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Abstract
Tactile sensing can enable a robot to infer properties of its surroundings, such as the material of an object. Heat transfer
based sensing can be used for material recognition due to differences in the thermal properties of materials. While data-
driven methods have shown promise for this recognition problem, many factors can influence performance, including
sensor noise, the initial temperatures of the sensor and the object, the thermal effusivities of the materials, and the
duration of contact. We present a physics-based mathematical model that predicts material recognition performance
given these factors. Our model uses semi-infinite solids and a statistical method to calculate an F1 score for the binary
material recognition. We evaluated our method using simulated contact with 69 materials and data collected by a
real robot with 12 materials. Our model predicted the material recognition performance of support vector machine
(SVM) with 96% accuracy for the simulated data, with 92% accuracy for real-world data with constant initial sensor
temperatures, and with 91% accuracy for real-world data with varied initial sensor temperatures. Using our model, we
also provide insight into the roles of various factors on recognition performance, such as the temperature difference
between the sensor and the object. Overall, our results suggest that our model could be used to help design better
thermal sensors for robots and enable robots to use them more effectively.
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1 INTRODUCTION

Material recognition using thermal sensing is relatively
unexplored in robotics when compared with other haptic
sensing modalities such as force sensing. Under some
conditions, robots can use this sensing modality to recognize
contact with materials that have distinct thermal properties
(Bhattacharjee et al. 2015). Recognizing the material when
a robot touches an object can help in devising intelligent
manipulation strategies. For example, a robot might come
in contact with a bed or a mattress while assisting a person
with disabilities who is in bed. Recognizing that the object in
contact is ‘wood’ might help a robot infer that it is in contact
with the bed frame instead of the human body or the mattress
and thus, the robot might alter its actions. For example, we
have shown the relevance of recognizing ‘tactile foreground’
vs. ‘tactile background’ for task-specific manipulation tasks
(Bhattacharjee et al. 2016), where ‘tactile foreground’ is the
target object and ‘tactile background’ is any other object in
its vicinity that the robot may come in contact with during
the manipulation task.

However, the performance of material recognition with
thermal tactile sensing varies considerably. We present
a mathematical model that predicts the performance
of material recognition based on a number of factors.
Specifically, our model predicts the F1 score for binary
material recognition given properties of the object, the
sensor, the environment, and the contact made between the
object and the sensor. We also use this model to predict
material recognition performance across a set of objects.

In contrast to a strictly empirical approach to estimating
material recognition performance, our mathematical model
provides performance predictions without the resource-
intensive process of collecting data and does so for a large set
of physically-meaningful parameters. This can be useful for
a number of pursuits, including sensor design and algorithm
design. It also can help give people intuition for active
thermal sensing. This could be especially valuable since
active thermal sensing has been a less prevalent and less
widely understood sensing modality in robotics compared to
modalities such as audition, vision, and force sensing. For
example, in contrast to active thermal sensing, people often
have intuitions for the implications of common phenomena
in machine vision, such as low light environments, a
camera’s field of view, an unfocused lens, and objects that
look similar to one another.

Our model considers heat transfer based thermal sensing,
which involves a tactile sensor with a heating element and
a temperature sensor touching an object. We refer to this
as ‘active’ thermal sensing in contrast to ‘passive’ thermal
sensing, which we use to refer to a temperature sensor
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Figure 1. A 1-DoF Robot with an active thermal sensing
module reaching to touch a cardboard material sample

alone making contact with an object. During active thermal
sensing, when the tactile sensor, which is heated above
room temperature, comes in contact with an object at room
temperature, heat transfers away from the sensor into the
object. This heat transfer is dependent on the sensor and
object thermal properties, the initial temperature conditions
of the sensor and the object, as well as the noise due to
various sensor and environmental conditions. A robot can
sometimes use the difference in this heat transfer for different
materials to distinguish them.

We developed a physics-based model using a semi-infinite
solid assumption for modeling heat transfer from the heated
sensor to the object. We added Gaussian i.i.d noise to
model the effect of noise. This model can account for the
variability in the initial conditions of the sensor and the
object, the sensor and object thermal properties, as well
as noise. Using this model, we can generate simulated
time-series heat transfer data given sensor and object
parameters as well as their initial temperature conditions.
We modeled this time-series as Gaussian process and
developed a statistical method to calculate the F1 score
of the binary material recognition performance. Using
this model and the statistical method, we analyzed the
effect of material thermal effusivities, initial temperatures,
and noise on the material recognition performance. Given
material properties, environmental conditions and a desired
level of material recognition performance, this model could
potentially be used to help provide design guidelines for
thermal sensors. We also estimated the binary material
recognition performance for all materials in the CES
Edupack Level-1 Database (Ashby 2008) resulting in a total
of 2346 binary material recognition tasks and compared the
results with that of Support Vector Machine (SVM). We also
collected data from 12 real-world representative materials
using a 1-DOF robot with a linear actuator and a tactile
sensor attached at its end (see Figure 1). We estimated their

material recognition performance (66 binary comparisons)
using the identified parameters from the real-world data,
the physics-based model, and the statistical method. Our
objective was to see if our model could predict the results
obtained using SVM.

2 RELATED WORK

In predicting perception performance of sensor systems,
sensor specifications alone often fail to provide an insightful
understanding of the entire system. Thus, modeling the effect
of various low-level factors, such as noise, on the overall
system performance for specific tasks is important for a
holistic understanding of the system. Such understanding can
provide useful guidelines for designing a sensor to achieve
a desired performance in a specific task. Researchers have
established such end-to-end understanding over a wide range
of sensor systems, including system robustness measure
(Petrovi and Xydeas 2000) and performance visualization
(Gow et al. 2007) of imaging systems with CMOS sensor,
target acquisition performance with infrared imager (Krapels
et al. 2007), and TOD-sensor performance curve prediction
for multiple sensor systems (Hogervorst et al. 2001).

In this work, we develop an end-to-end analytical
performance model that uses a physics-based heat transfer
model and a statistical method to understand the effect of
sensor properties and environmental conditions on material
recognition tasks. We demonstrate the potential of using
our statistical model to guide the choice of sensor design
parameters for material recognition tasks using thermal
sensing modality.

In this section, we first focus on relevant heat transfer
models as the essential grounds for our work. We then
present a review of relevant thermal sensing sensors as well
as their use for material recognition and other applications.

2.1 Heat Transfer Modeling
Researchers have modeled heat transfer between a human

finger and an object as heat transfer between two semi-
infinite solids (See Section 4.1) and used this model to
simulate heat transfer for thermal displays (Ho and Jones
2004; Yamamoto et al. 2004). Researchers have also used
this model for the measurement of thermal properties of
objects when a thermal sensor touches an object (Fudym
et al. 2005; Jannot and Meukam 2004). For real-world heat
transfer between two objects, however, the semi-infinite solid
model is valid for a short duration after contact (Lienhard
2011). In our work, because we attempt to recognize
materials with a short contact duration of 1s-4s, we used the
semi-infinite solid model in our experiments.

Ho and Jones (2004) developed a thermal display to
simulate the temperature of different surfaces after being in
contact with fingers. They employed a semi-infinite solid
model for the display and compared it to real materials. They
used 5 materials for the thermal display with ten adults as
subjects and claimed that there is no significant difference
between real and simulated materials when recognized by
human subjects. Benali-Khoudjal et al. (2003) developed a
heat transfer model between human fingers and different
surfaces based on an electrical analogy. They modeled the
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finger and the material as blocs with electrical components
and ran simulations to compare with real experiments.

Jones and Ho (2008); Ho and Jones (2006, 2008)
suggested that the semi-infinite solid model does not take
thermal contact resistance into account. Thermal contact
resistance changes with contact force and affects the
temperature response. They incorporated thermal contact
resistance into the semi-infinite solid model and claimed that
the model makes the temperature responses more realistic.
Yamamoto et al. (2004) developed a thermal tactile display
with the control of temperature based on the semi-infinite
solid model. They claimed that the thermal contact resistance
is negligible with enough contact force of 600 gf. With
enough contact force in our experiments, we assume that
thermal contact resistance is negligible.

In our study, we model the heat transfer between the sensor
and the material sample as contact between two semi-infinite
solids. Although relevant studies used the semi-infinite solid
assumption to model heat transfer, they did not use the heat
transfer model to develop an end-to-end statistical model
of material recognition performance. Our developed model
can guide the choice of suitable sensor parameters needed
to obtain a desired material recognition performance using
the thermal sensing modality. In addition, we tested our
model with a wide and diverse set of materials through both
simulations as well as experiments for material recognition
tasks.

In the next section, we will review different thermal
sensors used in the literature and their application to relevant
material recognition tasks, if any.

2.2 Thermal Sensing

2.2.1 Passive Thermal Sensing A passive thermal sensor
measures the temperature of a target object without
introducing additional heat source. Related work on passive
thermal sensors is more hardware-centric with limited
applications in material detection. In this section, we will
discuss both contact-based and non-contact-based passive
thermal sensors.

Contact-Based Sensors
Researchers used different types of contact-based thermal
sensors to develop passive sensing devices. Contact-based
thermal sensors fall into three categories: Resistance Tem-
perature Detectors (RTDs), Thermistors and Thermocouples.
RTDs and Thermistors measure temperature using the phe-
nomenon that the resistance of some materials changes as
temperature changes. Thermocouples function by the See-
beck Effect (Herwaarden and Sarro 1986), which states that
the difference between temperatures of two electric junctions
in a thermoelectric device creates a voltage. Of the three
types of thermal sensors, thermocouples have the widest
operating range of -200◦C to 2000◦C, with relatively low
accuracy. RTDs have a high accuracy of 0.03◦C with rela-
tively long response time. Compared with RTDs, thermistors
have a lower accuracy of 0.1◦C but give faster thermal
responses (Tong 2001).

Many researchers (Caselli et al. 1994; Yang et al. 2010,
2008b; Someya et al. 2005; Castelli 1995; Hedengren et al.
2001; Shih et al. 2010; Ma et al. 2010) developed arrays
of combined thermal and tactile sensors using RTDs and

thermistors. Someya et al. (2005) developed a flexible
artificial electronic skin with a network of pressure and
thermal sensors using organic diodes. They pointed out
that the network can be applied on robot fingers, but they
did not mention its application on material recognition.
Ma et al. (2010) fabricated a flexible thermal sensor array
using Nickel-based RTDs to detect dynamic wave flow in
hydrodynamic experiments. Bayindir et al. (2006) developed
a fiber device for large area thermal sensing, using long fiber
thermistors that can sense heat along its entire length and
generate electrical signals in response.

