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Ensemble multi-objective biogeography-based optimization with application to automated warehouse schedulingHaiping Ma, Shufei Su, Dan Simon, Minrui Fei

1. IntroductionWarehousing is an important part of production supply chain management, and serves as the backbone in many manufacturing enterprises. Warehousing keeps stocks of products until they are ready to be delivered to the market place. A delay in product delivery may lead to the failure of production supply chains. Efficient warehouse management contributes to the timely delivery of the product (Choi et al., 2013; Yeung et al., 2010, 2011). Modern warehouses are equipped with storage and retrieval (S∕R) machines to pick up products from an input/output (I/O) location and store them at specific locations, and then to retrieve outgoing products from other storage locations and deliver them to the I/O location. Although S/R machines enhance warehouse management, schedul­ing is a challenging and vital task (Lerher et al., 2015b; Wang and Fang, 2011). The time and cost of product allocation and delivery are important variables to consider during warehouse scheduling.In the past few decades, warehouse scheduling has been the subject of much research, including energy efficient design (Lerher et al., 2013), travel time models for shuttle-based systems (Lerher

et al., 2015a), travel time models for aisle transfer systems (Lerher et al., 2010a), travel time models for double-deep systems (Lerher et al., 2010b), and models for mini-load multi-shuttle systems (Lerher et al., 2011). Other automated warehouse schedule research is reported in Berg (1999), Chan and Kumar (2009), Rood- bergen and Vis (2009), and Yang et al. (2013).Warehouse scheduling is a typical NP-hard problem, which is one of the most challenging types of combinatorial optimization problems (Gagliardi et al., 2012). Since this problem is so impor­tant for production supply chain success, more research needs to be carried out to make automated warehouse scheduling more robust and efficient. Motivated by these considerations, this paper highlights the benefits associated with automated warehouse scheduling and introduces a new evolutionary algorithm to find efficient schedules for warehouse management.In recent years, ensemble learning has been introduced to enhance the performance of various systems; for example, feature selection, optimization, clustering analysis, etc. Ensemble learning is a hybrid method that uses multiple learning models instead of a single model. This approach is intuitively attractive because a single model may not always be the best to solve a complex problem, but multiple models are likely to yield results that are better than each of the constituent models. Ensemble learning has been successfully applied to time series prediction and classification, and to



evolutionary algorithms. It has been used with evolution strategies (ES) (Mallipeddi and Suganthan, 2010b), evolutionary programming (EP) (Mallipeddi and Suganthan, 2010a), harmony search (HS) (Pan et al., 2009), and differential evolution (DE) (Mallipeddi et al., 2011). It has been used to solve constrained optimization (Tasgetiren et al., 2010a), multi-objective optimization (Zhao and Suganthan, 2010), dynamic optimization (Yu and Suganthan, 2009), and the traveling salesman problem (Tasgetiren et al., 2010b).Biogeography-based optimization (BBO) (Simon, 2008) is an evolutionary global optimization algorithm that was introduced in 2008. It is modeled after the immigration and emigration of species between habitats. The application of these processes to optimization allows information sharing between candidate solutions. BBO uses the fitness of each candidate solution to determine its immigration and emigration rate. The emigration rate is proportional to fitness and the immigration rate is inversely proportional to fitness. BBO has demonstrated good performance on various benchmark functions and real-world optimization problems (Ma and Simon, 2011). BBO has also been modified to solve multi-objective optimization pro­blems (MOPs) (Chutima and Wong, 2014; Costa e Silva et al., 2012; Jamuna and Swarup, 2012; Ma et al., 2012).The aim of this paper is to propose and study an ensemble of multi-objective biogeography-based optimization (MBBO) algo­rithms, including vector evaluated biogeography-based optimiza­tion (VEBBO), non-dominated sorting biogeography-based optimization (NSBBO), and niched Pareto biogeography-based optimization (NPBBO) (Simon, 2013), and apply the new algorithm to the automated warehouse scheduling problem. This paper shows how MBBO algorithms can be integrated to obtain a new algorithm called ensemble multi-objective biogeography-based optimization (EMBBO), and then presents a comparative study on multi-objective benchmark functions and automated ware­house scheduling problems. The methods in this paper could also serve as a template for the extension of any other evolutionary algorithm to multi-objective optimization.The motivation of proposing EMBBO in this research is two­fold. First, we have observed that ensemble EAs outperform constituent EAs in many applications, as noted above, because of their greater adaptability. Second, we have observed that MBBO has proven itself to be an effective multi-objective optimization algorithm, also noted above. Combining these two observations

