '89.

Technical Digest., International, 1989, pp. 331-334.

[9] D. J. Dumin, "Oxide Reliability: A Summary of Silicon Oxide Wearout, Breakdown and

Reliability," World Scientific Publications, 2002.

http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.jedec.org/sites/default/files/docs/JESD89A.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41123/1/09-6.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41123/1/09-6.pdf
http://ams.cern.ch/AMS/Beamtest/doc/tof.pdf

169

[10] J. R. Carter, S. Ozev, and D. J. Sorin, "Circuit-level modeling for concurrent testing of

operational defects due to gate oxide breakdown," in Design, Automation and Test in

Europe, 2005. Proceedings, 2005, pp. 300-305 Vol. 1.

[11] JEDEC, "Failure Mechanisms and Models for Semiconductor Devices," JEDEC

Publication JEP122-B. JEDEC Solid State Technology Association, Aug. 2003.

[12] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "The Impact of Technology Scaling

on Lifetime Reliability," presented at the Proceedings of the 2004 International

Conference on Dependable Systems and Networks, 2004.

[13] S. Mahapatra, V. R. Rao, B. Cheng, M. Khare, C. D. Parikh, J. C. S. Woo, and J. M.

Vasi, "Performance and hot-carrier reliability of 100 nm channel length jet vapor

deposited Si3N4 MNSFETs," Electron Devices, IEEE Transactions on, vol. 48, pp. 679-

684, 2001.

[14] J. G. Massey, "NBTI: what we know and what we need to know - a tutorial addressing

the current understanding and challenges for the future," in Integrated Reliability

Workshop Final Report, 2004 IEEE International, 2004, pp. 199-211.

[15] R. Wenjing, Y. Chengmo, R. Karri, and A. Orailoglu, "Toward Future Systems with

Nanoscale Devices: Overcoming the Reliability Challenge," Computer, vol. 44, pp. 46-

53, 2011.

[16] S. Vigander, "Evolutionary Fault Repair in Space Applications," Masters Thesis Masters

Thesis, Dep. of Computer & Information Science, Norwegian University of Science and

Technology (NTNU), Trondheim, 2001.

[17] J. F. Miller, P. Thomson, and T. Fogarty., "Designing Electronic Circuits Using

Evolutionary Algorithms. Arithmetic Circuits: A Case Study," in Algorithms and

Evolution Strategy in Engineering and Computer Science, D. Quagliarella, et al., Eds., ed

Chichester, England, 1998, pp. 105-131.

[18] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-Tolerant Evolvable

Hardware Using Field-Programmable Transistor Arrays," IEEE Transactions On

Reliability, vol. 49, September 2000.

170

[19] R. S. Oreifej, C. A. Sharma, and R. F. DeMara, "Expediting GA-Based Evolution Using

Group Testing Techniques for Reconfigurable Hardware," in International Conference

on Reconfigurable Computing and FPGAs (Reconfig'06), San Luis Potosi, Mexico,

September 20-22, 2006, pp. 106-113.

[20] H. Schmeck, "Organic Computing - A New Vision for Distributed Embedded Systems,"

presented at the Proceedings of the Eighth IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, 2005.

[21] K. Waldschmidt, "Adaptive System Architectures," in 18th International Parallel and

Distributed Processing Symposium (IPDPS'04) - Workshop 3, Washington, DC, USA,

2004, pp. 147a-147a.

[22] G. Lipsa and A. Herkersdorf, "Towards a Framework and a Design Methodology for

Autonomic SoC," presented at the Proceedings of the Second International Conference

on Autonomic Computing (ICAC‟05), Washington, DC, USA, 2005.

[23] Müller-Schloer, "Organic computing: on the feasibility of controlled emergence,"

presented at the Proceedings of the 2nd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, Stockholm, Sweden, 2004.

[24] W.-J. Huang and E. J. McCluskey, "Column-Based Precompiled Configuration

Techniques for FPGA," in The 9th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM'01), 2001, pp. 137-146.

[25] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, "On the optimal design of

triple modular redundancy logic for SRAM-based FPGAs," in Design, Automation and

Test in Europe, 2005, pp. 1290 – 1295.

[26] J. Lohn, G. Larchev, and R. DeMara, "Evolutionary fault recovery in a Virtex FPGA

using a representation that incorporates routing," in Parallel and Distributed Processing

Symposium, 22-26 April 2003.

[27] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "Low overhead fault-tolerant FPGA

systems," Very Large Scale Integration (VLSI) Systems, IEEE Transactions, vol. 6, June

1998.

