19,749 research outputs found
A flexible one-pot route to metal/metal oxide nanocomposites
We report a one-pot route to Au/CeO2 nanocomposites. A readily-available biopolymer, sodium alginate, is exploited for controlled formation and stabilisation of gold nanoparticles followed by in situ growth of a sponge-like network of CeO2 nanoparticles. The flexible nature of this method as a general route to mixed metal/metal oxide nanocomposites is also demonstrated
Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition
We report simultaneous dissolution of agarose (AG) and chitosan (CH) in
varying proportions in an ionic liquid (IL), 1-butyl-3-methylimidazolium
chloride [C4mim][Cl]. Composite materials were constructed from AG-CH-IL
solutions using the antisolvent methanol, and IL was recovered from the
solutions. Composite materials could be uniformly decorated with silver oxide
(Ag2O) nanoparticles (Ag NPs) to form nanocomposites in a single step by in
situ synthesis of Ag NPs in AG-CH-IL sols, wherein the biopolymer moiety acted
as both reducing and stabilizing agent. Cooling of Ag NPs-AG-CH-IL sols to room
temperature resulted in high conductivity and high mechanical strength
nanocomposite ionogels. The structure, stability and physiochemical properties
of composite materials and nanocomposites were characterized by several
analytical techniques, such as Fourier transform infrared (FTIR), CD
spectroscopy, differential scanning colorimetric (DSC), thermogravimetric
analysis (TGA), gel permeation chromatography (GPC), and scanning electron
micrography (SEM). The result shows that composite materials have good thermal
and conformational stability, compatibility and strong hydrogen bonding
interactions between AG-CH complexes. Decoration of Ag NPs in composites and
ionogels was confirmed by UV-Vis spectroscopy, SEM, TEM, EDAX and XRD. The
mechanical and conducting properties of composite ionogels have been
characterized by rheology and current-voltage measurements. Since Ag NPs show
good antimicrobial activity, Ag NPs -AG-CH composite materials have the
potential to be used in biotechnology and biomedical applications whereas
nanocomposite ionogels will be suitable as precursors for applications such as
quasi-solid dye sensitized solar cells, actuators, sensors or electrochromic
displays
Cellulosic materials as biopolymers and supercritical CO2as a green process: chemistry and applications
In this review, we describe the use of supercritical CO2 (scCO2) in several cellulose applications. The focus is on different technologies that either exist or are expected to emerge in the near future. The applications are wide from the extraction of hazardous wastes to the cleaning and reuse of paper or production of glucose. To put this topic in context, cellulose chemistry and its interactions with scCO2 are described. The aim of this study was to discuss the new emerging technologies and trends concerning cellulosic materials processed in scCO2 such as cellulose drying to obtain aerogels, foams and other microporous materials, impregnation of cellulose, extraction of highly valuable compounds from plants and metallic residues from treated wood. Especially, in the bio-fuel production field, we address the pre-treatment of cellulose in scCO2 to improve fermentation to ethanol by cellulase enzymes. Other reactions of cellulosic materials such as organic inorganic composites fabrication and de-polymerisation have been considered. Cellulose treatment by scCO2 has been discussed as well. Finally, other applications like deacidification of paper and cellulosic membranes fabrication in scCO2 have been reviewed. Examples of the discussed technologies are included as well
On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films
This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications
Cellulosic materials as natural fillers in starch-containing matrix-based films: a review
In this work, the different cellulosic materials, namely cellulose and lignin are analyzed. In addition, the starch-containing matrices (isolated starch and flour) reinforced with cellulosic materials to be used in packaging applications are described. Many efforts have been exerted to develop biopackaging based on renewable polymers, since these could reduce the environmental impact caused by petrochemical resources. Special attention has had the starch as macromolecule for forming biodegradable packaging. For these reasons, shall also be subject of this review the effect of each type of cellulosic material on the starch-containing matrix-based thermoplastic materials. In this manner, this review contains a description of films based on starch-containing matrices and biocomposites, and then has a review of cellulosic material-based fillers. In the same way, this review contains an analysis of the works carried out on starch-containing matrices reinforced with cellulose and lignin. Finally, the manufacturing processes of starch/cellulose composites are provided as well as the conclusions and the outlook for future works.Fil: Gutiérrez Carmona, Tomy José. Universidad Central de Venezuela; Venezuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
Properties of bio-based gum Arabic/clay aerogels
Lightweight bio-based aerogels from sustainable gum Arabic (GA) and sodium montmorillonite (Na+-MMT) clay were prepared by means of a simple freeze-drying process. GA/clay aerogels showed high porosity (87.9%–94.9%) of mainly open type and the mechanical properties were improved by the clay. When 40% of clay was added to pure GA, the specific modulus and the absorbed energy of resultant aerogels increased by 1.6 and 4.2 times respectively. On the other hand, the exponent value for modulus in the power-law model for cellular materials increased from 1.95 to 3.28 due to the more anisotropic structures induced by the presence of the clay. In terms of thermal stability and flame retardancy, clay content played a dominant role. With 50% of clay loading, the initial decomposition temperature increased by nearly 16 °C and the peak of heat release rate was 3-fold reduced.Peer ReviewedPostprint (author's final draft
Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release
A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds
Stress management in composite biopolymer networks
Living tissues show an extraordinary adaptiveness to strain, which is crucial
for their proper biological functioning. The physical origin of this mechanical
behaviour has been widely investigated using reconstituted networks of collagen
fibres, the principal load-bearing component of tissues. However, collagen
fibres in tissues are embedded in a soft hydrated polysaccharide matrix which
generates substantial internal stresses whose effect on tissue mechanics is
unknown. Here, by combining mechanical measurements and computer simulations,
we show that networks composed of collagen fibres and a hyaluronan matrix
exhibit synergistic mechanics characterized by an enhanced stiffness and
delayed strain-stiffening. We demonstrate that the polysaccharide matrix has a
dual effect on the composite response involving both internal stress and
elastic reinforcement. Our findings elucidate how tissues can tune their
strain-sensitivity over a wide range and provide a novel design principle for
synthetic materials with programmable mechanical properties
- …