leads us to propose an ensemble BBO algorithm, EMBBO, as a high- performing multi-objective optimization algorithm.The original contributions of this paper include the following.(a) A new real-world-based automated warehouse scheduling model is formulated as a constrained multi-objective optimization problem.(b) The idea of ensemble learning is applied to MBBO to establish the new EMBBO algorithm. Results show that EMBBO outperforms its constituent MBBO algorithms for most of the unconstrained and constrained multi-objective benchmark functions that we study.(c) EMBBO has a lower computational cost than its constituent algorithms because it simultaneously uses multiple parallel popula­tions to reduce running time in comparison with single MBBO algorithms which use populations whose number of individuals is the sum of the three constituent algorithms, (d) EMBBO solves the automated warehouse scheduling problem.The remainder of this paper is organized as follows. Section 2 builds a mathematical model of the automated warehouse sche­duling problem. Section 3 reviews the standard BBO and various MBBO algorithms, and then integrates them to realize EMBBO. Section 4 presents performance comparisons on benchmark func­tions between EMBBO, constituent MBBO algorithms, and 2009 Congress on Evolutionary Computation (CEC) algorithms, and then applies EMBBO to the automated warehouse scheduling model. Section 5 presents conclusions and suggests directions for future work. The abbreviations, notations, and symbols used in this paper are summarized in Appendix A.

Fig. 1. Layout of the warehouse system.

2. Automated warehouse scheduling modelThe layout of the automated warehouse system is shown in Fig. 1 (Yang et al., 2013), and is called a multi-aisle automated storage and retrieval system (multi-aisle AS∕RS) with a curve-going S/R machine. It includes six components: S/R machine, picking aisles, cross warehouse aisle, storage racks (SR), rolling conveyor, and I/O location. As shown in the figure, the S/R machine can go in and out at both ends of every picking aisle, pick up products at the I/O location and store them at specific storage units in SR, and then retrieve outgoing products from other storage units and deliver them to the I/O location. The aim of an automated warehouse scheduling system is to improve scheduling efficiency.



In this model, there are many storage units in each SR. There are m storage products, storage units of which are denoted as (Pu1- Pu2- Pu3, ..., Pum)∙ There are n outgoing products, storage units of which are denoted as (pol, po2, po3, .... pon). In general, the numbers and units of the storage products are not the same as those of the outgoing products; namely, m ≠ n and pui ≠poi.Suppose the S/R machine can hold N products at a time. Then the S/R machine picks up N or fewer products from the I/O location, and puts them into storage units. Then it retrieves N or fewer outgoing products from the other storage units, and delivers them to the I/O location. For m storage products and n outgoing products, there are
m + n storage units, namely (p1, p2......... Pm, Pm+1, .... pm+n), andthe S/R machine needs to execute max {┌m/N┐, ┌n ∕N┐} tasks to store and transport all products, where ┌φ┐ denotes the smallest integer greater than or equal to φ. When each task corresponds to one route, the automated warehouse scheduling problem is translated into an optimization problem of selecting the optimal mαx{ [m∕N], [n/N]} routes from all possible routes to complete the storage/retrieval tasks while satisfying real-world constraints.In Fig. 1, x and z are the two directions in the horizontal plane. The velocities in the x and z directions are called horizontal velocities, and

the corresponding horizontal velocities are vx and vz, which are equal to each other. y is the vertical direction and the corresponding vertical velocity is vy, which is independent from vx. The distance between adjacent SRs in the same picking aisle is D, and the number of storage units in each SR is C. The width, length and height of each storage unit are denoted as W, L and H, respectively. The Euclidean coordinates of each storage unit is denoted as p(x, y, z), and the I/O location of the S/R machine is denoted as po(0, 0, 0).When developing the automated warehouse scheduling sys­tem, the following assumptions are made:- The multi-aisle AS/RS is divided into picking aisles with SRs on both sides, so there are double SRs between the picking aisles and a single SR along each warehouse wall.- There is one S/R machine.- The S/R machine is able to move along the cross warehouse aisle by using the curved rails at the end of the picking aisles.- The S/R machine travels at a constant velocity both in the horizontal and in the vertical directions. Although the inclusion of acceleration and deceleration will affect the scheduling results, it will not affect the optimization approach considered in this paper.- The S/R machine simultaneously begins the lifting and travel­ling in the pick aisle. Although the inclusion of non­simultaneous lifting and travelling will affect the scheduling results, it will not affect the optimization approach considered in this paper.- The input station dwell-point strategy is used. That is, the S/R machine stays always at input location when it is idle. Although the use of other dwell-point strategies will affect the schedul­ing results, it will not affect the optimization approach con­sidered in this paper.- The randomized storage assignment policy is used. That is, any storage location within the S/R is equally likely to be selected for the storage or retrieval request. Similar to the constant velocity model assumed above, this is a simplified model.