Non-Contact-Based Sensors
An alternative type of passive thermal sensor is non-
contact-based, which detects the radiated energy out of the
target object by applying the Planck’s Law of Radiation
(Planck 2013). By avoiding contact, such sensors have
the advantage of real-time nondestructive measurement.
A common type of non-contact-based thermal sensor is
the infrared camera. Many researchers study complex heat
transfer problems by taking advantage of infrared cameras
(Kabov and Marchuk 1996; Matian et al. 2010; Boukhanouf
et al. 2006). Sarro et al. (1988) developed an infrared
thermal sensing linear array based on integrated silicon
thermopiles, and Schaufelbuhl et al. (2001) fabricated a
thermal imager consisting of a 10 × 10 array of infrared
sensors. Both claim that their designs have the advantage of
low cost, low crosstalk, and high yield, and can be applied to
monochromatic radiation sensing.

In summary, studies on passive thermal sensing focus on
the fabrication process of sensing hardware, with limited
evaluation for inferring thermal properties of materials or
objects.

2.2.2 Active Thermal Sensing Active thermal sensors
have a heating element to heat up the sensor above room
temperature and a thermistor to measure the response over
time. Thus, on contact with an object at room temperature,
there is heat transfer away from the sensor into the object.
Unlike the passive thermal sensing modality, researchers
have used active thermal sensing modality for material
recognition purposes as well.

Contact-Based Sensors

a. RTDs and Thermistors Many researchers used heated
thermistors and RTDs to develop integrated thermal and
tactile sensing systems (Russell 1985; Siegel et al. 1986;
Engel et al. 2005, 2006; Takamuku et al. 2008; Liu et al.
2008; Mansky and Bennett 2002; Yuji and Shida 2000;
Mansky and Bennett 2003; Dario et al. 1984; Dario and
De Rossi 1985; Taddeucci et al. 1997; Mittendorfer and
Cheng 2011; Kim et al. 2014). Russell (1985) developed
an array of thermistors, with which he compared the
percent decrease of different materials from a uniform initial
temperature. The array recognized six different materials
using the temperature after 3 seconds of contact in a single
trial. Siegel et al. (1986) developed an integrated tactile and
thermal sensor, and compared the response of the thermistor
on wood, nylon, and steel over a 50 second period, with
the initial temperature maintained using the heat generated
by current flow on the conductive paint. They performed
material recognition by matching the sensor’s response with
an existing library of response curves.
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Engel et al. (2005, 2006) developed flexible multimodal
tactile sensing systems with gold heaters and nickel RTDs.
With consistent initial conditions and based on the combined
pressure and temperature sensing, their system successfully
identified five materials with 90% accuracy over 50 trials
and unreported contact duration. Takamuku et al. (2008)
developed an anthropomorphic finger with three strain
gauges, four thermistors and a heating element in a layered
format. They used the outputs of thermal and tactile sensors
to classify five different materials.

In the study of multimodal material recognition,
researchers expressed the need for thermal sensing (Wettels
et al. 2008), which led to the development of the multi-
modal SynTouch BioTAC sensor (Syntouch 2015). Some
researchers also used the thermal modality in the multimodal
SynTouch BioTAC sensor (Syntouch 2015) for material
recognition. Xu et al. (2013) used the BioTAC sensor to mea-
sure the temperature derivative and other multimodal sensor
data during 15 s of contact. They used Bayesian explo-
ration and reinforcement learning techniques to identify ten
objects with 99% accuracy using the data. Chu et al. (2015);
McMahon et al. (2012) used the BioTAC sensor on a PR2
robot to collect multimodal (including thermal) haptic data
for recognizing haptic adjectives. They used discrete HMMs
to construct a feature vector of likelihoods and used binary
SVM classifiers to classify those vectors and automatically
assign 24 adjectives to 60 objects. Their research focused on
classifying data using both static and dynamic features from
four deliberate exploratory procedures with sophisticated
BioTac (Lin et al. 2009) robotic fingers from Syntouch. Kerr
et al. (2013) used the BioTAC sensor to record the thermal
response data of six material groups for 20 s. They used the
derivative of the temperature (TAC) as well as the dynamic
thermal conductivity (TDC) data and got 73% accuracy with
artificial neural networks.

b. Thermocouples Of the three types of contact-based
thermal sensors, thermocouples generally have relatively
faster responses, wider range but lower accuracy (Tong
2001). Monkman and Taylor (1993) developed a method
of using the response drive current of a thermocouple in
performing material recognition, which they reported to be
faster than that of Russell (1985) and Siegel et al. (1986).
They evaluated the sensor by recognizing four materials
with distinct thermal properties under consistent initial
conditions. Their results from sensor readings over time of a
single trial suggest that the recognition of the four materials
could potentially be performed more quickly (between 0 and
3 s), but they did not report specific results.

Caldwell and Gray (1993) developed a method of using
the response output voltage of a thermocouple in material
recognition while maintaining the temperature of the sensor
at 40 ± 0.5 ◦C. They collected data for seven materials with
20 trials each and showed a graph of the probability densities
of the seven materials for steady-state thermocouple output
voltage. However, they did not apply the sensor data to any
classification algorithm to get the performance of material
recognition. Caldwell and Gosney (1993) proposed a multi-
functional tactile sensor, in which they used thermocouples
to acquire temperature gradient information through induced
output voltage. They reported high accuracy for classifying

Figure 2. Schematic of our Performance model

five materials using the thermal sensing modality, but they
did not report the specific classification method used.

Jackson W. proposed a paper sensing system that
identified physical properties of papers. The system included
a heater and two thermocouples to detect the thermal
diffusivity of different papers (Jackson et al. 1999). Shao
et al. (2010) developed a measurement system with
thermocouples in the thermal module. The system served
to quantify human sensory perceptions by studying the
correlation of collected sensor data and human subject self-
report data. A similar attempt to quantify human haptic
perception (Chen et al. 2009) also used thermocouples to
simulate human contact of materials and register the thermal
process.

Non-Contact-Based Sensors
Though not often used in material recognition, non-

contact-based thermal sensors also have application in active
thermal sensing. An example is the method of Infrared
Non-destructive Testing (IRNDT) (Kaplan 2007) to find
defects in laminar materials. The method injects controlled
thermal energy into the test sample and uses infrared
cameras to observe the response. Mulaveesala et al. (2013)
applied different non-stationary thermal excitation schemes
to perform IRNDT on fiber-reinforced plastic materials.
VanDamme and McGarvey (1972) performed IRNDT on
various laminate materials and electric circuits to detect flaws
using infrared lamp and low-power CO2 laser heat source.

In summary, related studies using contact-based active
thermal sensing performed material recognition on small
sets of materials with various data-driven machine learning
algorithms. However, they did not make use of heat transfer
models to develop an end-to-end statistical model that can
predict recognition performance of materials with arbitrary
thermal properties.

3 A MODEL FOR PERFORMANCE
PREDICTION

In our attempt to better understand material recognition
using thermal sensing, we derived a performance model
that, given a set of sensor and environmental conditions,
evaluates the expected performance of a material recognition
task. Our model calculates the probability of successfully
distinguishing two materials, given the thermal properties
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of a sensor and a material sample as well as environmental
conditions.

Figure 2 shows our approach for the performance model.
It consists of a physics-based model (Bhattacharjee et al.
2015) that takes sensor and material thermal properties as
well as environmental conditions as inputs and outputs a
time-series heat transfer data. This heat transfer data is
then fed into a statistical method which helps quantify the
difference between the heat transfer data from two materials.
We express this difference in terms of F1 scores.

4 PHYSICS-BASED MODEL
Here we present a physics-based model of the heat transfer

process between a heated sensor and a material sample.

4.1 Semi-infinite Solid Model
A semi-infinite solid is an idealized body in which a

temperature change in any part of the body is due to thermal
conditions on a single surface (Yunus and Afshin 2010).
Yunus and Afshin (2010) has modeled a finger touching
a material sample as a contact between two semi-infinite
bodies. In an analogous manner, we modeled the heat
transfer process between a heated thermal sensor and a block
of material as heat conduction between two semi-infinite
solids (Yunus and Afshin 2010; Mathis 2000). Figure 3
shows the diagram that represents this model.

In the model, we first assume that the initial temperature
of the object, Tobj(t=0), is equal to the ambient temperature,
Tamb. The initial temperature of the sensor, Tsens(t = 0), is
higher than Tamb.

Once the sensor comes into contact with the object, heat
begins to transfer from the sensor to the object, resulting in
temperature change over time. In the sensor, let x be the
distance of the thermistor from the contact surface (Fig. 3).
The contact surface at x = 0 has a temperature Tsurf that
remains constant and is given by

Tsurf =
(Tsens(t = 0)esens + Tobj(t = 0)eobj)

(esens + eobj)

where esens =
ksens√
αsens

and eobj =
kobj√
αobj

(1)

where αobj and kobj are the coefficients of thermal dif-
fusivity and thermal conductivity of the object respectively,
andαsens and ksens are the coefficients of thermal diffusivity
and thermal conductivity of the sensor respectively. Given
Tsens(t = 0) and Tsurf , we can find the temperature in
the sensor at any time, t ≥ 0, using the following partial
differential equation from Yunus and Afshin (2010):

∂2Tsens
∂x2

=
1

αsens

∂Tsens
∂t

(2)

where Tsens(x, t) is the temperature at time t of the
sensor at distance x from the contact surface. The thermistor,
which is inside the sensor, measures the temperature at
x = 8 ∗ 10−5 (obtained from manufacturer) as shown in
Fig. 3. Using the boundary conditions, Tsens(x = 0, t) =

Tsurf and Tsens(x, t = 0) = Tsens(t = 0), we can solve for
Tsens(x, t).