171

[28] R. F. DeMara and K. Zhang., "Autonomous FPGA Fault Handling through Competitive

Runtime Reconfiguration," in of the NASA/DoD Conference on Evolvable

Hardware(EH'05), Washington D.C., U.S.A, June 29-01, 2005.

[29] M. Abramovici, J. M. Emmert, and C. E. Stroud, "Roving Stars: An Integrated Approach

To On-Line Testing, Diagnosis, And Fault Tolerance For Fpgas In Adaptive Computing

Systems," in The Third NASA/DoD Workshop on Evolvable Hardware, Long Beach,

Cailfornia, 2001.

[30] A. B. Kahng and S. Reda, "Combinatorial Group Testing Methods for the BIST

Diagnosis Problem," in Asia and South Pacific Design Automation Conference, January

2004.

[31] C. A. Sharma and R. F. DeMara, "A Combinatorial Group Testing Method for FPGA

Fault Location," in International Conference on Advances in Computer Science and

Technology (ACST 2006), Puerto Vallarta, Mexico, 23 - 25 January, 2006.

[32] G. Hollingworth, S. Smith, and A. Tyrrell, "The intrinsic evolution of virtex devices

through internet reconfigurable logic," in of the Third International Conference on

Evolvable System, April 2000.

[33] K. Takaragi, R. Sasaki, and S. Shingai, "A Method of Rapid Markov Reliability

Calculation," Reliability, IEEE Transactions on, vol. R-34, pp. 262-268, 1985.

[34] L. T. Htun, "Reliability Prediction Techniques for Complex Systems," Reliability, IEEE

Transactions on, vol. R-15, pp. 58-69, 1966.

[35] D. Banjevic and A. K. S. Jardine, "Calculation of reliability function and remaining

useful life for a Markov failure time process," IMA Journal of Management Mathematics,

vol. 17, pp. 115-130, April 2006 2006.

[36] Y.-c. Mo, D. Siewiorek, and X.-z. Yang, "Mission reliability analysis of fault-tolerant

multiple-phased systems," Reliability Engineering & System Safety, vol. 93, pp. 1036-

1046, 2008.

[37] R. Noji, S. Fujie, Y. Yoshikawa, H. Ichihara, and T. Inoue, "Reliability and Performance

Analysis of FPGA-Based Fault Tolerant System," presented at the Proceedings of the

172

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems, 2009.

[38] I. A. Papazoglou and E. P. Gyftopoulos, "Markov Processes for Reliability Analyses of

Large Systems," Reliability, IEEE Transactions on, vol. R-26, pp. 232-237, 1977.

[39] H. Tan and R. F. DeMara, "A Multi-layer Framework Supporting Autonomous Runtime

Partial Reconfiguration," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 17 July 2007.

[40] R. S. Oreifej, R. N. Al-Haddad, T. Heng, and R. F. DeMara, "Layered Approach to

Intrinsic Evolvable Hardware using Direct Bitstream Manipulation of Virtex II Pro

Devices," in Field Programmable Logic and Applications, 2007. FPL 2007. International

Conference on, 2007, pp. 299-304.

[41] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st

ed.: Addison-Wesley Longman Publishing Co., 1989.

[42] L. Davis, "Applying adaptive algorithms to epistatic domains," presented at the

Proceedings of the 9th international joint conference on Artificial intelligence - Volume

1, Los Angeles, California, 1985.

[43] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A study of permutation crossover

operators on the traveling salesman problem," presented at the Proceedings of the Second

International Conference on Genetic Algorithms on Genetic algorithms and their

application, Cambridge, Massachusetts, United States, 1987.

[44] A. Avizienis, "Toward Systematic Design of Fault-Tolerant Systems," IEEE Computers,

vol. 30, pp. 51-58, 1997.

[45] P. Warren, "The future of computing - new architectures and new technologies. Part 1:

Biology versus silicon," Computing & Control Engineering Journal, vol. 13, pp. 61-65,

2002.

[46] X. Yao and T. Higuchi, "Promises and Challenges of Evolvable Hardware," presented at

the Proceedings of the First International Conference on Evolvable Systems: From

Biology to Hardware, 1996.

173

[47] J. Lohn, G. Larchev, and R. DeMara, "A genetic representation for evolutionary fault

recovery in Virtex FPGAs," presented at the Proceedings of the 5th international

conference on Evolvable systems: from biology to hardware, Trondheim, Norway, 2003.

[48] WCED, "Our common future," United Nations. Available at: http://www.un-

documents.net/wced-ocf.htm, 1987.