Although the use of non-random storage assignment will affect the scheduling results, it will not affect the optimization approach considered in this paper.- As a first-order approximation, the pickup and set down times, and additional overhead times for manipulating the S/R machine, are ignored.
Definition 1. If the S/R machine travels the route r ϵ [1, mαx([m ∕ N, n ∕ N])], then lr = l; otherwise, lr = 0. Similarly, if the storage unit pi belongs to route r, then gir = 1; otherwise, gir = 0.
Definition 2. If the S/R machine travels from storage unit 
pi(xi, yi, zi) to another storage unit Pj(xj, yj , zj) for 
i, j ∈ [1, m + n], then eij = 1; otherwise, eij = 0. The travel distance 
dij and time tij of the S/R machine is denoted as

The first expressions of each of the above two equations denote that the two storage units are the same SR because zi = zj. The second expressions in each of the equations denote that two storage units are not the same SR because zi ≠ zj∙, so we need to first compute the minimum distance that the S/R machine drives between two ends of a picking aisle to compute travel distance and travel time.
Definition 3. The execution time of each task must be less than or equal to the specified scheduling time Tr. If it is larger than Tr, it will affect the scheduling quality by an amount equal to the product of the time exceeding Tr and the weight coefficient wr.
2.J. OptimizationNext, the mathematic model of the automated warehouse scheduling problem is formulated as a multi-objective optimiza­tion problem. Suppose the warehouse throughput capacity is Q, and the number of products in the warehouse is q. The automated warehouse scheduling problem has two objectives: the scheduling quality effect should be minimized, and the travel distance should be minimized. The two objectives are defined as follows.

where (3) denotes that two objectives are to be minimized, (4) denotes the scheduling quality effect, and (5) denotes the travel distance. Furthermore, the solution must satisfy the following constraints.



In the above constraints, (6) constrains the number of S/R machine routes to the total number of tasks, (7) constrains the total number of storage and outgoing products, (8) constrains each storage and outgoing product to exactly one route, (9) constrains the total number of storage and outgoing products to no more than twice the S/R machine capacity each route, (10) and (11) constrain the I/O location, where the output location is the same as the input location since the S/R machine returns to the input location after each task is completed, (12) constrains storage products to be handled before outgoing products, and (13) constrains the number of products to be no more than the throughput capacity of the warehouse.Now that a warehouse model and scheduling problem have been presented, the following section develops the optimization algorithm that will be used to solve the warehouse scheduling problem.
3. Ensemble multi-objective biogeography-based optimizationThis section first reviews BBO (Section 3.1), then reviews several MBBO algorithms, including VEBBO, NSBBO, and NPBBO (Section 3.2), and finally introduces the new EMBBO algorithm (Section 3.3).3.1. Biogeography-based optimizationBBO is an evolutionary algorithm inspired by biogeography to solve general optimization problems. Each candidate solution is comprised of a set of features, which are similar to genes in genetic algorithms (GAs), and which are also called independent variables or decision variables in the optimization literature. Like other evolutionary algo­rithms, BBO probabilistically shares information between candidate solutions to improve candidate solution fitness. In BBO, each candidate solution immigrates decision variables from other candidate solutions based on its immigration rate, and emigrates decision variables to

other candidate solutions based on its emigration rate. In the original BBO paper (Simon, 2008), immigration rates are first used to decide whether or not to immigrate decision variables for a given candidate solution. Then, if immigration is selected for a given candidate solution, emigration rates are used to choose the emigrating candidate solution. Migration can be expressed as
ai(s)←aj(s) (14)where ai denotes the immigrating solution, αj denotes the emigrating solution, and s denotes a decision variable. In BBO, each candidate solution a has its own immigration rate λ and emigration rate μ. A good candidate solution has relatively high μ and lowλ, while the converse is true for a poor candidate solution. The immigration rate and the emigration rate are functions of candidate solution fitness. According to Simon (2008), these functions can be calculated as λ=l-∕(a)

μ=f(a) (15)where f denotes candidate solution fitness, which is normalized to the range [0, 1]. The probability of immigrating to ai and the probability of emigrating from aj are calculated, respectively, as Prob(immigration to ai) = λiProb(emigration from aj)=μj / Σk=1N0 μk (16)
where N0 is the population size. After migration, probabilistic muta­tion occurs for each decision variable of each candidate solution. Mutation of candidate solution ai is implemented as follows.For each candidate solution decision variable s in aiIf rand(0,1) < θ 

ai(s)←rand(Ls,Us)End if Next s
In the above mutation logic, rand(Ls, Us) is a uniformly distributed random number between Ls and Us, θ is the mutation probability, and 

Ls and Us are the lower and upper search bounds of the sth inde- pendent variable, respectively. The above logic mutates each inde­pendent variable with a probability of θ. If mutation occurs for a given independent variable, the independent variable is replaced with a random number within its search domain. A description of one generation of BBO is given in Algorithm 1.
Algorithm 1. One generation of the BBO algorithm. ai is the ith candidate solution, and ai(s) is the sth decision variable of ai.

