3,951 research outputs found

    Review of precision cancer medicine: Evolution of the treatment paradigm.

    Get PDF
    In recent years, biotechnological breakthroughs have led to identification of complex and unique biologic features associated with carcinogenesis. Tumor and cell-free DNA profiling, immune markers, and proteomic and RNA analyses are used to identify these characteristics for optimization of anticancer therapy in individual patients. Consequently, clinical trials have evolved, shifting from tumor type-centered to gene-directed, histology-agnostic, with innovative adaptive design tailored to biomarker profiling with the goal to improve treatment outcomes. A plethora of precision medicine trials have been conducted. The majority of these trials demonstrated that matched therapy is associated with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To improve the implementation of precision medicine, this approach should be used early in the course of the disease, and patients should have complete tumor profiling and access to effective matched therapy. To overcome the complexity of tumor biology, clinical trials with combinations of gene-targeted therapy with immune-targeted approaches (e.g., checkpoint blockade, personalized vaccines and/or chimeric antigen receptor T-cells), hormonal therapy, chemotherapy and/or novel agents should be considered. These studies should target dynamic changes in tumor biologic abnormalities, eliminating minimal residual disease, and eradicating significant subclones that confer resistance to treatment. Mining and expansion of real-world data, facilitated by the use of advanced computer data processing capabilities, may contribute to validation of information to predict new applications for medicines. In this review, we summarize the clinical trials and discuss challenges and opportunities to accelerate the implementation of precision oncology

    Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics.

    Get PDF
    Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information

    Sampling and Analytical Strategies for Biomarker Discovery Using Mass Spectrometry

    Get PDF
    There is an often unspoken truth behind the course of scientific investigation that involves not what is necessarily academically worthy of study, but rather what is scientifically worthy in the eyes of funding agencies. The perception of worthy research is, as cost is driven in the simplest sense in economics, often driven by demand. Presently, the demand for novel diagnostic and therapeutic protein biomarkers that possess high sensitivity and specificity is placing major impact on the field of proteomics. The focal discovery technology that is being relied on is mass spectrometry (MS), whereas the challenge of biomarker discovery often lies not in the application of MS but in the underlying proteome sampling and bioinformatic processing strategies. Although biomarker discovery research has been historically technology-driven, it is clear from the meager success in generating validated biomarkers that increasing attention must be placed at the pre-analytic stage, such as sample retrieval and preparation. As diseases vary, so do the combinations of sampling and sample analyses necessary to discover novel biomarkers. In this review, we highlight different strategies used toward biomarker discovery and discuss them in terms of their reliance on technology and methodology

    Cellular interactions in the tumor microenvironment: the role of secretome

    Get PDF
    Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.Agência financiadora Fundação de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) FAPESP 10/51168-0 12/06048-2 13/03839-1 National Council for Scientific and Technological Development (CNPq) CNPq 306216/2010-8 Fundacao para a Ciencia e a Tecnologia (FCT) UID/BIM/04773/2013 CBMR 1334info:eu-repo/semantics/publishedVersio

    Proteomics for cancer biomarker discovery

    Get PDF
    Thesis (S.M.)--Harvard-MIT Division of Health Sciences and Technology, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 51-54).Background: If we are to successfully treat cancer, we must understand the biologic underpinnings in conjunction with early diagnosis. Genome-wide expression studies have advanced the research of many cancers. Nevertheless, understanding which genes are expressed in a tumor is not equivalent to knowing which proteins are being produced. Proteomics hold great promise for careful examination of the proteins in complex biologic fluids and tissues, and it may be possible to detect disease from a patient's serum, long before it would otherwise be clinically evident. Although there have been steady advances in all the steps of a proteomic analysis, much remains to be standardized. Because of some high-profile problems with the initial analysis of ovarian cancer proteomic data, early exuberance has now been tempered and replaced by a more methodical approach to these studies. Hypothesis: My hypothesis in this thesis is that proteomics is a valuable tool in the diagnosis and study of cancer, as will be demonstrated in several steps. Methods: First, I describe the current field of proteomics, specifically as it applies to early detection of cancer and biomarker discovery.(cont.) I lay out the current state-of-the-art technologies for preparing samples and enumerating the proteins in complex fluids and tissues, giving special treatment to the main threats to validity-chance and bias. I also describe the bioinformatic tools necessary for analyzing the large amounts of data produced. Through the example of a mouse model of colorectal carcinoma, I demonstrate the steps involved in a proteomic study, from procuring samples to peptide and protein determination to bioinformatic analysis. Finally, I discuss these findings in light of the proteomic considerations discussed earlier. Results: From this work, I discovered that proteomic profiling can describe the proteins in serum from mice both with and without colon cancer. Furthermore, I developed a naive Bayes classifier that could distinguish between the serum of mice with colorectal carcinoma and their normal litter-mates. Contributions: Through this work, I have contributed the following. I described the field of proteomics with special emphasis on cancer biomarker discovery and early detection. I enumerated the challenges and pitfalls to developing early detection schemes for cancer based on high-dimensional proteomic analyses.(cont.) I described a set of experiments on mice harboring a gene mutation that predisposes them to colorectal carcinoma. I detailed the bioinformatic analysis of this data, including the development of a naive Bayes classifier to differentiate the cancerous state from the normal state. Finally, I discussed the caveats of the current work, in reference to the initial discussion on the challenges and pitfalls of early detection schemes and cancer biomarker discovery.by Samuel Louis Volchenboum.S.M

