83 research outputs found

    Biomimetic tactile sensing

    Get PDF

    Slime mould tactile sensor

    Full text link
    Slime mould P. polycephalum is a single cells visible by unaided eye. The cells shows a wide spectrum of intelligent behaviour. By interpreting the behaviour in terms of computation one can make a slime mould based computing device. The Physarum computers are capable to solve a range of tasks of computational geometry, optimisation and logic. Physarum computers designed so far lack of localised inputs. Commonly used inputs --- illumination and chemo-attractants and -repellents --- usually act on extended domains of the slime mould's body. Aiming to design massive-parallel tactile inputs for slime mould computers we analyse a temporal dynamic of P. polycephalum's electrical response to tactile stimulation. In experimental laboratory studies we discover how the Physarum responds to application and removal of a local mechanical pressure with electrical potential impulses and changes in its electrical potential oscillation patterns

    A Model that Predicts the Material Recognition Performance of Thermal Tactile Sensing

    Get PDF
    Tactile sensing can enable a robot to infer properties of its surroundings, such as the material of an object. Heat transfer based sensing can be used for material recognition due to differences in the thermal properties of materials. While data-driven methods have shown promise for this recognition problem, many factors can influence performance, including sensor noise, the initial temperatures of the sensor and the object, the thermal effusivities of the materials, and the duration of contact. We present a physics-based mathematical model that predicts material recognition performance given these factors. Our model uses semi-infinite solids and a statistical method to calculate an F1 score for the binary material recognition. We evaluated our method using simulated contact with 69 materials and data collected by a real robot with 12 materials. Our model predicted the material recognition performance of support vector machine (SVM) with 96% accuracy for the simulated data, with 92% accuracy for real-world data with constant initial sensor temperatures, and with 91% accuracy for real-world data with varied initial sensor temperatures. Using our model, we also provide insight into the roles of various factors on recognition performance, such as the temperature difference between the sensor and the object. Overall, our results suggest that our model could be used to help design better thermal sensors for robots and enable robots to use them more effectively.Comment: This article is currently under review for possible publicatio

    Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

    Full text link
    In order to robustly execute a task under environmental uncertainty, a robot needs to be able to reactively adapt to changes arising in its environment. The environment changes are usually reflected in deviation from expected sensory traces. These deviations in sensory traces can be used to drive the motion adaptation, and for this purpose, a feedback model is required. The feedback model maps the deviations in sensory traces to the motion plan adaptation. In this paper, we develop a general data-driven framework for learning a feedback model from demonstrations. We utilize a variant of a radial basis function network structure --with movement phases as kernel centers-- which can generally be applied to represent any feedback models for movement primitives. To demonstrate the effectiveness of our framework, we test it on the task of scraping on a tilt board. In this task, we are learning a reactive policy in the form of orientation adaptation, based on deviations of tactile sensor traces. As a proof of concept of our method, we provide evaluations on an anthropomorphic robot. A video demonstrating our approach and its results can be seen in https://youtu.be/7Dx5imy1KcwComment: 8 pages, accepted to be published at the International Conference on Robotics and Automation (ICRA) 201

    Learning Latent Space Dynamics for Tactile Servoing

    Full text link
    To achieve a dexterous robotic manipulation, we need to endow our robot with tactile feedback capability, i.e. the ability to drive action based on tactile sensing. In this paper, we specifically address the challenge of tactile servoing, i.e. given the current tactile sensing and a target/goal tactile sensing --memorized from a successful task execution in the past-- what is the action that will bring the current tactile sensing to move closer towards the target tactile sensing at the next time step. We develop a data-driven approach to acquire a dynamics model for tactile servoing by learning from demonstration. Moreover, our method represents the tactile sensing information as to lie on a surface --or a 2D manifold-- and perform a manifold learning, making it applicable to any tactile skin geometry. We evaluate our method on a contact point tracking task using a robot equipped with a tactile finger. A video demonstrating our approach can be seen in https://youtu.be/0QK0-Vx7WkIComment: Accepted to be published at the International Conference on Robotics and Automation (ICRA) 2019. The final version for publication at ICRA 2019 is 7 pages (i.e. 6 pages of technical content (including text, figures, tables, acknowledgement, etc.) and 1 page of the Bibliography/References), while this arXiv version is 8 pages (added Appendix and some extra details

    FLECTILE: 3D-printable soft actuators for wearable computing

    Get PDF
    Rapid prototyping and fast manufacturing processes are critical drivers for implementing wearable devices. This paper shows an exemplary method for building flexible, fully elastomeric, vibrotactile electromagnetic actuators based on the Lorentz force law. This paper also introduces the design parameters required for well-functioning actuators and studies the properties of such actuators. The crucial element of the actuator is a helical planer coil manufactured from "capillary" silver TPU (Thermoplastic polyurethane), an ultra-stretchable conductor. This paper leverages the novel material to manufacture soft vibration actuators in fewer and simpler steps than previous approaches. Best practices and procedures for building a wearable actuator are reported. We show that the dimension of the actuators are easily configurable and can be printed in batch-size-one using 3D printing. Actuators can be attached directly to the skin as all the components of FLECTILE are made from biocompatible polymers. Tests on the driving properties have confirmed that the actuator could reach a broad scope of frequency up to 200 Hz with a small voltage (5 V) required. A user study showed that vibrations of the actuator are well perceivable by six study participants under an observing, hovering, and resting condition

    Design and Analysis of Mobile Locomation Approach

    Get PDF
    One of the most difficult tasks for a robotic system is to determine the best path through the workspace. The main purpose is to prevent obstructions and create an optimum path. As a result, a mobile robot's free configuration space must be managed very carefully for course planning and navigation. The path planning work will be easier, faster, and more efficient if the configuration space is partitioned. In addition, the data perceived by the sensor contains some noise. As a result, we construct an approach to produce an optimal prediction state in order to build a map that aids in the effective management of the environment in order to locate the most efficient paths to target. We use the modified Kalman Filter (MKF) to determine the most reliable sensor data prediction, and then the K-means clustering method to identify the subsequent landmarks while evading barriers
    corecore