578 research outputs found

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Performance assessment of meta-heuristics for composite layup optimisation

    Get PDF
    Peer reviewedPostprin

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    Ensemble Multi-Objective Biogeography-Based Optimization with Application to Automated Warehouse Scheduling

    Get PDF
    This paper proposes an ensemble multi-objective biogeography-based optimization (EMBBO) algorithm, which is inspired by ensemble learning, to solve the automated warehouse scheduling problem. First, a real-world automated warehouse scheduling problem is formulated as a constrained multi-objective optimization problem. Then EMBBO is formulated as a combination of several multi-objective biogeography-based optimization (MBBO) algorithms, including vector evaluated biogeography-based optimization (VEBBO), non-dominated sorting biogeography-based optimization (NSBBO), and niched Pareto biogeography-based optimization (NPBBO). Performance is tested on a set of 10 unconstrained multi-objective benchmark functions and 10 constrained multi-objective benchmark functions from the 2009 Congress on Evolutionary Computation (CEC), and compared with single constituent MBBO and CEC competition algorithms. Results show that EMBBO is better than its constituent algorithms, and among the best CEC competition algorithms, for the benchmark functions studied in this paper. Finally, EMBBO is successfully applied to the automated warehouse scheduling problem, and the results show that EMBBO is a competitive algorithm for automated warehouse scheduling

    Ensemble Multi-Objective Biogeography-Based Optimization with Application to Automated Warehouse Scheduling

    Get PDF
    This paper proposes an ensemble multi-objective biogeography-based optimization (EMBBO) algorithm, which is inspired by ensemble learning, to solve the automated warehouse scheduling problem. First, a real-world automated warehouse scheduling problem is formulated as a constrained multi-objective optimization problem. Then EMBBO is formulated as a combination of several multi-objective biogeography-based optimization (MBBO) algorithms, including vector evaluated biogeography-based optimization (VEBBO), non-dominated sorting biogeography-based optimization (NSBBO), and niched Pareto biogeography-based optimization (NPBBO). Performance is tested on a set of 10 unconstrained multi-objective benchmark functions and 10 constrained multi-objective benchmark functions from the 2009 Congress on Evolutionary Computation (CEC), and compared with single constituent MBBO and CEC competition algorithms. Results show that EMBBO is better than its constituent algorithms, and among the best CEC competition algorithms, for the benchmark functions studied in this paper. Finally, EMBBO is successfully applied to the automated warehouse scheduling problem, and the results show that EMBBO is a competitive algorithm for automated warehouse scheduling

    Optimal operation of dams/reservoirs emphasizing potential environmental and climate change impacts

    Get PDF
    Mahdi studied the potential ecological and climate change impacts on management of dams. He developed several new optimization frameworks in which benefits of dams are maximized, while above impacts are mitigated. Governments and consulting engineers can use the proposed frameworks for managing dams considering environmental challenges in river basins

    Asymmetrical three-phase fault evaluation in a distribution network using the genetic algorithm and the particle swarm optimisation

    Get PDF
    Abstract: Modern electric power systems are made up of three main sub-systems: generation; transmission; and distribution. The most common faults in distribution sub-systems are asymmetrical three-phase short circuit faults due to the fact that asymmetrical three-phase faults can be: line-to-line faults; two lines-to-earth faults; and single line-to-earth faults. This increases their probability of occurrence, unlike symmetrical three-phase faults which can only occur when all the three phases have been simultaneously shorted. Standard IEC 60909 and IEC 61363 provide all the basic information that is used for the detection of short circuit faults. However, the two standards use numerous estimates in their faults evaluation procedures. They estimate voltage factors (c), impedance correction factors (k), resistance to reactance ratios (R/X), resistance to impedance ratios (R/Z) and various other scaling factors for rotating machines. These IEC estimates are not evenly distributed throughout the 550kV and as such, they do not sufficiently cater for every nominal voltage. When the need arises, the user has to estimate these values accordingly. This research presents a genetic algorithm (GA) and a particle swarm optimisation (PSO) for the detection of asymmetrical three-phase short circuit faults within electric distribution networks of power systems with nominal voltages less than 550kV. GA and PSO are nature-inspired optimisation techniques. Although PSO has quick convergence, it suffers from partial optimism and premature stagnation. Some innovative coding adjustments were made in the creation of initial positions and particle distribution within the swarm. The GA struggles with: survival rates of individuals; stalling during optimisation; and proper gene replacements. Coding adjustments were also made to GA with regards to: strategic gene replacements; crossover when combining the properties of parents; and the arrangement of scores and expectation. Pattern search and Fmincon algorithms were also added to both algorithms as minimisation functions that commence after the evolutionary algorithms (EAs) terminate. The EAs were initially tested on the Rastrigin and Rosenbrock functions to ensure their efficiencies. During fault detection, the developed EAs were used to stochastically determine some of the most crucial estimates (R/X and R/Z ratios). The proposed methodology would compute these values on a case-to-case basis for every optimisation case with regards to the parameters and unique specifications of the power system. The EAs were tested on a nominal voltage that is properly catered for by Standard IEC. They obtained ratios, impedances and currents that were within an approximate range to the IEC values for that nominal voltage. This further implies that EAs can be reliably used to: stochastically determine these ratios; compute impedances; and detect fault currents for all the nominal voltages including those that are not sufficiently catered for by Standard IEC. Since R/X and R/Z ratios play a key role in determining the upstream and fault point impedances, the proposed methodology can be used to compute much more precise fault magnitudes at various network levels thereby setting up and repairing power systems sufficiently.M.Ing. (Electrical and Electronic Engineering Science
    • …
    corecore