14,905 research outputs found

    An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics

    Get PDF
    Biometric systems have to address many requirements, such as large population coverage, demographic diversity, varied deployment environment, as well as practical aspects like performance and spoofing attacks. Traditional unimodal biometric systems do not fully meet the aforementioned requirements making them vulnerable and susceptible to different types of attacks. In response to that, modern biometric systems combine multiple biometric modalities at different fusion levels. The fused score is decisive to classify an unknown user as a genuine or impostor. In this paper, we evaluate combinations of score normalization and fusion techniques using two modalities (fingerprint and finger-vein) with the goal of identifying which one achieves better improvement rate over traditional unimodal biometric systems. The individual scores obtained from finger-veins and fingerprints are combined at score level using three score normalization techniques (min-max, z-score, hyperbolic tangent) and four score fusion approaches (minimum score, maximum score, simple sum, user weighting). The experimental results proved that the combination of hyperbolic tangent score normalization technique with the simple sum fusion approach achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201

    An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image

    Get PDF
    Biometrics based personal identification is regarded as an effective method for automatically recognizing, with a high confidence a person’s identity. A multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically better recognition performance compare to system based on a single biometric modality. This paper proposes an authentication method for a multimodal biometric system identification using two traits i.e. face and palmprint. The proposed system is designed for application where the training data contains a face and palmprint. Integrating the palmprint and face features increases robustness of the person authentication. The final decision is made by fusion at matching score level architecture in which features vectors are created independently for query measures and are then compared to the enrolment template, which are stored during database preparation. Multimodal biometric system is developed through fusion of face and palmprint recognition

    Genetic Programming for Multibiometrics

    Full text link
    Biometric systems suffer from some drawbacks: a biometric system can provide in general good performances except with some individuals as its performance depends highly on the quality of the capture. One solution to solve some of these problems is to use multibiometrics where different biometric systems are combined together (multiple captures of the same biometric modality, multiple feature extraction algorithms, multiple biometric modalities...). In this paper, we are interested in score level fusion functions application (i.e., we use a multibiometric authentication scheme which accept or deny the claimant for using an application). In the state of the art, the weighted sum of scores (which is a linear classifier) and the use of an SVM (which is a non linear classifier) provided by different biometric systems provide one of the best performances. We present a new method based on the use of genetic programming giving similar or better performances (depending on the complexity of the database). We derive a score fusion function by assembling some classical primitives functions (+, *, -, ...). We have validated the proposed method on three significant biometric benchmark datasets from the state of the art

    An a-contrario biometric fusion approach.

    Get PDF
    Fusion is a key component in many biometric systems: it is one of the most widely used techniques to improve their accuracy. Each time we need to combine the output of systems that use different biometric traits, or different samples of the same biometric trait, or even different algorithms, we need to define a fusion strategy. Independently of the fusion method used, there is always a decision step, in which it is decided if the traits being compared correspond to the same individual or not. In this work, we present a statistical decision criterion based on the a-contrario framework, which has already proven to be useful in biometric applications. The proposed method and its theoretical background is described in detail, and its application to biometric fusion is illustrated with simulated and real data

    Adaptive fusion of gait and face for human identification in video

    Full text link
    Most work on multi-biometric fusion is based on static fusion rules which cannot respond to the changes of the environment and the individual users. This paper proposes adaptive multi-biometric fusion, which dynamically adjusts the fusion rules to suit the real-time external conditions. As a typical example, the adaptive fusion of gait and face in video is studied. Two factors that may affect the relationship between gait and face in the fusion are considered, i.e., the view angle and the subject-to-camera distance. Together they determine the way gait and face are fused at an arbitrary time. Experimental results show that the adaptive fusion performs significantly better than not only single biometric traits, but also those widely adopted static fusion rules including SUM, PRODUCT, MIN, and MAX.<br /

    Bimodal Biometric Verification Mechanism using fingerprint and face images(BBVMFF)

    Get PDF
    An increased demand of biometric authentication coupled with automation of systems is observed in the recent times. Generally biometric recognition systems currently used consider only a single biometric characteristic for verification or authentication. Researchers have proved the inefficiencies in unimodal biometric systems and propagated the adoption of multimodal biometric systems for verification. This paper introduces Bi-modal Biometric Verification Mechanism using Fingerprint and Face (BBVMFF). The BBVMFF considers the frontal face and fingerprint biometric characteristics of users for verification. The BBVMFF Considers both the Gabor phase and magnitude features as biometric trait definitions and simple lightweight feature level fusion algorithm. The fusion algorithm proposed enables the applicability of the proposed BBVMFF in unimodal and Bi-modal modes proved by the experimental results presented