[49] S. Islam, "Economic Modelling in Sustainability Science: Issues, Methodology, and

Implications," Environment, Development and Sustainability, vol. 7, pp. 377-400-400,

2005.

[50] A. Bockermann, B. Meyer, I. Omann, and J. H. Spangenberg, "Modelling sustainability:

Comparing an econometric (PANTA RHEI) and a systems dynamics model (SuE),"

Journal of Policy Modeling, vol. 27, pp. 189-210, 2005.

[51] R. C. Seacord, J. Elm, W. Goethert, G. A. Lewis, D. Plakosh, J. Robert, L. Wrage, and

M. Lindvall, "Measuring software sustainability," in Software Maintenance, 2003. ICSM

2003. Proceedings. International Conference on, 2003, pp. 450-459.

[52] M. Watari, Y. Hei, S. Ano, and K. Yamazaki, "Improving the Sustainability of

Autonomous Systems," in Networking, 2008. ICN 2008. Seventh International

Conference on, 2008, pp. 663-668.

[53] D. Mocigemba, "Sustainable Computing," Poiesis & Praxis: International Journal

of Technology Assessment and Ethics of Science, vol. 4, pp. 163-184-184, 2006.

[54] T. G. Gutowski, D. P. Sekulic, and B. R. Bakshi, "Preliminary thoughts on the

application of thermodynamics to the development of sustainability criteria," presented at

the Proceedings of the 2009 IEEE International Symposium on Sustainable Systems and

Technology, 2009.

[55] S. J. Kamat and M. W. Riley, "Determination of Reliability Using Event-Based Monte

Carlo Simulation," Reliability, IEEE Transactions on, vol. R-24, pp. 73-75, 1975.

[56] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, "Fault Tree Analysis, Methods, and

Applications ߝ A Review," Reliability, IEEE Transactions on, vol. R-34, pp. 194-

203, 1985.

http://www.un-documents.net/wced-ocf.htm
http://www.un-documents.net/wced-ocf.htm

174

[57] J. R. Taylor, "An Algorithm For Fault-Tree Construction," Reliability, IEEE

Transactions on, vol. R-31, pp. 137-146, 1982.

[58] Y.-K. Lin, "Using minimal cuts to evaluate the system reliability of a stochastic-flow

network with failures at nodes and arcs," Reliability Engineering & System Safety, vol.

75, pp. 41-46, 2002.

[59] K. D. Heidtmann, "Smaller sums of disjoint products by subproduct inversion,"

Reliability, IEEE Transactions on, vol. 38, pp. 305-311, 1989.

[60] J. B. Fussell, "How to Hand-Calculate System Reliability and Safety Characteristics,"

Reliability, IEEE Transactions on, vol. R-24, pp. 169-174, 1975.

[61] S. K. Au and J. L. Beck, "A new adaptive importance sampling scheme for reliability

calculations," Structural Safety, vol. 21, pp. 135-158, 1999.

[62] E. d. S. e. Silva and H. R. Gail, "Calculating availability and performability measures of

repairable computer systems using randomization," J. ACM, vol. 36, pp. 171-193, 1989.

[63] G. O. Roberts and J. S. Rosenthal, "General state space Markov chains and MCMC

algorithm," Probability Surveys, vol. 1, pp. 20-71, 2004.

[64] I. A. Troxel, M. Fehringer, and M. T. Chenoweth, "Flexible Fault Tolerance Using the

ARTEMIS Reconfigurable Payload Processor," Military and Aerospace FPGA and Ap

lications (MAFA) Meeting. Available at:

http://nepp.nasa.gov/mafa/talks/MAFA07_41_Troxel.pdf, Nov 2007.

[65] O. Heron, T. Arnaout, and H. J. Wunderlich, "On the reliability evaluation of SRAM-

based FPGA designs," in Field Programmable Logic and Applications, 2005.

International Conference on, 2005, pp. 403-408.

[66] M. G. Parris, C. A. Sharma, and R. F. DeMara, "Progress in Autonomous Fault Recovery

of Field Programmable Gate Arrays," accepted to ACM Computing Surveys, December

27, 2009. Available at:

http://www.cal.ucf.edu/journal/j_parris_sharma_demara_acm_cs_09.pdf.

http://nepp.nasa.gov/mafa/talks/MAFA07_41_Troxel.pdf
http://www.cal.ucf.edu/journal/j_parris_sharma_demara_acm_cs_09.pdf

175

[67] M. Garvie and A. Thompson, "Scrubbing away transients and Jiggling around the

permanent: Long survival of FPGA Systems through evolutionary self-repair," in 10th

IEEE International On-Line Testing Symposium, Funchal, Madeira Island, Portugal, July

12-14, 2004, pp. 155-160.

