688 research outputs found

    A Fully Abstract Symbolic Semantics for Psi-Calculi

    Full text link
    We present a symbolic transition system and bisimulation equivalence for psi-calculi, and show that it is fully abstract with respect to bisimulation congruence in the non-symbolic semantics. A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus. Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the semantics of a process does not change from the original

    Characteristic Bisimulation for Higher-Order Session Processes

    Get PDF
    Characterising contextual equivalence is a long-standing issue for higher-order (process) languages. In the setting of a higher-order pi-calculus with sessions, we develop characteristic bisimilarity, a typed bisimilarity which fully characterises contextual equivalence. To our knowledge, ours is the first characterisation of its kind. Using simple values inhabiting (session) types, our approach distinguishes from untyped methods for characterising contextual equivalence in higher-order processes: we show that observing as inputs only a precise finite set of higher-order values suffices to reason about higher-order session processes. We demonstrate how characteristic bisimilarity can be used to justify optimisations in session protocols with mobile code communication

    Expressiveness of the modal mu-calculus on monotone neighborhood structures

    Full text link
    We characterize the expressive power of the modal mu-calculus on monotone neighborhood structures, in the style of the Janin-Walukiewicz theorem for the standard modal mu-calculus. For this purpose we consider a monadic second-order logic for monotone neighborhood structures. Our main result shows that the monotone modal mu-calculus corresponds exactly to the fragment of this second-order language that is invariant for neighborhood bisimulations

    A coalgebraic semantics for causality in Petri nets

    Get PDF
    In this paper we revisit some pioneering efforts to equip Petri nets with compact operational models for expressing causality. The models we propose have a bisimilarity relation and a minimal representative for each equivalence class, and they can be fully explained as coalgebras on a presheaf category on an index category of partial orders. First, we provide a set-theoretic model in the form of a a causal case graph, that is a labeled transition system where states and transitions represent markings and firings of the net, respectively, and are equipped with causal information. Most importantly, each state has a poset representing causal dependencies among past events. Our first result shows the correspondence with behavior structure semantics as proposed by Trakhtenbrot and Rabinovich. Causal case graphs may be infinitely-branching and have infinitely many states, but we show how they can be refined to get an equivalent finitely-branching model. In it, states are equipped with symmetries, which are essential for the existence of a minimal, often finite-state, model. The next step is constructing a coalgebraic model. We exploit the fact that events can be represented as names, and event generation as name generation. Thus we can apply the Fiore-Turi framework: we model causal relations as a suitable category of posets with action labels, and generation of new events with causal dependencies as an endofunctor on this category. Then we define a well-behaved category of coalgebras. Our coalgebraic model is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, which is equivalent to our set-theoretical compact model. Remarkably, state reduction is automatically performed along the equivalence.Comment: Accepted by Journal of Logical and Algebraic Methods in Programmin

    On Asynchronous Session Semantics

    Get PDF
    This paper studies a behavioural theory of the π-calculus with session types under the fundamental principles of the practice of distributed computing — asynchronous communication which is order-preserving inside each connection (session), augmented with asynchronous inspection of events (message arrivals). A new theory of bisimulations is introduced, distinct from either standard asynchronous or synchronous bisimilarity, accurately capturing the semantic nature of session-based asynchronously communicating processes augmented with event primitives. The bisimilarity coincides with the reduction-closed barbed congruence. We examine its properties and compare them with existing semantics. Using the behavioural theory, we verify that the program transformation of multithreaded into event-driven session based processes, using Lauer-Needham duality, is type and semantic preserving
    corecore