Biogeography-based optimization (BBO) algorithmFor each aj, define emigration rate μj proportional to fitness of 
aj, with μj ∈ [0, 1]For each aj, define immigration rate λj = 1 -μj For each aiFor each candidate solution decision variable s Use λi to probabilistically decide whether to immigrate toai (Eq. (16))If immigrating thenUse {μ} to probabilistically select the emigrating solutionaj (Eq. (16)) 

ai(s)←aj(s)End ifNext candidate solution decision variable Probabilistically decide whether to mutate ai (see mutationlogic following Eq. (16))



Biogeography-based optimization (BBO) algorithmNext candidate solutionin Algorithm 1, the statement “use λi to probabilistically decide whether to immigrate to ai" can be implemented with the following logic.If λi < rand(0,1) thenImmigrateElseDo not immigrate End if
In Algorithm 1, the statement “Use {μ} to probabilistically select the emigrating solution aj" can be implemented with any fitness-based selection method since μ is proportional to the fitness of a. For instance, tournament selection could be used by randomly choosing two or more solutions for a tournament, and then selecting aj as the fittest solution in the tournament. In this paper, as in most other BBO implementations, {μ} is used in a roulette-wheel algorithm so that the probability that each indivi­dual aj is selected for emigration is proportional to its emigration rate μj∙.

3.2. Multi-objective BBOThis section is based on Simon (2013, Section 20.5). First, this section reviews the VEBBO algorithm, which combines BBO with the vector evaluated genetic algorithm (VEGA). Recall that VEGA was one of the original multi-objective evolutionary algorithms (MOEAs), and operates by performing selection on the population using one objective function at a time (Coello et al., 2004; Schaffer, 1985). VEBBO produces a set of subpopulations, one set for each objective function. Then individuals are selected from the sub-populations to obtain parents, which create children by using the BBO migration method. The outline of VEBBO for a k-objective optimization problem is shown in Algorithm 2, where MBBO immigration is based on the kith objective function value of each individual, and ki is a random objective function index at the ithmigration trial. Then emigration is based on the keth objective function value of each individual, where ke is also a random objective function index.
Algorithm 2. Outline of VEBBO for solving an n0-dimensional optimization problem with k objectives and a population size of 
No. Each generation, the best individual ab with respect to the ithobjective value has rank γbi = 1, and the worst individual αw has rank γwi = N0.

Vector evaluated biogeography-based optimization (VEBBO) algorithmRandomly initialize a population of candidate solutions 
P= {aj} for j∈[l,N0]

While termination criterion is not satisfied doCompute the cost fi(aj) for each objective i and for each individual aj ∈ PFor each objective i where i ϵ [1, k] do 
γji ←rank of aj∙ with respect to the ithobjective function forjϵ [l,N0]Immigration rates λji ← γji /ΣN0q=1 γqi for j ∈ [1, No], i ∈ [1, k] Emigration rates μji ←1 -λji for j ∈ [l,N0], i e [1,k]
For each individual aj where j ∈ [l,N0] do

Vector evaluated biogeography-based optimization (VEBBO) algorithm
For each independent variable s ∈ [1, n0] do 

ki ←rand(l, k)=uniformly distributed integerbetween 1 and kδ←rand(0, 1)=uniformly distributed real number between 0 and 1
If δ < λj,ki then

ke←rand(1, k)=uniformly distributed integer between 1 and kProbabilistically select emigrant ae, where Pr(ae = aβ) = μβ,ke  ∕ΣN0q=1 μq,ke for β ϵ [1, N0]
aj(s)←ae(s)

End if 
End for

End for 
End forProbabilistically mutate the population P as described in the standard BBO algorithm

End while

Next, the NSBBO algorithm is reviewed, which combines BBO with the non-dominated sorting genetic algorithm (NSGA). Recall that NSGA was one of the original MOEAs, and assigns the cost of each individual based on its dominance level (Deb et al., 2002; Srinivas and Deb, 1995). First, all individuals are copied to a temporary population 
T. Then we find all non-dominated individuals in T; these individuals, which are denoted as the set B, are assigned the lowest cost value. Recall that an individual x is dominated by an individual y if y performs at least as good as x in all objectives, and performs better than x in at least one objective (Simon, 2013, Chapter 20). An individual is called non-dominated if there are no individuals in the population (T in this case) that dominate it. Next, B is removed from T, and we then find all non-dominated individuals in the reduced set T. These individuals are assigned the second-lowest cost value. This process is repeated to obtain a cost for each individual that is based on its level of non-domination. We combine BBO with NSGA by changing the recombination logic in NSGA to BBO migration operations, which results in NSBBO, as shown in Algorithm 3.
Algorithm 3. Outline of NSBBO for solving an n0-dimensional optimization problem with k objectives and a population size of N0.