    New Multimodal Biometric Systems with Feature-Level and Score-Level Fusions

    Get PDF
    In recent years, biometric-based authentication systems have become very important in view of their ability to prevent identity theft by identifying an individual with high accuracy and reliability. Multimodal biometric systems have now drawn some attention in view of their ability to provide a performance superior to that provided by the corresponding unimodal biometric systems by utilizing more than one biometric modality. The existing multimodal biometric systems fuse multiple modalities at a single level, such as sensor, feature, score, rank or decision, and no study to fuse the modalities at more than one level that may lead to a further improvement in the performance of multimodal biometric systems, has been hitherto undertaken. In this thesis, multimodal biometric systems, wherein fusions of the modalities are carried out at more than one level, are investigated. In order to improve the performance of multimodal biometric systems over unimodal biometric systems, normalization and weighting of scores from multiple matchers are essential tasks. In view of this, in the first part of the thesis, a number of normalization and weighting techniques under the score level fusion are investigated. Unlike the existing normalization techniques that are based only on the genuine scores, four new techniques based on both the genuine and impostor scores, are proposed. Two weighting techniques that are based on confidence of the scores, are proposed. Extensive experiments are conducted to evaluate the performance of the multimodal biometric system under the score-level fusion (MBS-SL) using the proposed normalization and weighting techniques. The focus of the second part of this thesis is on the development of multimodal biometric systems, wherein fusions of the modalities are carried out at multiple levels. Specifically, two multimodal biometric systems, in which three modalities are used for their fusion both at the feature level and the score level, are proposed. In the first multimodal biometric system, referred to as the multimodal biometric system with feature level and score level (MBS-FSL) fusions, the features of the three modalities are encoded using the binary hash encoding technique. Unlike the existing techniques for feature level fusion that use unencoded features, this encoding technique allows the neighbourhood feature information to be taken into account. The score-level fusion is carried out on the score obtained from the feature-level fusion and the score from the matching module of the modality that has the lowest equal error rate. In the proposed MBS-FSL, the border values of raw features could not participate in the encoding in view 4-connected neighbors not being available. In order to take both the border and non-border information as well as the neighbourhood information into consideration, a second multimodal biometric system, referred to as the multimodal biometric system with modified feature level and score level (MBS-MFSL) fusions, is proposed, wherein both the raw and encoded features are taken into account. In this system, the feature-level fusion is carried out in a manner similar to that for the MBS-FSL system. The score-level fusion is then carried out between the score obtained from the feature-level fusion, the score from the matching module of the modality that was not utilized in the feature-level fusion, and the scores from individual modalities by using their raw features. Extensive experiments are performed to evaluate the performance of the two proposed multimodal biometric systems. The results of these experiments demonstrate that both of the proposed multimodal biometric systems provide performance superior to that provided by the existing multimodal biometric systems in which fusion of modalities is carried out at a single level, namely, the score level. Experimental results also show that, in view of both the border and neighbourhood feature information being considered in the proposed MBS-MFSL system, it provides a performance superior to that provided by MBS-FSL system. The investigation undertaken in this thesis is aimed at advancing the present knowledge in the field of human biometric identification by considering, for the first time, the fusion of the modalities at two levels, namely, the feature and score levels, and it is hoped that the findings of this study would pave the way for further research in the development of new multimodal biometric systems employing fusion of modalities at multiple levels

    Computer Based Behavioral Biometric Authentication via Multi-Modal Fusion

    Get PDF
    Biometric computer authentication has an advantage over password and access card authentication in that it is based on something you are, which is not easily copied or stolen. One way of performing biometric computer authentication is to use behavioral tendencies associated with how a user interacts with the computer. However, behavioral biometric authentication accuracy rates are much larger then more traditional authentication methods. This thesis presents a behavioral biometric system that fuses user data from keyboard, mouse, and Graphical User Interface (GUI) interactions. Combining the modalities results in a more accurate authentication decision based on a broader view of the user\u27s computer activity while requiring less user interaction to train the system than previous work. Testing over 30 users, shows that fusion techniques significantly improve behavioral biometric authentication accuracy over single modalities on their own. Two fusion techniques are presented, feature fusion and decision level fusion. Using an ensemble based classification method the decision level fusion technique improves the FAR by 0.86% and FRR by 2.98% over the best individual modality
    • …
    corecore