Tsens (x, t) = Tsens(t = 0) + (Tsurf − Tsens(t = 0))

×erfc
(

x

2
√
αsenst

)
(3)

where erfc is the complimentary error function given by

erfc(z) =
2√
π

∫ ∞
z

e−r
2

dr (4)

With the physics based model we can predict the sensor
readings, Tsens(x = 8× 10−5, t), that would result from the
heat transfer when the tactile sensor comes in contact with a
material sample with thermal effusivity eobj .

4.2 Noise Model
Note that during each temperature measurement, the

measurement of the sensor also includes noise and other
sources of uncertainty. In order to account for the noise
and uncertainty in sensor reading, we introduce an additive
Gaussian noise, Zi, with zero mean and variance σ2 to
each temperature measurement. The underlying assumption
is that, the deviation of each sensor reading from the
actual sensor temperature, caused by the uncertainty due to
various conditions, can be modeled as an independent normal
random variable.

With noise taken into consideration, the final sensor model
is given by

Tsens (x, t) = Tsens(t = 0) + (Tsurf − Tsens(t = 0))

∗erfc
(

x

2
√
αsenst

)
+ Z ∼ N

(
0, σ2

)
(5)

This modified model can help us analyze the effect of
noise on the performance of material recognition.

5 STATISTICAL METHOD
In this section, we derive a performance model to evaluate

material recognition performance when a sensor touches two
different materials under specific environmental conditions
and noise.

5.1 Gaussian Process
In order to account for the effect of noise, we first explain

the concept of Gaussian Process (GP). In a Gaussian process,
every point in some continuous input space is associated
with a normally distributed random variable. The distribution
of a Gaussian process is the joint distribution of all those
(infinitely many) random variables, and as such, it is a
distribution over functions in a continuous domain (Frigola-
Alcade 2015). In our case, the continuous domain is time,
and every time instant is associated with a normal random
variable. If we choose to sample at any particular instant, we
are essentially sampling from the normal random variable
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Figure 3. Diagram representing our model of the sensor in contact with a material sample. We model both the sensor and the
material sample as semi-infinite solids.

associated with that instant. Although in practice, we only
sample a finite collection (time series) of observations, the
distribution of the collection (time series) is still the joint
distribution of all the observations within the collection,
which results in a multivariate normal distribution.

In our model, let Tsens be the random function (given by
Eq. 5, with x fixed) from which every observation Tsens(ti)
can be sampled. We have

Tsens(ti) = f(ti) + εi ∼ i.i.d.N
(
0, σ2

)
(6)

where f(t) is the mean function (given by Eq. 3) and εi is
a random normal variable.

Thus, we can express Tsens as Gaussian process
GP (f,K), which implies that the random function Tsens is
distributed as a GP with mean function f and covariance
function K (Rasmussen 2004). The covariance for any two
given samples is given by K as

K(Tsens(ti), Tsens(tj))

= COV (Tsens(ti), Tsens(tj))

= E
[
Tsens(ti)− E[Tsens(ti)]

]
∗

E
[
Tsens(tj)− E[Tsens(tj)]

]
= E

[
f(ti) + εi − f(ti)

]
∗

E
[
f(tj) + εj − f(tj)

]
= E

[
εi
]
E
[
εj
]

(7)

Since εi, εj ∼ i.i.d.N
(
0, σ2

)
,

K(Tsens(ti), Tsens(tj)) = E
[
εiεj
]

(8)

5.2 Multivariate Normal Distribution
The multivariate normal distribution N (µ,Σ) is a

generalization of the one-dimensional (univariate) normal
distribution to higher dimensions, given as

P (x|µ,Σ) =

1√
(2π)n|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(9)

where x is an n dimensional random vector, µ is the
n dimensional mean vector given by E

[
x
]

= {f(ti)|i ∈
(1, n)} (f being the mean function), and Σ is the n× n
covariance matrix.

Every set of finite samples x = {Tsens(ti)|i ∈ (1, n)}
drawn from Tsens = GP (f,K) can be viewed as a random
vector corresponding to a multivariate normal distribution.
Thus, we can calculate the probability of observing a specific
random vector x given prior knowledge of the mean function
and the covariance matrix.

Also, the covariance function K is a spherical covariance
matrix for the random vector x:

Σij = E
[
εiεj
]

=

{
σ2 i = j
0 i 6= j

(10)

As a result, Σ is a diagonal matrix in which the main
diagonal entries are all σ2. Thus, we have the determinant
of Σ equal to the product of all main diagonal entries

|Σ| = (σ2)n (11)

Rewriting the probability distribution function, we have

P (x|µ,Σ) =

1√
(2πσ2)n

exp

(
−1

2
(x− µ)T (x− µ)/σ2

)
(12)

Eq.12 represents the probability distribution of observed
measured time series x, given the mean vector µ
and covariance matrix Σ associated with the underlying
Gaussian process Tsens = GP (f,K).
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Figure 4. Gaussian Decision Boundary illustrated in 1
Dimension

Figure 5. True Negative Rate and True Positive Rate

Figure 6. False Negative Rate and False Positive Rate

5.3 F1 score and F1 score Matrix
We determine whether a given material pair is distinguish-

able by modeling the performance of a binary classifier given
a random time series sample from each of the two mate-
rials. We sample the time-series data from the underlying
multivariate normal distribution associated with each of the
two materials. In other words, if the labeling accuracy of the
binary classifier is higher than a certain threshold, we decide
that the material pair is distinguishable. For consistency, we
use F1 score as the accuracy measurement and 0.9 as the
threshold.

We model the decision process of binary classifiers with
a Gaussian decision boundary. Consider two underlying
distributions of random vector variables (time series)
N (T 1,Σ) and N (T 2,Σ) each associated with a material
sample. At any instant, we obtain a sensor measured
time series vector x′, and we want to label it with its
corresponding material label. Since we actually do not
know which material the sensor is currently in contact
with, we label x′ with the more probable distribution by
comparing P (x′|T 1,Σ) and P (x′|T 2,Σ), and assign the
more probable label. This leads to the formation of a decision
boundary as illustrated in Fig. 4, which is a hyperplane in the
n dimensional space associated with the two distributions.
To simplify the calculation, we translate both distributions
by −T 1, and define x = x′ − T 1, ∆ = T 2 − T 1.

We can then express the translated distributions
as N (0,Σ) = N (T 1 − T 1,Σ) and N (∆,Σ) =
N (T 2 − T 1,Σ). As a result, P (x′|T 1,Σ) = P (x|0,Σ),
and P (x′|T 2,Σ) = P (x|∆,Σ). We can calculate the
likelihood of the measured time series belonging to each
distribution using the translated distributions and get the
same result.

To derive an expression of F1 score specific to our model,
we start from the definition

F1 =
2TP

2TP + FN + FP
(13)

where ‘TP’ is the true positive rate, ‘FP’ is the false
positive rate, and ‘FN’ is the false negative rate. Let ∆
be the positive label and 0 be the negative label. Then,
we can define true positive rate as, the probability of
assigning a positive label to a sample that belongs to the
positive distribution N (∆,Σ). As illustrated in Fig. 5,
all samples that belong to N (∆,Σ) and fall on the right
side of the decision boundary, in other words, closer to the
N (∆,Σ) distribution, will be correctly labeled positive.
This proximity, as we will elaborate later, can be measured
using the Mahalanobis Distance (De Maesschalck et al.
2000).

We define the mathematical expression for true positive
rate, false negative rate, true negative rate, and false positive
rate as follows,

TP = P

[
P (x|0,Σ) < P (x|∆,Σ)

∣∣∣x ∼N (∆,Σ)

]
FN = P

[
P (x|0,Σ) > P (x|∆,Σ)

∣∣∣x ∼N (∆,Σ)

]
TN = P

[
P (x|0,Σ) > P (x|∆,Σ)

∣∣∣x ∼N (0,Σ)

]
FP = P

[
P (x|0,Σ) < P (x|∆,Σ)

∣∣∣x ∼N (0,Σ)

]
(14)

Note, the two distributions N (0,Σ) and N (∆,Σ) have
identical spherical covariance matrix, so we have TP =
TN , and FN = FP . Therefore, the expression for F1 score
can be simplified as follows

F1 =
2TP

2TP + FN + FP

=
TP

TP + FN

= TP/1 = 1− FP

(15)

Now we derive the expression for FP , where we assume
x ∼N (0,Σ)

FP = P

[
P (x|0,Σ) < P (x|∆,Σ)

]
(16)

Using the Square of Mahalanobis distance, which is
proportional to the negative log-likelihood (De Maesschalck
et al. 2000), we have
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FP = P

[
(x− 0)TΣ−1(x− 0) > (x−∆)TΣ−1(x−∆)

]
= P

[ n∑
i=1

x2i

/
σ2 >

n∑
i=1

(xi −∆i)
2

/
σ2

]

= P

[ n∑
i=1

(xi −∆i)
2

/
σ2

n∑
i=1

x2i

/
σ2

< 1

]

(17)

Let X =
n∑
i=1

(xi −∆i)
2

/
σ2, Y =

n∑
i=1

x2i

/
σ2, and F =

(Y/n)/(X/n), we have

FP = P

[
X

Y
< 1

]
= P

[
X/n

Y/n
< 1

]
= P (F < 1) (18)

Note that xi ∼ i.i.d.N
(
0, σ2

)
and (xi −∆i) ∼

i.i.d.N
(
−∆i, σ

2
)
. It follows that X is a noncentral

chi-squared random variable with n degrees of freedom

and noncentrality parameter λ =
n∑
i=1

∆2
i

/
σ2. Y is a

central chi-squared random variable with n degrees of
freedom. As a result, random variable F falls under a
noncentral F-distribution. Then, we can calculate P (F < 1)
by evaluating the cumulative distribution function of F ,
which we will refer as CDFF , at 1 (Johnson 1972). We
used the implementation from Pav (2017) in ‘R’ language to
calculate CDFF (1).