Non-dominated sorting biogeography-based optimization (NSBBO) algorithmRandomly initialize a population of candidate solutions 
P= {αj} for j ∈[l, N0]

While termination criterion is not satisfied do Temporary population T←P Non-domination level c←l 
While the temporary population size ∣T∣ > 0 doβ←non-dominated individuals in Γ Cost f(a)←c for all a ∈ B Remove B from Γ c←c+l
End whileImmigration rates λj ←f(aj)∕ ∑N0q=1 f(aq) for j ϵ [1, N0] Emigration rates μl←1-λj for j ϵ [1, N0]
For each individual aj∙ where j∈ [1, N0] do



Non-dominated sorting biogeography-based optimization (NSBBO) algorithm
For each independent variable s ∈ [1, n0] do 

δ←rand(0, 1) = uniformly distributed real numberbetween 0 and 1
If δ < λj thenProbabilistically select emigrant ae, where Pr(ae = aβ) = μβ∕ ΣN0q=1 μq for β ∈ [1, No]aj(s)←ae(s)
End if 

End for
End forProbabilistically mutate the population P as described in the standard BBO algorithm

End while

Finally, the NPBBO algorithm is reviewed, which combines BBO with the niched Pareto genetic algorithm (NPGA). Recall that NPGA was one of the original MOEAs, which is similar to NSGA in its assignment of cost on the basis of domination (Horn et al., 1994). NPGA is an attempt to reduce the computational effort of NSGA. Two tournament individuals a1 and a2 are selected randomly from the population, and then a subset S of the population is also randomly selected, which is typically around 10% of the population. If one of the individuals a1 and a2 is dominated by any of the individuals in S, and the other is not, then the non-dominated individual, denoted as a0, wins the tournament and is selected for recombination. If both indivi­duals a1 and a2 are dominated by at least one individual in S, or both individuals are not dominated by any individuals in S, then fitness sharing is used to decide the tournament winner; that is, the individual that is in the least crowded region of the objective function space wins the tournament. This selection process can be described as follows:

where y0 > ai denotes that y0 dominates ai; that is, y0 is at least as good as ai for all objective function values, and it is better than 
ai for at least one objective function value. bi is the number of individuals that dominate ai, ci is the crowding distance of ai, and a0 is the individual (either a1 or a2) that is finally selected for recombination. The crowding distance c could be computed with a method from Simon (2013, pp. 541). For each objective function dimension, the closest larger value and the closest smaller value in the population are found as follows:
where fj(a) is the objective function value of a with respect to the 
jth objective. The crowding distance of a is then computed as

We combine BBO with NPGA by changing the recombination logic in NPGA to BBO migration operations, which results in IPBBO, as shown as Algorithm 4.

Algorithm 4. Outline of NPBBO for solving an n0 -dimensional opti- mization problem with k objectives and a population size of No.

Niched Pareto biogeography-based optimization (NPBBO) algorithmRandomly initialize a population of candidate solutions 
P= {aj} for j∈[l, N0]

While termination criterion is not satisfied do Temporary population T←ϕ
While the temporary population size ∣T∣ <N0 doRandomly select two individuals a1 and a2 from P Randomly select a population subset S cP Use Eq. (17) to select a0 from {a1, a2)T←{T, a0}
End while
For each individual aj ∈ T, where j ∈ [1, N0] do 

For each independent variable s ∈ [1, n0] doδ5←rand(0, 1) = uniformly distributed real number between 0 and 1
If δ < 1 ∕N0 thenProbabilistically select emigrant ae, where Pr(ae = xβ) = 1 ∕N0 for β ∈ [1, N0]

aj(s)←ae(s)
End if 

End for
End forProbabilistically mutate the population P as described in the standard BBO algorithm