    Proteomics: Clinical and research applications in respiratory diseases

    Full text link
    The proteome is the study of the protein content of a definable component of an organism in biology. However, the tissue‐specific expression of proteins and the varied post‐translational modifications, splice variants and protein–protein complexes that may form, make the study of protein a challenging yet vital tool in answering many of the unanswered questions in medicine and biology to date. Indeed, the spatial, temporal and functional composition of proteins in the human body has proven difficult to elucidate for many years. Given the effect of microRNA and epigenetic regulation on silencing and enhancing gene transcription, the study of protein arguably provides more accurate information on homeostasis and perturbation in health and disease. There have been significant advances in the field of proteomics in recent years, with new technologies and platforms available to the research community. In this review, we briefly discuss some of these new technologies and developments in the context of respiratory disease. We also discuss the types of data science approaches to analyses and interpretation of the large volumes of data generated in proteomic studies. We discuss the application of these technologies with regard to respiratory disease and highlight the potential for proteomics in generating major advances in the understanding of respiratory pathophysiology into the future.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146450/1/resp13383_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146450/2/resp13383.pd

    Novel Approaches to Visualization and Data Mining Reveals Diagnostic Information in the Low Amplitude Region of Serum Mass Spectra from Ovarian Cancer Patients

    Get PDF
    The ability to identify patterns of diagnostic signatures in proteomic data generated by high throughput mass spectrometry (MS) based serum analysis has recently generated much excitement and interest from the scientific community. These data sets can be very large, with high-resolution MS instrumentation producing 1-2 million data points per sample. Approaches to analyze mass spectral data using unsupervised and supervised data mining operations would greatly benefit from tools that effectively allow for data reduction without losing important diagnostic information. In the past, investigators have proposed approaches where data reduction is performed by a priori peak picking and alignment/warping/smoothing components using rule-based signal-to-noise measurements. Unfortunately, while this type of system has been employed for gene microarray analysis, it is unclear whether it will be effective in the analysis of mass spectral data, which unlike microarray data, is comprised of continuous measurement operations. Moreover, it is unclear where true signal begins and noise ends. Therefore, we have developed an approach to MS data analysis using new types of data visualization and mining operations in which data reduction is accomplished by culling via the intensity of the peaks themselves instead of by location. Applying this new analysis method on a large study set of high resolution mass spectra from healthy and ovarian cancer patients, shows that all of the diagnostic information is contained within the very lowest amplitude regions of the mass spectra. This region can then be selected and studied to identify the exact location and amplitude of the diagnostic biomarkers

    Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

    Get PDF
    BACKGROUND. Tuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma. / METHODS. We applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203). / RESULTS. We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low–molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81). / CONCLUSION. We report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test. / FUNDING. Colciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research

    A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface

    Get PDF
    Aberrant interactions between the host and the intestinal bacteria are thought to contribute to the pathogenesis of many digestive diseases. However, studying the complex ecosystem at the human mucosal-luminal interface (MLI) is challenging and requires an integrative systems biology approach. Therefore, we developed a novel method integrating lavage sampling of the human mucosal surface, high-throughput proteomics, and a unique suite of bioinformatic and statistical analyses. Shotgun proteomic analysis of secreted proteins recovered from the MLI confirmed the presence of both human and bacterial components. To profile the MLI metaproteome, we collected 205 mucosal lavage samples from 38 healthy subjects, and subjected them to high-throughput proteomics. The spectral data were subjected to a rigorous data processing pipeline to optimize suitability for quantitation and analysis, and then were evaluated using a set of biostatistical tools. Compared to the mucosal transcriptome, the MLI metaproteome was enriched for extracellular proteins involved in response to stimulus and immune system processes. Analysis of the metaproteome revealed significant individual-related as well as anatomic region-related (biogeographic) features. Quantitative shotgun proteomics established the identity and confirmed the biogeographic association of 49 proteins (including 3 functional protein networks) demarcating the proximal and distal colon. This robust and integrated proteomic approach is thus effective for identifying functional features of the human mucosal ecosystem, and a fresh understanding of the basic biology and disease processes at the MLI. © 2011 Li et al
    corecore