The expression for F1 score is

F1 = 1− FP = 1− CDFF (1)

F1 = 1−
∞∑
j=0

(
( 1
2λ)2

j!
e−

λ
2

)
I

(
1

2

∣∣∣∣n2 + j,
n

2

)

where λ =
1

σ2
||∆||22 =

1

σ2

n∑
i=1

∆2
i

(19)

λ is the noncentrality parameter, I is the regularized
incomplete beta function (Patnaik 1949), and

∆i = (Tsurf1 − Tsurf2) ∗ erfc
(

x

2
√
αsensti

)
(20)

where Tsurf1 and Tsurf2 can be calculated by Eq. 1. Thus,
we have

λ =
1

σ2

n∑
i=1

(Tsurf1 − Tsurf2)
2 ∗ erfc2

(
x

2
√
αsensti

)

=
(Tsurf1 − Tsurf2)

2

σ2

n∑
i=1

erfc2
(

x

2
√
αsensti

)
(21)

Let ∆t = ti+1 − ti represent the sample time. We have,

λ =
(Tsurf1 − Tsurf2)

2

σ2 ∗∆t

n∑
i=1

erfc2
(

x

2
√
αsensti

)
∗∆t

(22)

We assume that sample time ∆t is small so that
n∑
i=1

erfc2
(

x
2
√
αsensti

)
∗∆t can be approximated with∫ tcontact

0
erfc2

(
x

2
√
αsenst

)
dt.

Therefore, the resulting final expression for F1 score is
given by,

F1 = 1−
∞∑
j=0

(
( 1
2λ)2

j!
e−

λ
2

)
I

(
1

2

∣∣∣∣n2 + j,
n

2

)

where λ =
(Tsurf1 − Tsurf2)

2

σ2 ∗∆t

∗
∫ tcontact

0

erfc2
(

x

2
√
αsenst

)
dt

(23)

6 EVALUATIONS OF PERFORMANCE
MODEL

We evaluate our performance model using a three-part
evaluation. First, we focus on classifying two different
thermal effusivities. We compare the prediction of our
performance model with the performance of SVM in
classifying simulated sensor time-series data for two
different thermal effusivities. We use SVM because it is a
widely used data-driven algorithm and we have previously
achieved success with SVM for material recognition tasks
using active thermal sensing (Bhattacharjee et al. 2016,
2015). We use a wide range of thermal effusivities to
compare the performance and analyze the effect of noise and
sensor initial condition on the performance.

Second, we focus on binary material recognition for all
materials in the CES-Edupack Level 1 Database (Ashby
2008). We compare the prediction of the performance model
with that of SVM in binary material recognition tasks for
simulated time-series heat transfer data. We simulate data
using consistent sensor initial conditions.

Third, we focus on binary material recognition of 12
real-world materials. We compare the prediction of the
performance model in binary material recognition tasks for
real-world time-series heat transfer data collected using a 1-
DoF robot from 12 different materials under both consistent
and varied sensor initial conditions.

We use F1 scores as a metric to compare the performances
for all three cases. Figure 7 shows a schematic of the
evaluation method.

7 EVALUATIONS WITH DIFFERENT
THERMAL EFFUSIVITIES

In this section, we evaluate our performance model by
comparing its F1 score for classifying two different thermal
effusivities with the F1 score obtained with SVM and
simulated time-series data. We used SVM as our data-driven
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Figure 7. Evaluation of our Performance Model.

method given its best performance in our previous work
(Bhattacharjee et al. 2015, 2016).

Given a reference thermal effusivity value, we are
interested in comparing the performance model result and the
SVM result for the minimum effusivity difference required to
obtain a binary classification F1 score greater than or equal
to a desired performance (Φ). In this paper, we set Φ = 0.9.
This means we consider any effusivity pair with F1 ≥ 0.9
classification score as distinguishable.

7.1 Minimum Distinguishable Difference δ(e)
For a given thermal effusivity value e, let δ(e) be the

smallest value such that either F1(e, e+ δ(e)) or F1(e, e−
δ(e)) is greater than Φ. We then define the minimum
distinguishable difference of the given effusivity value e
to be δ(e). Intuitively, δ(e) for a given e provides us
with a quantitative evaluation of what materials can be
distinguished from a specific material with effusivity e under
the current sensor, material and environmental conditions.

7.2 Evaluation Procedure
When a thermal sensor comes in contact with a material

sample, the heat transfer data are affected by sensor noise,
initial sensor temperature as well as the contact duration.
Therefore, we analyze the effect of these parameters on the
F1 score obtained with our model as well as with SVM by
varying the quantities as given below:

• Noise Z ∼ N
(
0, σ2

)
: σ = 0.01 , σ = 0.05 and σ =

0.10
• Initial Sensor Temperature Tsens(t = 0) : 30◦C and

35◦C
• Contact Duration tcontact : 1.00s, 2.00s, 3.00s, and

4.00s

We estimated the minimum distinguishable difference
δ(e) for every effusivity value e for the above conditions
with the model and with SVM and compared the results.
For our performance model, we used the statistical method
to calculate the F1 score under the given sensor and material
thermal properties using Eq. 23. For SVM, we generated
noisy data using the physics-based model and performed a

Figure 8. Examples of generated time-series heat transfer data
from our physics-based model for some example effusivity
values.

3-fold cross-validation over each unique effusivity value pair
and reported the F1 score.

We used the implementation of binary support vector
machine (SVM) provided by the scikit-learn package
(Pedregosa et al. 2011) in Python. We used the linear kernel
for the classification task. To produce feature vectors for
training, we used both raw temperature and estimated local
slope from each trial of the experiment, and concatenated
them into a single feature vector.

7.3 Data Collection

In order to account for a sufficiently large thermal
effusivity range, we referred to the CES EduPack 2016
(Granta Design Ltd., Cambridge, UK 2016) Level 1 material
database. Of all the included materials, Rigid Polymer Foam
(LD) has the minimum effusivity value of 3.05× 101J/(s

1
2 ·

K ·m2), and Copper Alloy has the maximum effusivity
value of 3.68× 104J/(s

1
2 ·K ·m2). Therefore, we sampled

effusivity values in the range (0, 4.00× 104] J/(s
1
2 ·K ·

m2). We discretized the range to 500 equal intervals. We
can think of each interval as a material category, and an
instance of the material category can take on any effusivity
value within the interval.

Given an effusivity value e, we constructed the time series
heat transfer data based on the semi-infinite solid model
defined in Section 4.1. We use esens = 892 (J · s− 1

2 ·K−1 ·
m−2), and αsens = 1.19× 10−9 (m2 · s−1) similar to our
real-world sensor parameters (See Appendix A). Note our
real-world sensor noise was σ = 0.05. We set Tamb to 25◦C.
We set the sampling rate to be 200 Hz, similar to our real-
world sensor sampling rate. Figure 8 shows examples of
data generated using our physics-based model with these
parameters and some example object effusivity values.

We generated 50 trials for each effusivity interval
by uniformly sampling from the effusivity interval and
generated simulated data with the sampled effusivity. We
performed all simulations using a 2015 MacBook Pro
equipped with Intel Core i7 CPU at 3.1 GHz running OS X
El Capitan Version 10.11.6.
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7.4 Results and Discussion
In this section, we present and compare the results of our

performance model and SVM. Figure 9 shows the F1 score
Matrix with pairwise F1 scores for all effusivity values using
our performance model and SVM. We obtained this matrix
using tcontact = 2s, Tsens(t = 0) = 35◦C, and σ = 0.05.
Table 1 shows the percentage of indistinguishable effusivity
combinations calculated based on the F1 score matrices with
Φ = 0.9. The results show that the evaluation using our
performance model matches well with the evaluation using
SVM.

Table 1. Percentage of Indistinguishable Effusivity
Combinations, tcontact = 2.00s

Experimental
Conditions

Performance Model SVM
Temperature
Difference

Temperature
Difference

5◦C 10◦C 5◦C 10◦C

Noise
0.10 62.97% 45.96% 55.54% 38.61%
0.05 45.96% 30.00% 38.62% 24.41%
0.01 14.69% 7.89% 23.30% 13.26%

We compared the F1 score matrices predicted by the
performance model and SVM by calculating the L1 distance
between the two matrices. Before we calculated the L1

distance, we converted the F1 score matrix into a binary
map where any score greater than 0.9 (our threshold
for determining whether a material is distinguishable) is
converted to 1 and the any score less than 0.9 is converted
to 0. The L1 distance (Crowley and Krause 1988) between
two n× n converted matrices A and B is defined as:

||A−B||1 =

n∑
i=1

n∑
j=1

|aij − bij | (24)

Since the F1 score matrix is symmetrical, and the diagonal
values in the matrix are trivial (a material’s recognition
performance with itself is not meaningful), we only consider
the upper diagonal matrix in the following accuracy metric,

d(A,B) =

(
1−

n−1∑
i=1

n∑
j=i+1

|aij − bij | ×
2

n(n− 1)

)
× 100%

(25)

This gives a measure of the difference between two F1

score matrices. We used this metric to compare the difference
between our performance model F1 score matrix and the F1

score matrix obtained with SVM running on both simulated
and experimental data. Table 2 shows that the F1 score
matrices predicted by our performance model match well
with the F1 score matrices produced by SVM.

In order to capture the impact of initial condition
Tsens(t = 0) and noise Z, we calculated minimum
distinguishable difference δ(e) for all values of e for each
of the conditions. Figures 10 and 11 show the results.

7.4.1 Effect of Contact Duration
To analyze the effect of contact duration on classification

performance, we truncated the time series data at different

Table 2. Percent Matching Between Performance Model
Predictions and SVM Results of Indistinguishable Effusivity
Combinations, tcontact = 2.00s

Experimental
Conditions

Temperature
Difference

5◦C 10◦C

Noise
0.10 92.60% 92.65%
0.05 92.63% 94.38%
0.01 91.45% 94.65%

time lengths and ran our performance model and SVM on the
truncated data. Fig. 10 shows the minimum distinguishable
difference δ(e) curves calculated based on the performance
model results (left graphs). As expected, in each plot,
with increased length of time, the material recognition
performance of the algorithm improves. Figure 10 also
shows the results from SVM, and it follows the same trend
(right graphs). The more the contact duration, the better is
the performance of material recognition (See Section 10).