End while

3.3. Ensemble multi-objective BBONow the ensemble multi-objective BBO (EMBBO) algorithm is proposed, which is an ensemble of the previously-discussed VEBBO, NSBBO, and NPBBO algorithms. The proposed approach is motivated as follows. According to the no free lunch (NFL) theorem, it is impossible for a single optimization algorithm to outperform all other algorithms on every problem. Each problem has its own characteristics, such as the search space, constraint conditions, objective function landscape, and so on. Different problems require different algorithms, depending on the nature of the problem and available computing resources. In addition, for a given problem, each optimization algorithm may perform differently during different phases of the search process. For example, an algorithm with better exploration may have better search ability during the initial phase of the optimization process, and another algorithm with better exploitation may have better search ability during the later phases of the optimization process. Hence, different optimization algorithms may be suitable during different stages of the search process.Motivated by these observations, an ensemble of MBBO algo­rithms composed of VEBBO, NSBBO and NPBBO is implemented in parallel populations in the EMBBO algorithm. The best individuals among the parallel populations are used to yield improved performance using multiple MBBO algorithms. In this paper, three populations are used based on the three previously-discussed MBBO algorithms. More populations can be used if additional MBBO algorithms are used. Each population generates its own offspring. All of the offspring populations are combined to select a fixed number of the best individuals, which updates all of the parent populations. In this way, EMBBO always keeps the indivi­duals that are generated by the more suitable MBBO algorithm, leading to performance that is better than any individual MBBO



Fig. 2. Flowchart of EMBBO, with three parallel populations P1, P2 and P3. P4 is the 
updating population, and 01, O2, and O3 are offspring populations.algorithm. The flowchart of EMBBO is shown in Fig. 2, where there are three parallel populations, although less or more could be used, depending on the application. The basic procedure of EMBBO is summarized from Fig. 2 as follows.

Step 1. Randomly initialize each parallel parent population P1, P2, and P3. Use the same population size for each parallel parent population, so each parallel parent population is one- third of the total EMBBO population size.
Step 2. Create offspring populations O1, O2, and O3, from P1, P2, and P3, respectively, using VEBBO, NSBBO, and NPBBO.
Step 3. Obtain population P4 by selecting a fixed number of the best individuals from the union of O1, O2, and O3. First, O1, O2, and O3 are combined into a single population, and then the N best individuals are selected from the combined population using non- dominated sorting, where N is the population size of P∣ (which is also the population size of P2 and P3). That is, the best individuals are iteratively added to the new population P4 based on levels of non-domination until the desired population size N is reached. 
Step 4. Update the parallel parent populations P1, P2, and P3, with P4. Each parent population is completely replaced by the new population P4. That is, P1, P2, and P3 are composed of the same individuals after this replacement. Their offspring will be different in the following generation because of the different algorithms in Step 2.
Step 5. If the termination criterion is not met, go to Step 2; otherwise, terminate. Here the termination criterion is the maximum number of function evaluations, and P4 is the output of EMBBO after termination.

4. Simulations and resultsIn this section the performance of the proposed EMBBO algorithm is investigated on a set of unconstrained and constrained

multi-objective benchmark functions, and on the automated ware­house scheduling problem. Section 4.1 discusses the simulation setup, Section 4.2 presents performance comparisons on the 2009 CEC benchmark functions, and Section 4.3 applies EMBBO to the auto­mated warehouse scheduling problem.
4.2. Simulation setupThe performance of EMBBO and its constituent algorithms, includ­ing VEBBO, NPBBO, and SPBBO, is evaluated on a set of 10 uncon­strained functions and 10 constrained functions, which are taken from the CEC 2009 benchmark set. These functions are briefly summarized in Table A1 in Appendix A where U01-U10 are unconstrained multi-objective benchmark functions, and C01-C10 are constrained multi-objective benchmark functions. U01-U07 and C01-C07 are two- objective problems, and U08-U10 and C08-C10 are three-objective problems. The constrained multi-objective benchmark functions include one or two inequality constraints. The complete definition of each function is available in the literature (Zhang, et al., 2008).For all algorithms, population size and mutation rate have to be determined. In the literature (Simon, 2008) these parameters have been discussed in detailed. We use a population size of 50 for each parallel constituent algorithm of EMBBO, so the total EMBBO population size is 150 because there are three parallel populations. To obtain fair comparisons, a population size for each individual MBBO (when running by itself apart from EMBBO) is set to 150. The mutation rate is set to 0.01 per solution decision variable per generation. If mutation occurs, the mutated value of the new independent variable is uniformly distributed in the search space. We evaluate each algorithm 30 times, with a maximum number of function evaluations equal to 300,000 for each simulation.Hypervolume is used as the performance metric. Suppose that a MOEA has found M points in an approximate Pareto front 
Pf = {f{aj)} for j∈[1, M], where f(aj ) is a k-objective function. The hypervolume can be computed as

