1,341 research outputs found

    Bit-Interleaved Coded Modulation

    Get PDF

    Direct Antenna Modulation using Frequency Selective Surfaces

    Get PDF
    In the coming years, the number of connected wireless devices will increase dramatically, expanding the Internet of Things (IoT). It is likely that much of this capacity will come from network densification. However, base stations are inefficient and expensive, particularly the downlink transmitters. The main cause of this is the power amplifier (PA), which must amplify complex signals, so are expensive and often only 30% efficient. As such, the cost of densifying cellular networks is high. This thesis aims to overcome this problem through codesign of a low complexity, energy efficient transmitter through electromagnetic design; and a waveform which leverages the advantages and mitigates the disadvantages of the new technology, while being suitable for supporting IoT devices. Direct Antenna Modulation (DAM) is a low complexity transmitter architecture, where modulation occurs at the antenna at transmit power. This means a non-linear PA can efficiently amplify the carrier wave without added distortion. Frequency Selective Surfaces (FSS) are presented here as potential phase modulators for DAM transmitters. The theory of operation is discussed, and a prototype DAM for QPSK modulation is simulated, designed and tested. Next, the design process for a continuous phase modulating antenna is explored. Simulations and measurement are used to fully characterise a prototype, and it is implemented in a line-of-sight end-to-end communications system, demonstrating BPSK, QPSK and 8-PSK. Due to the favourable effects of spread spectrum signalling on FSS DAM performance, Cyclic Prefix Direct Sequence Spread Spectrum (CPDSSS) is developed. Conventional spreading techniques are extended using a cyclic prefix, making multipath interference entirely defined by the periodic autocorrelation of the sequence used. This is demonstrated analytically, through simulation and with experiments. Finally, CPDSSS is implemented using FSS DAM, demonstrating the potential of this new low cost, low complexity transmitter with CPDSSS as a scalable solution to IoT connectivity

    Dynamic Optical Networks for Data Centres and Media Production

    Get PDF
    This thesis explores all-optical networks for data centres, with a particular focus on network designs for live media production. A design for an all-optical data centre network is presented, with experimental verification of the feasibility of the network data plane. The design uses fast tunable (< 200 ns) lasers and coherent receivers across a passive optical star coupler core, forming a network capable of reaching over 1000 nodes. Experimental transmission of 25 Gb/s data across the network core, with combined wavelength switching and time division multiplexing (WS-TDM), is demonstrated. Enhancements to laser tuning time via current pre-emphasis are discussed, including experimental demonstration of fast wavelength switching (< 35 ns) of a single laser between all combinations of 96 wavelengths spaced at 50 GHz over a range wider than the optical C-band. Methods of increasing the overall network throughput by using a higher complexity modulation format are also described, along with designs for line codes to enable pulse amplitude modulation across the WS-TDM network core. The construction of an optical star coupler network core is investigated, by evaluating methods of constructing large star couplers from smaller optical coupler components. By using optical circuit switches to rearrange star coupler connectivity, the network can be partitioned, creating independent reserves of bandwidth and resulting in increased overall network throughput. Several topologies for constructing a star from optical couplers are compared, and algorithms for optimum construction methods are presented. All of the designs target strict criteria for the flexible and dynamic creation of multicast groups, which will enable future live media production workflows in data centres. The data throughput performance of the network designs is simulated under synthetic and practical media production traffic scenarios, showing improved throughput when reconfigurable star couplers are used compared to a single large star. An energy consumption evaluation shows reduced network power consumption compared to incumbent and other proposed data centre network technologies

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeo® between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel o®ers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Constellation design for future communication systems: a comprehensive survey

    Get PDF
    [EN] The choice of modulation schemes is a fundamental building block of wireless communication systems. As a key component of physical layer design, they critically impact the expected communication capacity and wireless signal robustness. Their design is also critical for the successful roll-out of wireless standards that require a compromise between performance, efficiency, latency, and hardware requirements. This paper presents a survey of constellation design strategies and associated outcomes for wireless communication systems. The survey discusses their performance and complexity to address the need for some desirable properties, including consistency, channel capacity, system performance, required demapping architecture, flexibility, and independence. Existing approaches for constellation designs are investigated using appropriate metrics and categorized based on their theoretical algorithm design. Next, their application to different communication standards is analyzed in context, aiming at distilling general guidelines applicable to the wireless building block design. Finally, the survey provides a discussion on design directions for future communication system standardization processes.This work was supported in part by the Basque Government under Grant IT1234-19, in part by the PREDOC under Program PRE_2020_2_0105, and in part by the Spanish Government through the Project PHANTOM (MCIU/AEI/FEDER, UE) under Gran

    Signal Design and Machine Learning Assisted Nonlinearity Compensation for Coherent Optical Fibre Communication Links

    Get PDF
    This thesis investigates low-complexity digital signal processing (DSP) for signal design and nonlinearity compensation strategies to improve the performance of single-mode optical fibre links over different distance scales. The performance of a novel ML-assisted inverse regular perturbation technique that mitigates fibre nonlinearities was investigated numerically with a dual-polarization 64 quadrature amplitude modulation (QAM) link over 800 km distance. The model outperformed the heuristically-optimised digital backpropagation approach with <5 steps per span and mitigated the gain expansion issue, which limits the accuracy of an untrained model when the balance between the nonlinear and linear components becomes considerable. For short reach links, the phase noise due to low-cost, high-linewidth lasers is a more significant channel impairment. A novel constellation optimisation algorithm was, therefore, proposed to design modulation formats that are robust against both additive white Gaussian noise (AWGN) and the residual laser phase noise (i.e., after carrier phase estimation). Subsequently, these constellations were numerically validated in the context of a 400ZR standard system, and achieved up to 1.2 dB gains in comparison with the modulation formats which were optimised only for the AWGN channel. The thesis concludes by examining a joint strategy to modulate and demodulate signals in a partially-coherent AWGN (PCAWGN) channel. With a low-complexity PCAWGN demapper, 8- to 64-ary modulation formats were designed and validated through numerical simulations. The bit-wise achievable information rates (AIR) and post forward error correction (FEC) bit error rates (BER) of the designed constellations were numerically validated with: the theoretically optimum, Euclidean (conventional), and low-complexity PCAWGN demappers. The resulting constellations demonstrated post-FEC BER shaping gains of up to 2.59 dB and 2.19 dB versus uniform 64 QAM and 64-ary constellations shaped for the purely AWGN channel model, respectively. The described geometric shaping strategies can be used to either relax linewidth and/or carrier phase estimator requirements, or to increase signal-to-noise ratio (SNR) tolerance of a system in the presence of residual phase noise
    corecore