7.4.2 Effect of Initial Condition Figure 10 shows the
results with our performance model (left-graphs) and SVM
(right-graphs) for both Tsens(t = 0) = 30◦C and Tsens(t =
0) = 35◦C initial conditions. By comparing the (Tsens(t =
0) = 35◦C) graphs with the (Tsens(t = 0) = 30◦C) graphs
in Fig. 10, we observe that larger initial temperature
difference (Tsens(t = 0) = 35◦C) between sensor and
ambient environment produces a lower δ(e) curve. In other
words, our model predicts that a larger initial temperature
difference between sensor and measured object can help in
material recognition, as it generates more distinguishable
heat transfer data for materials (See Section 10).

Also, the graphs generated by the performance model
are visually similar to the ones generated by SVM across
different initial sensor temperature conditions. Observe that
SVM actually performs slightly better than the performance
model for each specified tcontact, with δ(e) curves just below
that of the performance model. This is probably because
SVM are less susceptible to the additive Gaussian noise in
the data than the performance model.

7.4.3 Effect of Noise Figure 11 shows the results with our
performance model (top graphs) and SVM (bottom graphs)
for different levels of noise. By comparing the left plot
(σ = 0.01) with the middle plot (σ = 0.05) and the right plot
(σ = 0.10) in Fig. 11, we observe the impact of noise on
the algorithm performance. As expected, simulations with a
noise level σ = 0.10 produce the highest δ(e) values. Again,
our models predict that thermal sensors with lower noise
help in material recognition (See Section 10) and the graphs
generated by our performance model are similar to the ones
generated by SVM.

8 EVALUATIONS WITH SIMULATED DATA
FROM A MATERIAL DATABASE

In this set of experiments, we mapped the previous
results obtained using different thermal effusivity values
to actual material effusivity values. Our objective here is
to evaluate our performance model using actual material
effusivity values. We obtained thermal effusivity values of
all 69 materials from CES EduPack Level 1 database (Ashby
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Figure 9. Example F1 score Matrix with our performance model (left) and SVM (right) (Tsens = 35◦C, σ = 0.05, tcontact = 2.00s)

Figure 10. Effect of Initial Condition on δ(e) with fixed noise σ = 0.05: Performance Model and Tsens(t = 0) = 30◦C (Top-left),
SVM and Tsens(t = 0) = 30◦C (Top-Right), Performance Model and Tsens(t = 0) = 35◦C (Bottom-left), and SVM and Tsens(t = 0)
= 35◦C (Bottom-Right)

2008). Figure 12 shows the effusivity ranges of all the 69
materials. We looked up binary material classification results
for all possible pairs of effusivity values corresponding to
69 materials (2346 material pairs) from our previous results
in Section 7.4 to find out what materials are distinguishable
with F1 score greater than Φ = 0.9. We compared the results

of our performance model with that of SVM. We present the
F1 score matrices in terms of node graphs of distinguishable
and indistinguishable pairs.
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Figure 11. Effect of Noise on δ(e) with fixed initial condition Tsens(t = 0) = 35◦C: Top graphs show the results from the
performance model whereas the bottom graphs show the results from SVM. The noise levels increase from (σ = 0.01) in the left
graphs to (σ = 0.05) in the middle graphs, and finally (σ = 0.1) in the right graphs.

Figure 12. Effusivity Distribution of the 69 Materials in CES Edupack Level 1 (Ashby 2008) in Logarithmic Scale

8.1 Node Graphs of Material Pairs

To visualize whether any two materials from the CES
EduPack Level 1 database (Ashby 2008) are distinguishable,
we generated a node-graph based on their F1 scores where
each node represents a material. The node-graph has the
following characteristics:

• An edge between two material nodes represents that
they are indistinguishable. Note Φ = 0.9.

• The radius of a material node is proportional to its
thermal effusivity. So, metals with larger effusivities
are represented by larger circles.

• CES Edupack divides all materials into four large
categories such as metals/alloys, ceramics/glasses,
polymers/elastomers, and composites/foams/natural.
A material node’s color signifies which category the
material belongs to.

• The thickness of the edge connecting two materials is
inversely proportional to their F1 score. This means
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that the thicker the edge, the more difficult it is to
distinguish the material nodes that are at its ends.
• The relative position of the nodes has no relation with

any physical property. It is purely for visualization
purposes.

Note, each material in the CES Edupack database (Ashby
2008) has a range of thermal effusivity values that it can
have. So, to calculate a single F1 score for the range of
effusivity values for a single material pair, we used the
average F1 score ≥ 0.9. To find the average F1 score,
for example, for gold and silver, we find the average of
F1 scores for the binary classification between all possible
combinations of gold effusivities and silver effusivities. In
our case, the average F1 score can be calculated based on the
F1 score matrix, as shown in Fig. 9, by taking the average of
all F1 scores within a rectangular area, bounded by effusivity
values (e1) in the effusivity range of the first material (gold),
and effusivity values (e2) in the effusivity range of the other
(silver).

Figure 13 shows the results with Tsens(t = 0) = 35◦C
and N = 0.05 noise. We see that the results with our
performance model match well with the results with
SVM. From the figure, we note that there are three
to four connected components in each node-graph and
these connected components tend to have the majority
of the material nodes in a particular category such as
metals/alloys, ceramics/glasses, polymers/elastomers, and
composites/foams/natural. This further means that a material
belonging to one of these categories has a higher probability
of being distinguished from a material in another category
than in its own category. For example, it would be easier
to distinguish a ceramic from a metal than another ceramic.
We can also see some densely connected components in the
graph. For example, metals are densely connected together,
which agrees with our observation in Fig. 10, as rising δ(e)
makes it harder to distinguish materials with larger effusivity.

The observed connected components also agree well when
compared with the effusivity ranges provided in Fig. 12.
Metals, with large effusivity values, are generally difficult
to distinguish amongst themselves because their effusivity
values are so large that they dominate Tsurf (Eq.1) to a value
very close to the ambient temperature, rendering the Tsens
curves indistinguishable.

While our performance model predicts better δ(e)
for smaller effusivity values, polymers/elastomers and
composites/foams/natural materials still form many edges,
because the effusivity values of materials are so close that
their difference is smaller than the minimum distinguishable
distance δ(e).

Table 3. Percentage of Indistinguishable Pairs, tcontact = 2.00s

Experimental
Conditions

Performance Model SVM
Temperature
Difference

Temperature
Difference

5◦C 10◦C 5◦C 10◦C

Noise
0.10 22.42% 14.54% 21.14% 15.77%
0.05 14.54% 10.61% 14.96% 12.53%
0.01 7.08% 5.16% 11.94% 8.35%

As shown in Table 3, the number of edges present
in the graph is consistent with the observation we made

Table 4. Percent Matching Between Performance Model
Predictions and SVM Results of Indistinguishable Material
Pairs, tcontact = 2.00s

Experimental
Conditions

Temperature
Difference

5◦C 10◦C

Noise
0.10 98.55% 96.63%
0.05 97.53% 96.63%
0.01 95.14% 96.80%

in Fig. 10, which means that a larger initial temperature
difference between the sensor and the material and less
noise lead to more distinguishable material pairs. Also, the
quantitative values using the performance model match well
with that of SVM. As shown in Table 4 the indistinguishable
material pairs predicted by our performance model match
with the SVM results with around 96% accuracy across all
experimental conditions.

9 EVALUATIONS WITH A REAL ROBOT

9.1 Experimental Setup
Figure 1 shows the 1-DoF robot used in our experiments.

The robot consists of a linear actuator, two Teensy 3.2
microcontrollers, a passive sensing thermistor, and an
active sensing module. The active sensing module consists
of the Thorlabs HT10K Flexible Polyimide Foil Heater
with 10 kOhm Thermistor (tho 2016) (heating element
and a temperature sensor) on a fabric-based force sensor
(Bhattacharjee et al. 2013) which is backed by thermal
insulation foam. The passive sensing thermistor uses the fast-
response 10kΩ NTC thermistor (EPCOS B57541G1103F)
(epc 2016).

Figure 15 shows the list of materials used for this set
of experiments. We selected these materials in order to
have a uniform representation of materials from all the
four categories (metals, ceramics, polymers, and composites)
from the CES Edupack database (Ashby 2008). We included
3 materials from each category. We selected 12 materials
such that it has both distinguishable and indistinguishable
material pairs between them. We estimated this by running
our performance model using the mid-point of the effusivity
range of these materials.

9.2 Experimental Procedure
Figure 1 shows an example of the 1-DoF robot reaching

to touch a cardboard sample. We used a Python script on
a separate Dell Optiplex 9010 Computer equipped with
Intel(R) Core(TM) i7-3770 CPU at 3.40GHz running 32-
bit Ubuntu 12.04.2 LTS system with Linux Ubuntu 3.5.0-
54-generic kernel to control the device through a serial
link with the Teensy 3.2 microcontrollers. Before reaching
down and contacting the sample, the device waits at 15 mm
above the sample, to allow a voltage supply to generate heat
based on an integral controller such that the active sensing
thermistor maintains the desired temperature. Upon contact
with the material sample, the integral controller stops so as
not to interfere with the natural heat transfer from the sensor
to the material sample. The micro-controllers record the
active sensing thermistor and the passive sensing thermistor
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Figure 13. Node Graphs of Material Pairs using Performance Model (left) and SVM (right)

Figure 14. The sensing module with fabric-based force sensor
and an active thermal sensor

Figure 15. Twelve selected materials for real-world
experiments with the 1-DoF robot

readings at 200 Hz for 10 seconds. Note, the sensor has an
insulated foam backing which makes the sensor compliant

and thus, to ensure that there is complete contact between
the material sample and the sensor’s flat surface, we use
a force threshold of 5 N to detect the onset of contact.
Also, we do not use the passive thermistor data for any
material recognition purposes. The robot then raises the
sensing module and waits for 20 seconds before starting
the next trial. Using the FLIR Tau 2 324 7.5mm Thermal
Imaging Camera Core (46324007H-FRNLX), we found that
20 seconds were enough for the material samples to come
back to their initial state. This is to ensure that the sample is
at a consistent initial condition before the robot touches it at
any trial (see Extension 1).

We performed two sets of experiments with the real
robot. The first set consisted of 10 trials each with fixed
initial sensor temperature conditions for each material.
The second set consisted of 50 trials each with uniformly
varied initial sensor temperature conditions for each
material. We uniformly varied the initial sensor conditions
between Tsens(t = 0) = 30◦C to Tsens(t = 0) = 35◦C. We
identified the sensor and material parameters as outlined
in Appendix 12. We performed this set of experiments to
simulate contact situations when a robot incidentally touches
objects in its environment without the opportunity to adjust
its initial sensor conditions. This is a common scenario in
manipulation in cluttered and unstructured environments or
in assistive scenarios working in close contact with a human
body (Bhattacharjee et al. 2014).