[68] C. Bolchini and C. Sandionigi, "Fault Classification for SRAM-Based FPGAs in the

Space Environment for Fault Mitigation," Embedded Systems Letters, IEEE, vol. 2, pp.

107-110, 2010.

[69] JEDEC, "JESD89-1A Addendum No. 1 to JESD89 (Revision of JESD89-1, June 2004),"

Oct 2007.

[70] P. Alfke and R. Padovani, "Radiation Tolerance of High-Density FPGAs," Xilinx.

Available at: http://www.xilinx.com/appnotes/HiDensityFPGAs.pdf.

[71] S. Srinivasan, R. Krishnan, P. Mangalagiri, X. Yuan, V. Narayanan, M. J. Irwin, and K.

Sarpatwari, "Toward Increasing FPGA Lifetime," Dependable and Secure Computing,

IEEE Transactions on, vol. 5, pp. 115-127, 2008.

[72] Xilinx, "Spartan-3 / 3E / UMC-12A 90 nm," Available At:

http://www.xilinx.com/support/documentation/customer_notices/rpt012.pdf, Oct 2009.

[73] D. J. Wilkins, "The Bathtub Curve and Product Failure Behavior," Reliability HOTWIRE.

Available at: http://www.weibull.com/hotwire/issue21/hottopics21.htm, Nov 2002.

[74] K. Zhang, G. Bedette, and R. F. DeMara, "Triple Modular Redundancy with Standby

(TMRSB) Supporting Dynamic Resource Reconfiguration," in IEEE Systems Readiness

Technology Conference AUTOTESTCON, Anaheim, CA, Sep. 2006, pp. 690-696.

[75] J. Becker, M. H\, \#252, and bner, "Run-time reconfigurabilility and other future trends,"

presented at the Proceedings of the 19th annual symposium on Integrated circuits and

systems design, Ouro Preto, MG, Brazil, 2006.

[76] K. Paulsson, M. Hubner, M. Jung, and J. Becker, "Methods for Run-time Failure

Recognition and Recovery in dynamic and partial Reconfigurable Systems Based on

Xilinx Virtex-II Pro FPGAs," presented at the Proceedings of the IEEE Computer Society

Annual Symposium on Emerging VLSI Technologies and Architectures, 2006.

http://www.xilinx.com/appnotes/HiDensityFPGAs.pdf
http://www.xilinx.com/support/documentation/customer_notices/rpt012.pdf
http://www.weibull.com/hotwire/issue21/hottopics21.htm

176

[77] K. Paulsson, M. Hubner, and J. Becker, "Strategies to On- Line Failure Recovery in Self-

Adaptive Systems based on Dynamic and Partial Reconfiguration," presented at the

Proceedings of the first NASA/ESA conference on Adaptive Hardware and Systems,

2006.

[78] C. CARMICHAEL, M. CAFFREY, and A. SALAZAR, "Correcting single-event upsets

through Virtex partial configuration. Technical Report, Xilinx Corporation, XAPP216

(v1.0)," Retrieved April 26th 2007 from:

http://direct.xilinx.com/bvdocs/appnotes/xapp216.pdf.

[79] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris, "Built-In Self-Test for System-on-

Chip: A Case Study," presented at the Proceedings of the International Test Conference

on International Test Conference, 2004.

[80] L. Chen, S. Dey, P. Sanchez, K. Sekar, and Y. Cheng, "Embedded hardware and software

self-testing methodologies for processor cores," presented at the Proceedings of the 37th

Annual Design Automation Conference, Los Angeles, California, United States, 2000.

[81] D. Wallace, "Using the JTAG Interface as a General-Purpose Communication Port," ed,

www.xilinx.com/publications/xcellonline/xcell_53/xc_pdf/xc_jtag53.pdf, 2005.

[82] D. E. Goldberg and J. Robert Lingle, "AllelesLociand the Traveling Salesman Problem,"

presented at the Proceedings of the 1st International Conference on Genetic Algorithms,

1985.

[83] Xilinx, "Two Flows for Partial Reconfiguration: Module Based or Difference Based,"

November 2003.

[84] Xilinx, "Parallel Cable IV Connects Faster and Better," Xcell Journal, Spring 2002.

[85] Xilinx. (v1.4 November 13). Using a Microprocessor to Configure Xilinx FPGAs via

Slave Serial or SelectMAP Mode.

