6 research outputs found

    A Blind Multiple Watermarks based on Human Visual Characteristics

    Get PDF
    Digital watermarking is an alternative solution to prevent unauthorized duplication, distribution and breach of ownership right. This paper proposes a watermarking scheme for multiple watermarks embedding. The embedding of multiple watermarks use a block-based scheme based on human visual characteristics. A threshold is used to determine the watermark values by modifying first column of the orthogonal U matrix obtained from Singular Value Decomposition (SVD). The tradeoff between normalize cross-correlation and imperceptibility of watermarked image from quantization steps was used to achieve an optimal threshold value. The results show that our proposed multiple watermarks scheme exhibit robustness against signal processing attacks. The proposed scheme demonstrates that the watermark recovery from chrominance blue was resistant against different types of attacks

    Tchebichef image watermarking along the edge using YCoCg-R color space for copyright protection

    Get PDF
    Easy creation and manipulation of digital images present the potential danger of counterfeiting and forgery. Watermarking technique which embeds a watermark into the images can be used to overcome these problems and to provide copyright protection. Digital image watermarking should meet requirements, e.g. maintain image quality, difficult to remove the watermark, quality of watermark extraction, and applicable. This research proposes Tchebichef watermarking along the edge based on YCoCg-R color space. The embedding region is selected by considering the human visual characteristics (HVC) entropy. The selected blocks with minimum of HVC entropy values are transformed by Tchebichef moments. The locations of C(0,1), C(1,0), C(0,2) and C(2,0) of the matrix moment are randomly embedded for each watermark bit. The proposed watermarking scheme produces a good imperceptibility by average SSIM value around 0.98. The watermark recovery has greater resistant after several types of attack than other schemes. © 2019 Institute of Advanced Engineering and Science. All rights reserved

    Image watermarking based on integer wavelet transform-singular value decomposition with variance pixels

    Get PDF
    With the era of rapid technology in multimedia, the copyright protection is very important to preserve an ownership of multimedia data. This paper proposes an image watermarking scheme based on Integer Wavelet Transform (IWT) and Singular Value Decomposition (SVD). The binary watermark is scrambled by Arnold transform before embedding watermark. Embedding locations are determined by using variance pixels. Selected blocks with the lowest variance pixels are transformed by IWT, thus the LL sub-band of 8�8 IWT is computed by using SVD. The orthogonal U matrix component of U3,1 and U4,1 are modified using certain rules by considering the watermark bits and an optimal threshold. This research reveals an optimal threshold value based on the trade-off between robustness and imperceptibility of watermarked image. In order to measure the watermarking performance, the proposed scheme is tested under various attacks. The experimental results indicate that our scheme achieves higher robustness than other scheme under different types of attack. Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved

    Video steganography based on DCT psychovisual and object motion

    Get PDF
    Steganography is a technique of concealing the message in multimedia data. Multimedia data, such as videos are often compressed to reduce the storage for limited bandwidth. The video provides additional hidden-space in the object motion of image sequences. This research proposes a video steganography scheme based on object motion and DCT-psychovisual for concealing the message. The proposed hiding technique embeds a secret message along the object motion of the video frames. Motion analysis is used to determine the embedding regions. The proposed scheme selects six DCT coefficients in the middle frequency using DCT-psychovisual effects of hiding messages. A message is embedded by modifying middle DCT coefficients using the proposed algorithm. The middle frequencies have a large hiding capacity and it relatively does not give significant effect to the video reconstruction. The performance of the proposed video steganography is evaluated in terms of video quality and robustness against MPEG compression. The experimental results produce minimum distortion of the video quality. Our scheme produces a robust of hiding messages against MPEG-4 compression with average NC value of 0.94. The proposed video steganography achieves less perceptual distortion to human eyes and it's resistant against reducing video storage

    Bit Allocation Strategy Based on Psychovisual Threshold in Image Compression

    No full text
    Image compression leads to minimize the storage-requirement of an image by reducing the size of the image. This paper presents a bit allocation strategy based on psychovisual threshold in image compression considering a similar idea of audio coding. In the audio coding, a dynamic bit allocation to each signal is related to the concept of variable block coding and bit allocation is performed on either a short block or long block of sample signals. Similarity, in our technique, more bits are assigned to a local block with visually-significant low frequency order, and fewer, with visually-insignificant high frequency order. This paper presents a bit allocation strategy based on psychovisual threshold in image compression. A psychovisual threshold is developed by minimizing the visual impact on the image quality degradation in image frequency coding. This paper investigates the error generated by the discrete cosine transform and sets the maximum acceptable error as a psychovisual threshold. The average reconstruction error per pixel on frequency order is utilized to prescribe a set of bit allocations which provide a significant improvement on the quality of image reconstruction at relatively low bit rates. The experimental results show that our dynamic bit-allocation technique in image compression manages to overcome artifact images in the image output. The proposed bit allocation strategy improves the quality of image reconstruction by about 20% compared to JPEG compression. This bit allocation strategy is designed to replace the traditional role of the quantization process in image compression
    corecore