9.3 Results

9.3.1 Fixed Initial Conditions With fixed initial condi-
tions, SVM achieved an average F1 score of 0.985 for binary
material recognition across all 66 material pair compar-
isons. Our performance model result successfully achieved
a 92.42% match with the SVM results, using the metric
defined in Eq. (25). While the performance model predicted
that MDF vs. Acrylic can only be distinguished with 0.62 F1

score, SVM were able to achieve an F1 score of 0.92.

9.3.2 Varied Initial Conditions In order to test the
accuracy of the performance model under varied initial
conditions, we collected 50 trials of data for each material
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with varied sensor initial conditions by uniformly sampling
Tsens(t = 0) from 30◦C to 35◦C before contact. SVM
achieved an average F1 score of 0.976 for binary material
recognition across all 66 material pair comparisons.

However, for variable initial conditions, the expected
resulting distribution is a high dimensional ”plateau” shaped
multivariate generalized normal distribution (Nadarajah
2005), which our statistical method cannot directly account
for. To apply our performance model to trials collected with
varied initial conditions, we need to transform the data to
fixed initial conditions. We achieved this by transforming the
data as follows.

By using Eq. (5) and substituting Tsurf with Eq. (2), we
have the following relation,

Tsens(x, t)− Tobj(t = 0)

Tsens(t = 0)− Tobj(t = 0)
=

1− eobj
eobj + esens

erfc

(
x

2
√
αsenst

)
+

Z ∼ N
(
0, σ2

)
Tsens(t = 0)− Tobj(t = 0)

(26)

where all initial conditions are transformed to 1, and the
expected noise level Z ′ of the transformed data becomes,

Z ′ =
1

35− 30
∗

∫
T∈[30,35]

Z

T − Tobj(t = 0)
dT

=
ln35− ln30

35− 30
∗ Z

(27)

Using the above transformation, our performance model
prediction successfully achieved a 90.91% match with
the real-world data performance obtained with SVM. The
performance model successfully predicted the majority of
distinguishable material pairs. It also successfully predicted
that ABS and Rubber, and MDF and Rubber would be
indistinguishable under the given sensor and environmental
conditions. Interestingly, our performance model predicted
that Copper vs. Aluminum would be indistinguishable, but
SVM could distinguish them. Out of the four pairs of
materials (ABS vs. MDF, Copper vs. Stainless Steel, ABS
vs. Wood, and Aluminum vs. Stainless Steel) that the
performance model expected to distinguish, SVM achieved
F1 score ≤ 0.9, but managed to achieve an average F1 score
of 0.83.

10 LIMITATIONS
Note, the model does not explicitly model contact area

but heat transfer depends on contact area. For example,
in this paper, we used the active thermal sensor similar
to the one used in Bhattacharjee et al. (2015). However,
we also performed all these three evaluations with another
‘point’ thermal sensor used in Wade et al. (2016). We
call the sensor a ‘point’ sensor because it is a thermistor
of small cross-sectional area. For experiments with fixed
initial conditions, our model predicted the performance well
using the point sensor. The model performance matched
the SVM performance with 92.29% accuracy using the

metric (See Eq.25) for effusivity combinations, 99.94% for
simulated data from the material database, and 86.36% for
real-world data with fixed initial conditions. However, the
model predictions matched the real-world data with varied
initial conditions with only 46.97% accuracy for the ‘point’
sensor. Basically, the model predicted that a lot of the binary
material pairs are distinguishable but the SVM running on
the real-world data collected using the ‘point’ sensor could
distinguish only 22 out of the 66 material pairs. This is
probably because the sensor is a ‘point’ sensor whose contact
area during heat transfer is low. Thus, the difference in
the heat transfer between materials is less prominent than
the ‘flat area’ sensor used in this paper and Bhattacharjee
et al. (2015). This relates to the fact that heat transfer is
dependent on the contact area and geometry as well how
well two surfaces are in contact. Thus, depending upon
the compliance in the sensor, application of larger force
might result in a better contact area or contact between
two flat surfaces may result in more prominent heat transfer
than contact between a flat surface and a spherical surface
(‘point’ sensor) or between two spherical surfaces. This is
compounded by the fact that the point sensors were also in
contact with the fabric, thus adding more uncertainty to the
heat transfer data. Also, the ‘point’ sensor parameters may
be more susceptible to temperature changes, i.e., the thermal
effusivity and diffusivity of the ‘point’ sensor may have
changed significantly with temperature changes in the sensor.
Thus, during varied initial conditions, the heat transfer data
were more unpredictable than obtained using a fixed sensor
initial condition in our physics-based model. Accounting
for the sensor parameter dependence on temperature, the
effect of the contact area, as well the force applied during
physical contact, in the heat transfer data using the semi-
infinite model needs further investigation.

11 DISCUSSION

The physics-based analytical performance model in this
paper could be used to design thermal sensors to achieve
a desired level of performance and to provide various
experimental design guidelines based on its predictions. For
example, if our goal is for a robot with a thermal sensor
to achieve approximately 90% F1 score with all the 69
materials in the CES Edupack Level 1 database, our model
suggests that the thermal sensor initial temperature should
be at least 10◦C than the material initial temperature and
the temperature sensor should at most have a noise of
0.05◦C (See Table 3). Another example is, if our robot has
an accurate thermal sensor with noise 0.01◦C, our model
suggests that the sensor can achieve greater than 90% F1

score even when the sensor initial temperature is just 5◦C
higher than the material initial temperature, thus reducing
the power requirements (See Table 3). To give one final
example, our model suggests that to be able to distinguish
two materials with thermal effusivities of around 35k (J ·
s−

1
2 ·K−1 ·m−2) and 20k (J · s− 1

2 ·K−1 ·m−2) (possibly
two metals, due to high effusivities), the robot with the tactile
sensor needs to be in contact with the material samples for at
least 3 seconds. This is for a robot with a thermal sensor with
0.05◦C noise and initial temperature which is 5◦C higher
than the material’s initial temperature (see Figs. 10 and 11).
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However, note that our performance model is based on a
semi-infinite solid model assumption, which assumes heat
transfer from the active thermal sensor to the material sample
is in one direction only. In reality, however, none of the
material samples are perfectly semi-infinite though its a
widely used model in these scenarios. Note that this semi-
infinite solid model assumption is generally valid for a
short duration which is characterized by the Fourier number
of the material (Ho and Jones 2007; Yang et al. 2008a).
Also, the thermal properties of a material change with
temperature which we did not account for in our physics-
based model. While our performance model in this work
is only suitable for estimating the performance of binary
classification, we can transform a multiclass classification
problem to binary classification problems using the one-vs-
one strategy or the one-vs-rest strategy (Bishop 2006) and
predict the performance of classifiers similar to the scikit-
learn implementation of multiclass SVM (Pedregosa et al.
2011).

Note in Fig. 13, the metals are more densely connected
in the results with the performance model, while poly-
mers/elastomers are more densely connected for SVM. The
means that the performance model finds it difficult to distin-
guish among materials with larger effusivity values, such as
metals/alloys, while the SVM finds it difficult to distinguish
among materials with smaller effusivity values, such as poly-
mers/elastomers. This is a function of the material effusivity
resolution we chose for discretization in the simulations. For
example, when we divided the range of material effusivity
values into 500 equal intervals (see Section 7), each interval
is of 80 effusivity. But, for polymers/elastomers which are
in the low effusivity range (less than 1000), there are many
materials whose effusivity ranges are smaller than the effu-
sivity resolution (80), which can make the estimated number
of indistinguishable pairs for those materials (using the per-
formance model) less than they actually are. Discretizing the
material effusivity ranges to smaller values can potentially
address this but in turn, increase the computational burden.

12 CONCLUSION

We investigated the binary classification of material
pairs across a wide range of materials using heat transfer
based sensing. We derived a physics-based model with a
statistical method to calculate the binary material recognition
performance when a heated sensor touches two materials
with flat surfaces. We conducted a three-part evaluation of
the performance model. First, we evaluated the accuracy
of performance model prediction with different thermal
effusivity values by calculating and comparing δ(e) vs. e
curves. Based on the evaluation result, we investigated the
effect of initial conditions, contact duration, and noise on
the classification algorithms expected performance. Second,
we performed evaluations using simulated data from 69
materials provided in CES EduPack Level 1 database. In
the third part of our evaluation, we collected real-world
data using a 1-DoF robot and compared the classification
performance of SVM with the model prediction. Our
results provide evidence for the feasibility of using
the performance model to evaluate the binary material
classification performance given sensor and material thermal

properties. The accuracy of our performance model during
real-world tasks, for which the contact between the sensor
and the material is more varied and not normal, and there is
a greater variety of object and material compositions, merits
further investigation.

Appendix A: Finding Sensor and Material
Parameters

Figure 16. Example Real-world data from Copper and Acrylic
under fixed sensor initial conditions. The graphs also show the
simulated data using the identified sensor and material
parameters.

To identify sensor parameter values (sensor effusivity
esens and sensor diffusivity αsens), we collected 10 trials
of data with fixed initial conditions from each of the
materials in Figure 15. Note, these 10 trials are only for
identifying the sensor and material thermal properties and
are not used for our material recognition experiments. We
identified the sensor parameter values based on the sum
of squared error between experiment temperature data and
the ideal temperature data based on the semi-infinite solid
model defined in Section 4.1. For each material, we used
the Limited-memory BFGS with boundary constraints (L-
BFGS-B) (Jones et al. 2001) algorithm to find its optimal
effusivity value, with the boundary constraints given by the
thermal effusivity values of materials in the CES EduPack
database (Ashby 2008). In addition, since the detection
of contact is based on the noisy force readings from the
fabric-based force sensor, it is possible that the heat transfer
started slightly before or after the estimated onset of contact.
Thus, we also included a time offset from the onset of
contact as an optimization parameter. We used the L-BFGS-
B algorithm to find the time offset of the experiment data,
and it turned out that the heat transfer started about 0.5s
before the estimated onset of contact. We identified the
sensor effusivity as esens = 892 (J · s− 1

2 ·K−1 ·m−2), and
sensor diffusivity as αsens = 1.19× 10−9(m2 · s−1). Table
5 shows the identified effusivity values of all materials in this
experiment.

