12 research outputs found

    Bipartite Ramsey Numbers and Zarankiewicz Numbers

    Get PDF
    The bipartite Ramsey number b(m, n) is the minimum b such that any 2-coloring of Kb,b results in a monochromatic Km,m subgraph in the first color or a monochromatic Kn,n subgraph in the second color. The Zarankiewicz number z(m, n; s, t) is the maximum size among Ks,t-free subgraphs of Km,n. In this work, we discuss the intimate relationship between the two numbers as well as propose a new method for bounding the Zarankiewicz numbers. We use the better bounds to improve the upper bound on b(2, 5), in addition we improve the lower bound of b(2, 5) by construction. The new bounds are shown to be 17 ≀ b(2, 5) ≀ 18. Additionally, we apply the same methods to the multicolor case b(2, 2, 3) which has previously not been studied and determine bounds to be 16 ≀ b(2, 2, 3) ≀ 23

    Index

    Get PDF

    Ramsey numbers for partially-ordered sets

    Full text link
    We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Tur\'an-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.Comment: 18 pages, 3 figures, 1 tabl

    Subdivisions in a bipartite graph

    Get PDF
    Given a bipartite graph G with m and n vertices, respectively,in its vertices classes, and given two integers s, t such that 2 ≀ s ≀ t, 0 ≀ m−s ≀ n−t, and m+n ≀ 2s+t−1, we prove that if G has at least mn−(2(m−s)+n−t) edges then it contains a subdivision of the complete bipartite K(s,t)K_(s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn − (2(m − s) + n − t + 1) edges for this topological Turan type problem.Peer Reviewe

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), conïŹrming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deïŹne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diïŹ€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs

    Bipartite Ramsey Numbers and Zarankiewicz Numbers

    No full text
    The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue K(m, m) or a red K(n, n). In this paper we calculate small exact values of z(s, 2) and determine bounds for Zarankiewicz numbers in general. The latter are used to bound b(m, n) for m, n ≀ 6
    corecore