Given two algorithms that compute two Pareto front approx­imations to a given MOP, we can use hypervolume to quantify how good the two approximations are relative to each other. For a minimization problem, a smaller hypervolume indicates a better Pareto front approximation.EMBBO is also compared with the 5 best algorithms from the 2009 CEC competition for unconstrained benchmark functions, including M0EAD, MTS, DMOEADD, LiuLiAlgorithm, and GDE3; and with the 3 best algorithms from the 2009 CEC competition for constrained benchmark functions, including DMOEADD, LiuLiAlgorithm, and MTS. These are the best algorithms from the 13 accepted algorithms in the 2009 CEC competition (Suganthan, 2014).(a) MOEAD is based on decomposition (Chen, et al., 2009).(b) MTS is a multiple trajectory search algorithm (Tseng and Chen,2009).(c) DMOEADD is an improvement of the dynamic multi-objective evolutionary algorithm and is based on domain decomposition (Liu et al., 2009).(d) LiuLi-Algorithm is based on sub-regional search (Liu and Li, 2009).(e) GDE3 is the third version of a generalized differential evolu­tion algorithm with a diversity maintenance technique (Kukkonen and Lampinen, 2009).
In addition, a Holm multiple comparison test determines statistically significant differences between EMBBO used as the



control method, and the other algorithms. The Holm multiple comparison test is a nonparametric statistical test that obtains a probability (p-value) that determines the degree of difference between a control algorithm and a set of alternative algorithms, assuming that the algorithms have statistically significant differ­ences as a whole. To determine whether a set of algorithms shows a statistically significant difference as a whole, Friedman’s test is used with a significance level a=0.1 to the mean error rankings. If the test rejects the null hypothesis that all of the algorithms perform similarly, the best algorithm is considered as the control method and is then compared with the other algorithms according to their rankings. Additional details about the Holm multiple comparison test can be found in the literature (Derrac et al., 2011).4.2. Performance comparisonsTables A2 and A3 in Appendix A summarize the performance comparison of EMBBO, VEBBO, NPBBO, SPBBO, and the 2009 CEC competition algorithms on each benchmark function with respect to the hypervolume and normalized hypervolume. Note that hypervolume cannot be blindly used as an indicator of Pareto front quality because if M is larger, then S becomes larger also. But that means a Pareto front with more points would be worse than a Pareto front with fewer points. Normalization takes the number of Pareto front points into account.For the comparison of EMBBO with its constituent algorithms, Table A2 shows that for unconstrained benchmark functions, EMBBO performs best on 7 functions (U01, U03, U04, U05, U06, U07 and U09), and NPBBO performs best on 3 functions (U02, U08 and U10). Table A3 shows that for constrained benchmark func­tions, EMBBO performs best on 6 functions (C01, C03, C04, C06, C07 and C09), NPBBO performs best on 3 functions (C02, C05 and C1O), and VEBBO performs best on C08. The proposed EMBBO performs significantly better than the constituent MBBO algo­rithms for both the unconstrained and constrained multi-objective benchmark functions.For the comparison of EMBBO with the 2009 CEC competition algorithms, Table A2 shows that for unconstrained benchmark functions, MOEAD performs best on 5 functions (U01, U02, U04, U09, and U10), MTS performs best on 3 functions (U05, U06, and U08), and EMBBO performs best on 2 functions (U03 and U07). Table A3 shows that for constrained benchmark functions, DMOEADD performs best on 7 functions (C01, C02, C05, C06, C07, C08 and C10), and EMBBO performs best on 3 functions (C03, C04 and C09). This indicates that for unconstrained benchmark functions, MOEAD is the best, MTS is the second best and EMBBO is the third best. For constrained benchmark functions, DMOEADD is the best and EMBBO is the second best.The empirical results show that EMBBO is a competitive algorithm for multi-objective benchmark functions. The reasons for its competitive performance are that, first, BBO has distinctive migration behavior compared to other EAs. Second, EMBBO effectively uses ensemble learning. That is, EMBBO uses different MBBO algorithms in multiple parallel populations to create differ­ent offspring populations throughout the search process. By comparing the multiple offspring populations, the best individuals are retained in EMBBO. The average running times of the algorithms are shown in the last row of Tables A2 and A3 in Appendix A. The algorithms are programmed in MAΓLABR on a 2.40 GHz Intel Pentium® 4 CPU with 4 GB of memory. From the tables, we see that the average running time of EMBBO is much less than the constituent MBBO algorithms. The reason is that EMBBO uses multiple parallel subpopulations of relatively small size, while the constituent MBBO algorithms use a single population that is three times as large as that of EMBBO. Certain EA operations, such as roulette-wheel selection, require computational effort on the order