[86] R. Oreifej, R. Al-Haddad, H. Tan, and R. DeMara, "Layered approach to intrinsic

evolvable hardware using direct bitstream manipulation of Virtex II pro devices," in

International Conference on Field Programmable Logic and Applications, 2007, pp. 299-

304.

http://direct.xilinx.com/bvdocs/appnotes/xapp216.pdf
http://www.xilinx.com/publications/xcellonline/xcell_53/xc_pdf/xc_jtag53.pdf

177

[87] D. Du and F. K. Hwang, "Combinatorial Group Testing and its Applications," World

Scientific, vol. 12 of Series on Applied Mathematics, 2000.

[88] Xilinx, "Xcell Journal," Available at:

http://www.xilinx.com/publications/archives/xcell/Xcell-customer-innovation-2010.pdf,

2010.

[89] NASA, "Dawn Mission," Available at:

http://www.nasa.gov/mission_pages/dawn/main/index.html.

[90] G. Seagrave, "SpaceCube: A Reconfigurable Processing Platform for Space " presented

at the MAPLD. Available at: http://nepp.nasa.gov/mapld_2008/presentations/i/08%20-

%20Godfrey_John_mapld08_pres_1.pdf, 2008.

[91] NASA, "MESSENGER Mission to Mercury," Available at:

http://www.nasa.gov/mission_pages/messenger/main/index.html.

[92] R. F. DeMara, J. Lee, R. Al-Haddad, R. Oreifej, R. Ashraf, B. Stensrud, and M. Quist,

"Dynamic Partial Reconfiguration Approach to the Design of Sustainable Edge

Detectors," presented at the The International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA 2010), Las Vegas, Nevada, USA, July

12-15, 2010.

http://www.xilinx.com/publications/archives/xcell/Xcell-customer-innovation-2010.pdf
http://www.nasa.gov/mission_pages/dawn/main/index.html
http://nepp.nasa.gov/mapld_2008/presentations/i/08%20-%20Godfrey_John_mapld08_pres_1.pdf
http://nepp.nasa.gov/mapld_2008/presentations/i/08%20-%20Godfrey_John_mapld08_pres_1.pdf
http://www.nasa.gov/mission_pages/messenger/main/index.html

	A Sustainable Autonomic Architecture for Organically Reconfigurable Computing Systems
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM
	1.1. Need for Sustainable Systems
	1.2. Potential for Evolvable Hardware
	1.3. Self-x Properties: An Organic Computing Vision
	1.4. Contributions of Dissertation

	CHAPTER 2: RELATED WORK
	2.1. Evolution of Digital Circuit Design and Repair Tasks
	2.2. Organic Computing Concepts
	2.3. Sustainability Analysis
	2.3.1. Need for Sustainability Analysis
	2.3.2. SRAM-based Fault Modeling

	CHAPTER 3: MULTI-LAYER HIGH-LONGEVITY ARCHITECTURE
	3.1. System Architecture
	3.2. Organic Layer Design and Implementation
	3.2.1. Organic Layer Architecture
	3.2.2. Intrinsic Evolutionary Repair Platform

	3.3. Summary

	CHAPTER 4: ORGANIC SELF-HEALING EXPERIMENTAL RESULTS
	4.1. Video Edge-Detection Use-Case on Organic Layer
	4.2. Evolutionary Design and Repair Platform

	CHAPTER 5: CGT-PRUNED REPAIR TECHNIQUE
	5.1. Group Testing Based Fault Location Procedure
	5.2. CGT-Pruned Expedited Genetic Algorithm
	5.3. Experiments
	5.4. Results and Analysis
	5.4.1. Fault Location Using CGT Algorithm
	5.4.2. Design in the Presence of Fault
	5.4.3. Repair

	CHAPTER 6: A NOVEL FRAMEWORK FOR MISSION SUSTAINABILITY
	6.1. Sustainability Model
	6.1.1. Combining Multiple Faults
	6.1.2. Resource Recycling
	6.1.3. Reparability and its Relation to Sustainability

	6.2. MCNC Benchmarks Case Study
	6.3. Sustainability of a Realistic Mission Use-Case

	CHAPTER 7: CONCLUSION
	7.1. Technical Summary
	7.2. Future Work

	APPENDEX A: AES AND FES USE-CASES
	APPENDEX B: ORGANIC-COGNITIVE COMMUNICATION PROTOCOL
	APPENDEX C: FPGA HARDWARE FAILURE RATES
	LIST OF REFERENCES