Figure 16 shows some examples of the experimental data
as well as the simulated data using the identified sensor and
material thermal parameters. As seen from the figure, using
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the identified parameters, the simulated data matches the
experimental data well.

Appendix B: Index to Multimedia Extensions
Table of Multimedia Extensions

Extension Type Description

1 Video

Experiment showing the visual and
infrared footage of contact
between an active thermal
sensor and a material sample
as described in Section 9.2.

References

(2016) EPCOS (TDK) B57541G1103F NTC Thermistor
10k Bead, Glass. http://www.digikey.com/

product-detail/en/epcos-tdk/B57541G1103F/

495-4599-ND/3712554. Accessed: 2016-10-01.
(2016) Flexible Polyimide Foil Heater with 10 kOhm Thermis-

tor. https://www.thorlabs.com/thorproduct.

cfm?partnumber=HT10K.
Ashby MF (2008) The ces edupack database of natural and man-

made materials.
Bayindir M, Abouraddy AF, Arnold J, Joannopoulos JD and

Fink Y (2006) Thermal-sensing fiber devices by multimaterial
codrawing. Advanced Materials 18(7): 845–849.

Benali-Khoudjal M, Hafez M, Alexandre JM, Benachour J and
Kheddar A (2003) Thermal feedback model for virtual
reality. In: MHS2003. Proceedings of 2003 International
Symposium on Micromechatronics and Human Science (IEEE
Cat. No.03TH8717). pp. 153–158. DOI:10.1109/MHS.2003.
1249925.

Bhattacharjee T, Jain A, Vaish S, Killpack MD and Kemp CC
(2013) Tactile sensing over articulated joints with stretchable
sensors. In: World Haptics Conference (WHC), 2013. IEEE,
pp. 103–108.

Bhattacharjee T, Rehg JM and Kemp CC (2014) Inferring object
properties from incidental contact with a tactile sensing
forearm. arXiv preprint arXiv:1409.4972 .

Bhattacharjee T, Wade J, Chitalia Y and Kemp CC (2016) Data-
driven thermal recognition of contact with people and objects.
In: 2016 IEEE Haptics Symposium (HAPTICS). IEEE, pp. 297–
304.

Bhattacharjee T, Wade J and Kemp CC (2015) Material recognition
from heat transfer given varying initial conditions and short-
duration contact. In: Robotics: Science and Systems (RSS).

Bishop CM (2006) Pattern recognition and machine learning,
volume 1. springer New York.

Boukhanouf R, Haddad A, North M and Buffone C (2006)
Experimental investigation of a flat plate heat pipe
performance using {IR} thermal imaging camera. Applied
Thermal Engineering 26(1718): 2148 – 2156. DOI:
http://dx.doi.org/10.1016/j.applthermaleng.2006.04.002.
URL http://www.sciencedirect.com/science/

article/pii/S1359431106001293.
Caldwell DG and Gosney C (1993) Enhanced tactile feedback (tele-

taction) using a multi-functional sensory system. In: Robotics

and Automation, 1993. Proceedings., 1993 IEEE International
Conference on. IEEE, pp. 955–960.

Caldwell DG and Gray JO (1993) Dynamic multi-functional tactile
sensing. In: RoManSy 9. Springer, pp. 187–198.

Caselli S, Magnanini C and Zanichelli F (1994) Haptic object
recognition with a dexterous hand based on volumetric shape
representations. In: Proceedings of the 1994 International
Conference on Multisensor Fusion and Integration for
Intelligent Systems. pp. 280–287.

Castelli F (1995) An integrated tactile-thermal robot sensor with
capacitive tactile array. In: Industry Applications Conference,
1995. Thirtieth IAS Annual Meeting, IAS’95., Conference
Record of the 1995 IEEE, volume 3. IEEE, pp. 1970–1975.

Chen X, Shao F, Barnes C, Childs T and Henson B (2009)
Exploring relationships between touch perception and surface
physical properties. International Journal of Design 3(2): 67–
76.

Chu V, McMahon I, Riano L, McDonald CG, He Q, Perez-Tejada
JM, Arrigo M, Darrell T and Kuchenbecker KJ (2015) Robotic
learning of haptic adjectives through physical interaction.
Robotics and Autonomous Systems 63: 279–292.

Crowley ML and Krause EF (1988) Taxicab geometry, an adventure
in non-euclidean geometry (p, l, s).

Dario P and De Rossi D (1985) Composite, multifunctional tactile
sensor. URL https://www.google.com/patents/

US4555953. US Patent 4,555,953.
Dario P, De Rossi D, Domenici C and Francesconi R (1984)

Ferroelectric polymer tactile sensors with anthropomorphic
features. In: Robotics and Automation. Proceedings. 1984
IEEE International Conference on, volume 1. IEEE, pp. 332–
340.

De Maesschalck R, Jouan-Rimbaud D and Massart DL (2000)
The mahalanobis distance. Chemometrics and intelligent
laboratory systems 50(1): 1–18.

Engel J, Chen J, Fan Z and Liu C (2005) Polymer micromachined
multimodal tactile sensors. Sensors and Actuators A: Physical
117(1): 50–61.

Engel J, Chen N, Tucker C, Liu C, Kim S and Jones D
(2006) Flexible multimodal tactile sensing system for object
identification. In: Sensors, 2006. 5th IEEE Conference on.
IEEE, pp. 563–566.

Frigola-Alcade R (2015) Bayesian Time Series Learning with
Gaussian Processes. PhD Thesis, PhD thesis, University of
Cambridge.

Fudym O, Battaglia JL and Batsale JC (2005) Measurement of
thermophysical properties in semi-infinite media by random
heating and fractional model identification. Review of scientific
instruments 76(4): 044902.

Gow RD, Renshaw D, Findlater K, Grant L, McLeod SJ, Hart
J and Nicol RL (2007) A comprehensive tool for modeling
cmos image-sensor-noise performance. IEEE Transactions on
Electron Devices 54(6): 1321–1329.

Granta Design Ltd, Cambridge, UK (2016) Ces edupack (2016).
Hedengren K, Kornrumpf W, Miller M, Opsahl-Ong B and Uzgiris

E (2001) Thermal sensor array and methods of fabrication
and use. URL https://www.google.com/patents/

US6180867. US Patent 6,180,867.
Herwaarden AV and Sarro P (1986) Thermal sensors based

on the seebeck effect. Sensors and Actuators 10(3):



18 The International Journal of Robotics Research XX(X)

Table 5. Thermal Effusivity Values of Materials in the Experiment

Material Thermal effusivity identified Maximum thermal effusivity Minimum thermal effusivity
from database from database

(J · s− 1
2 ·K−1 ·m−2) (J · s− 1

2 ·K−1 ·m−2) (J · s− 1
2 ·K−1 ·m−2)

Cardboard 336.90 196.67 452.23
Wood 400.95 331.00 506.46
ABS 514.15 514.15 882.58

Rubber 570.81 407.00 570.81
MDF 544.63 618.47 733.93

Acrylic 635.49 380.35 702.15
Porcelain 1276.59 1162.69 1334.07

Glass 1433.31 1433.31 1560.39
Granite 2749.87 2252.32 2749.87

Stainless Steel 10184.17 6388.35 10184.17
Aluminum 17530.03 12767.69 25972.02

Copper 23049.18 23049.18 36761.16

321 – 346. DOI:http://dx.doi.org/10.1016/0250-6874(86)
80053-1. URL http://www.sciencedirect.com/

science/article/pii/0250687486800531.
Ho H and Jones LA (2004) Material identification using real and

simulated thermal cues. In: The 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, volume 1. pp. 2462–2465. DOI:10.1109/IEMBS.2004.
1403711.

Ho HN and Jones LA (2006) Thermal model for hand-object
interactions. In: 2006 14th Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems. pp. 461–
467. DOI:10.1109/HAPTIC.2006.1627108.

Ho HN and Jones LA (2007) Development and evaluation of a
thermal display for material identification and discrimination.
ACM Transactions on Applied Perception (TAP) 4(2): 13.

Ho HN and Jones LA (2008) Modeling the thermal responses of
the skin surface during hand-object interactions. Journal of
Biomechanical Engineering 130(2): 021005.

Hogervorst MA, Bijl P and Valeton JM (2001) Capturing the
sampling effects: a tod sensor performance model. In: Proc.
SPIE, volume 4372. pp. 62–73.

Jackson W, Biegelsen D, Berlin A, Sprague R and Cass T
(1999) Paper property sensing system. URL https://

www.google.com/patents/US5934140. US Patent
5,934,140.

Jannot Y and Meukam P (2004) Simplified estimation method
for the determination of the thermal effusivity and thermal
conductivity using a low cost hot strip. Measurement Science
and Technology 15(9): 1932. URL http://stacks.iop.

org/0957-0233/15/i=9/a=034.
Johnson N (1972) S. kotz distributions in statistics: continuous

multivariate distributions.
Jones E, Oliphant T and Peterson P (2001) Scipy: Open source

scientific tools for python. http://www. scipy. org/ .
Jones LA and Ho HN (2008) Warm or cool, large or small? the

challenge of thermal displays. IEEE Transactions on Haptics
1(1): 53–70. DOI:10.1109/TOH.2008.2.

Kabov O and Marchuk I (1996) Thermal imaging study of the liquid
film flowing on vertical surface with local heat source. Russian
Journal of Engineering Thermophysics 6(2): 105–138.

Kaplan H (2007) Practical Applications of Infrared Thermal
Sensing and Imaging Equipment. 3 edition. The address: SPIE
Press. ISBN 9780819467232.

Kerr E, McGinnity TM and Coleman S (2013) Material
classification based on thermal properties-a robot and human
evaluation. In: Robotics and Biomimetics (ROBIO), 2013 IEEE
International Conference on. IEEE, pp. 1048–1053.

Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung
YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee ST,
Kim JH, Choi SH, Hyeon T and Kim DH (2014) Stretchable
silicon nanoribbon electronics for skin prosthesis. Nature
Communications 5: 5747 EP –. URL http://dx.doi.

org/10.1038/ncomms6747. Article.
Krapels K, Driggers RG, Deaver D, Moyer SK and Palmer J (2007)

Midwave infrared and visible sensor performance modeling:
small craft identification discrimination criteria for maritime
security. applied optics 46(30): 7345–7353.

Lienhard JH (2011) A heat transfer textbook. Dover Civil and
Mechanical Engineering, 4th ed.. edition. Mineola, N.Y.: Dover
Publications. ISBN 9780486318370.

Lin CH, Erickson TW, Fishel JA, Wettels N and Loeb GE (2009)
Signal processing and fabrication of a biomimetic tactile sensor
array with thermal, force and microvibration modalities. In:
Robotics and Biomimetics (ROBIO), 2009 IEEE International
Conference on. IEEE, pp. 129–134.

Liu C, Chen J and Engel J (2008) Sensor chip and apparatus for
tactile and/or flow sensing. URL https://www.google.

com/patents/US7357035. US Patent 7,357,035.
Ma B, Ren J, Deng J and Yuan W (2010) Flexible thermal sensor

array on pi film substrate for underwater applications. In:
2010 IEEE 23rd International Conference on Micro Electro
Mechanical Systems (MEMS). pp. 679–682. DOI:10.1109/
MEMSYS.2010.5442315.

Mansky P and Bennett J (2002) Method for conducting sensor
array-based rapid materials characterization. URL https:

//www.google.com/patents/US6438497. US Patent
6,438,497.

Mansky P and Bennett J (2003) Sensor array-based system and
method for rapid materials characterization. URL http:

//google.com/patents/US6535824. US Patent
6,535,824.



Bhattacharjee et al. 19

Mathis NE (2000) New transient non-destructive technique
measures thermal effusivity and diffusivity. Thermal
Conductivity 25: 3–14.

Matian M, Marquis A and Brandon N (2010) Application
of thermal imaging to validate a heat transfer model for
polymer electrolyte fuel cells. International Journal
of Hydrogen Energy 35(22): 12308 – 12316. DOI:
http://dx.doi.org/10.1016/j.ijhydene.2010.08.041. URL
http://www.sciencedirect.com/science/

article/pii/S0360319910016800. Bio-Ethanol
and Other Renewable Sources and Reforming Process for
Sustainable Hydrogen Production.

McMahon I, Chu V, Riano L, McDonald G, He Q, Perez-Tejada J,
Arrigo M, Fitter N, Nappo J, Darrell T and Kuchenbecker K
(2012) Robotic learning of haptic adjectives through physical
interaction. In: Proceedings of the 2012 Second Workshop on
Advances in Tactile Sensing and Touch-based Human-Robot
Interaction.

Mittendorfer P and Cheng G (2011) Humanoid multimodal tactile-
sensing modules. Robotics, IEEE Transactions on 27(3): 401–
410.

Monkman GJ and Taylor PM (1993) Thermal tactile sensing.
Robotics and Automation, IEEE Transactions on 9(3): 313–
318.

Mulaveesala R, Ghali VS and Arora V (2013) Applications of non-
stationary thermal wave imaging methods for characterisation
of fibre-reinforced plastic materials. Electronics Letters 49(2):
118–119. DOI:10.1049/el.2012.3844.

Nadarajah S (2005) A generalized normal distribution. Journal of
Applied Statistics 32(7): 685–694.

Patnaik P (1949) The non-central χ2-and f-distributions and their
applications. Biometrika 36(1-2): 202–232.

Pav SE (2017) sadists: Some Additional Distributions. URL
https://github.com/shabbychef/sadists. R
package version 0.2.3.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot
M and Duchesnay E (2011) Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12: 2825–
2830.

Petrovi V and Xydeas C (2000) On the effects of sensor noise in
pixel-level image fusion performance. In: Information Fusion,
2000. FUSION 2000. Proceedings of the Third International
Conference on, volume 2. IEEE, pp. WEC3–14.

Planck M (2013) The theory of heat radiation. Courier Corporation.
Rasmussen CE (2004) Gaussian processes in machine learning. In:

Advanced lectures on machine learning. Springer, pp. 63–71.
Russell RA (1985) A thermal sensor array to provide tactile

feedback for robots. The International journal of robotics
research 4(3): 35–39.

Sarro P, Yashiro H, Herwaarden A and Middelhoek S
(1988) An integrated thermal infrared sensing array.
Sensors and Actuators 14(2): 191 – 201. DOI:
http://dx.doi.org/10.1016/0250-6874(88)80065-9. URL
http://www.sciencedirect.com/science/

article/pii/0250687488800659.
Schaufelbuhl A, Schneeberger N, Munch U, Waelti M, Paul O,

Brand O, Baltes H, Menolfi C, Huang Q, Doering E and
Loepfe M (2001) Uncooled low-cost thermal imager based

on micromachined cmos integrated sensor array. Journal
of Microelectromechanical Systems 10(4): 503–510. DOI:
10.1109/84.967372.

Shao F, Chen X, Barnes C and Henson B (2010) A novel tactile
sensation measurement system for qualifying touch perception.
Proceedings of the Institution of Mechanical Engineers, Part
H: Journal of Engineering in Medicine 224(1): 97–105.

Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ and
Fan KC (2010) Flexible temperature sensor array based on
a graphite-polydimethylsiloxane composite. Sensors 10(4):
3597–3610. DOI:10.3390/s100403597. URL http://www.

mdpi.com/1424-8220/10/4/3597.
Siegel D, Garabieta I and Hollerbach JM (1986) An integrated

tactile and thermal sensor. In: Robotics and Automation. Pro-
ceedings. 1986 IEEE International Conference on, volume 3.
IEEE, pp. 1286–1291.

Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase
Y, Kawaguchi H and Sakurai” T (2005) Conformable,
flexible, large-area networks of pressure and thermal sensors
with organic transistor active matrixes. Proc. Natl. Acad.
Sci. U.S.A 102(2): 12321 – 12325. DOI:10.1073/pnas.
0502392102. URL http://www.pnas.org/content/

102/35/12321.abstract?tab=author-info.
Syntouch (2015) Syntouch BioTac Sensor. Syntouch Inc. URL

https://www.syntouchinc.com/wp-content/

uploads/2017/01/BioTac_Product_Manual.pdf.
Taddeucci D, Laschi C, Lazzarini R, Magni R, Dario P and

Starita A (1997) An approach to integrated tactile perception.
In: Proceedings of International Conference on Robotics and
Automation, volume 4. pp. 3100–3105 vol.4. DOI:10.1109/
ROBOT.1997.606759.

Takamuku S, Iwase T and Hosoda K (2008) Robust material
discrimination by a soft anthropomorphic finger with tactile
and thermal sense. In: Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on. IEEE, pp.
3977–3982.

Tong A (2001) Improving the accuracy of temperature mea-
surements. Sensor Review 21(3): 193–198. DOI:10.1108/
02602280110398044. URL http://dx.doi.org/10.

1108/02602280110398044.
VanDamme GE and McGarvey JW (1972) Infrared nondestructive

testing of laminated structures and electrical circuits. Technical
report. URL http://oai.dtic.mil/oai/oai?verb=

getRecord&metadataPrefix=html&identifier=

AD0746233.
Wade J, Bhattacharjee T and Kemp CC (2016) Force and thermal

sensing with a fabric-based skin. In: See, Touch and Hear: 2nd
Workshop on multimodal sensor-based robot control for HRI
and soft manipulation, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Wettels N, Santos VJ, Johansson RS and Loeb GE (2008)
Biomimetic tactile sensor array. Advanced Robotics 22(8):
829–849.

Xu D, Loeb GE and Fishel JA (2013) Tactile identification
of objects using bayesian exploration. In: Robotics and
Automation (ICRA), 2013 IEEE International Conference on.
IEEE, pp. 3056–3061.

Yamamoto A, Cros B, Hashimoto H and Higuchi T (2004) Control
of thermal tactile display based on prediction of contact
temperature. In: Robotics and Automation, 2004. Proceedings.



20 The International Journal of Robotics Research XX(X)

ICRA ’04. 2004 IEEE International Conference on, volume 2.
pp. 1536–1541 Vol.2. DOI:10.1109/ROBOT.2004.1308042.

Yang GH, Jones LA and Kwon DS (2008a) Use of simulated
thermal cues for material discrimination and identification with
a multi-fingered display. Presence: Teleoperators and Virtual
Environments 17(1): 29–42.

Yang YJ, Cheng MY, Chang WY, Tsao LC, Yang SA, Shih WP,
Chang FY, Chang SH and Fan KC (2008b) An integrated
flexible temperature and tactile sensing array using pi-
copper films. Sensors and Actuators A: Physical 143(1):
143 – 153. DOI:http://dx.doi.org/10.1016/j.sna.2007.10.077.
URL http://www.sciencedirect.com/science/

article/pii/S0924424707008126. Micromechanics
Section of Sensors and Actuators (SAMM), based on
contributions revised from the Technical Digest of the {IEEE}
20th International Conference on Micro Electro Mechanical
Systems (MEMS 2007)MEMS 2007IEEE 20th International
Conference on Micro Electro Mechanical Systems.

Yang YJ, Cheng MY, Shih SC, Huang XH, Tsao CM, Chang FY and
Fan KC (2010) A 32× 32 temperature and tactile sensing array
using pi-copper films. The International Journal of Advanced
Manufacturing Technology 46(9-12): 945–956.

Yuji JI and Shida K (2000) A new multifunctional tactile sensing
technique by selective data processing. Instrumentation and
Measurement, IEEE Transactions on 49(5): 1091–1094.

Yunus C and Afshin G (2010) Transient heat conduction. In: Heat
and Mass Transfer: Fundamentals and Applications, chapter 4.
New York, NY: McGraw-Hill, pp. 245–246.

Funding

This work was supported in part by NSF Awards EFRI-1137229
and IIS-1150157, the National Institute on Disability, Independent
Living, and Rehabilitation Research (NIDILRR) grant 90RE5016-
01-00 via RERC TechSAge, and a Google Faculty Research Award.


