934 research outputs found

    The Peculiar Phase Structure of Random Graph Bisection

    Full text link
    The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of "cut" edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays certain familiar properties, but also some surprises. It is known that when the mean degree is below the critical value of 2 log 2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made minor stylistic changes and added reference

    Dismantling sparse random graphs

    Full text link
    We consider the number of vertices that must be removed from a graph G in order that the remaining subgraph has no component with more than k vertices. Our principal observation is that, if G is a sparse random graph or a random regular graph on n vertices with n tending to infinity, then the number in question is essentially the same for all values of k such that k tends to infinity but k=o(n).Comment: 7 page

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure

    The minimum bisection in the planted bisection model

    Get PDF
    In the planted bisection model a random graph G(n,p+,p−)G(n,p_+,p_- ) with nn vertices is created by partitioning the vertices randomly into two classes of equal size (up to ±1\pm1). Any two vertices that belong to the same class are linked by an edge with probability p+p_+ and any two that belong to different classes with probability p−<p+p_- <p_+ independently. The planted bisection model has been used extensively to benchmark graph partitioning algorithms. If p±=2d±/np_{\pm} =2d_{\pm} /n for numbers 0≀d−<d+0\leq d_- <d_+ that remain fixed as n→∞n\to\infty, then w.h.p. the ``planted'' bisection (the one used to construct the graph) will not be a minimum bisection. In this paper we derive an asymptotic formula for the minimum bisection width under the assumption that d+−d−>cd+ln⁥d+d_+ -d_- >c\sqrt{d_+ \ln d_+ } for a certain constant c>0c>0

    Optimal Nested Test Plan for Combinatorial Quantitative Group Testing

    Full text link
    We consider the quantitative group testing problem where the objective is to identify defective items in a given population based on results of tests performed on subsets of the population. Under the quantitative group testing model, the result of each test reveals the number of defective items in the tested group. The minimum number of tests achievable by nested test plans was established by Aigner and Schughart in 1985 within a minimax framework. The optimal nested test plan offering this performance, however, was not obtained. In this work, we establish the optimal nested test plan in closed form. This optimal nested test plan is also order optimal among all test plans as the population size approaches infinity. Using heavy-hitter detection as a case study, we show via simulation examples orders of magnitude improvement of the group testing approach over two prevailing sampling-based approaches in detection accuracy and counter consumption. Other applications include anomaly detection and wideband spectrum sensing in cognitive radio systems

    Finding community structure in networks using the eigenvectors of matrices

    Get PDF
    We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio

    Asymptotic of geometrical navigation on a random set of points of the plane

    Full text link
    A navigation on a set of points SS is a rule for choosing which point to move to from the present point in order to progress toward a specified target. We study some navigations in the plane where SS is a non uniform Poisson point process (in a finite domain) with intensity going to +∞+\infty. We show the convergence of the traveller path lengths, the number of stages done, and the geometry of the traveller trajectories, uniformly for all starting points and targets, for several navigations of geometric nature. Other costs are also considered. This leads to asymptotic results on the stretch factors of random Yao-graphs and random ξ\theta-graphs
    • 

    corecore