of N02, where N0 is the population size, and so multiple subpopula­tions are more computationally efficient than a single large popula­tion. Multiple subpopulations are also amenable to parallel processing, which can further reduce computational effort.Table 1 shows the results of the Holm multiple comparison test between EMBBO and its constituent algorithms and the 2009 CEC competition algorithms. For unconstrained functions EMBBO is the third best, and for constrained functions it is the second best. EMBBO is compared with its constituent algorithms and the 5 best CEC competition algorithms for unconstrained optimization, and with its constituent algorithms and the 3 best CEC competition algorithms for constrained optimization. Note that Table 1 shows that EMBBO is outperformed by MOEAD and MTS for uncon­strained functions and by DMOEADD for constrained functions, as indicated by p-values smaller than 0.1. Table 1 also shows that EMBBO is statistically significantly better than its constituent algorithms VEBBO, NPBBO, and SPBBO.
4.3. Application to automated warehouse schedulingIn this section, the proposed EMBBO is applied to the automated warehouse scheduling problem from Section 2. The width, length and height of each storage unit are W = 0.3 m, L = 0.5 mand H = 0.4 m, the distance between adjacent SRs is D=1.8 m, the number of storage units in each SR is C = 75, the warehouse throughput capacity is Q = 600, and the number of products in the warehouse is q = 250. The S/R machine capacity is N = 4, its horizontal velocity is 
vx = 1 m∕s, and its vertical velocity is vy=0.5 m∕s. The required time for each task is the same, which is 120 s. All these parameters are taken from a real-world automated warehouse scheduling problem. We consider five implementation schemes. Scheme 1 (number of storage products m = 20, and number of outgoing products n = 20) is described as follows.

Each storage or retrieval operator is denoted by (x, y, z, w, u), where x, y, and z are the Euclidean coordinates of each storage unit (meters), w is the weighting coefficient described in Section 2 which affects the scheduling quality, and u = l indicates a storage product and u=2 indicates an outgoing product.
Table 1
Holm multiple comparison test results of EMBBO and its constituent algorithms 
and 2009 CEC competition algorithms.

Unconstrained functions Constrained functions

Algorithm Rank p-value Algorithm Rank p-value

MOEAD 1.4 0.0076 DMOEADD 1.3 0.0198
MTS 2.6 0.0227 EMBBO 2.7 -
EMBBO 3.7 - LiuLiAlgorithm 3.7 0.0402
DMOEADD 4.1 0. 0910 NPBBO 3.8 0.0421
NPBBO 4.3 0.0613 MTS 4.7 0.0094
LiuLiAlgorithm 5.8 0.0086 VEBBO 4.8 0.0086
GDE3 6.6 0.0021 NSBBO 7.0 0.0007
VEBBO 7.2 0.0010
NSBBO 8.8 0.0008



Table 2
MBBO results for 5 schemes of the automated warehouse scheduling problem. ‘‘Distance’’ denotes the shortest travel distance, which is measured in meters, and “Effect” 
denotes the lowest scheduling quality effect. The best results in each row are shown in boldface font.

Problem (m, n) VEBBO NSBBO NPBBO EMBBO

Distance Effect Distance Effect Distance Effect Distance Effect

Scheme 1 (20, 20) 129.3 2591.3 122.2 2504.3 124.3 2555.3 120.3 2175.6
Scheme 2 (20, 16) 92.5 1531.0 98.3 1562.7 89.7 1453.6 77.2 1308.5
Scheme 3 (20, 12) 71.0 826.2 63.2 857.7 62.3 798.7 57.1 756.8
Scheme 4 (16, 20) 109.4 1823.8 97.6 1467.9 88.0 1295.5 88.9 1394.0
Scheme 5 (12, 20) 69.8 840.0 60.5 839.4 67.7 908.6 58.1 836.0

Table 3
Scheduling orders as optimized by the proposed EMBBO algorithm. “Route” denotes the route 
number index, and “scheduling orders” denote the scheduling orders that the S/R machine
implements each route.

Route Scheduling orders

1 P6→P12→P3→P7→P34→P23→P31→P24
2 Pl6→P8→P20→P2→P26→P35→P28→P22
3 P13→P10→Pll →Pl5→P29→P40→P36→P30

4 P9→Pl →Pl8→P4→P37→P21 →P25→P39

5 Pl7→P5→Pl9→Pl4-P27-P38→P33→P32

Table 4
Comparisons between EMBBO, DMOEADD, LiuLiAlgorithm, and MTS for the automated warehouse scheduling problem. “Distance” denotes the shortest travel distance,
which is measured in meters, and “Effect” denotes the lowest scheduling quality effect. The best results in each row are shown in boldface font.

Problem (m, n) DMOEADD LiuLiAlgorithm MTS EMBBO

Distance Effect Distance Effect Distance Effect Distance Effect

Scheme 1 (20, 20) 114.4 2047.5 130.1 2314.6 136.7 2411.5 120.3 2175.6
Scheme 2 (20,16) 84.5 1612.2 89.4 1639.1 92.1 1694.3 77.2 1308.5
Scheme 3 (20,12) 50.3 721.5 62.4 779.2 62.9 801.6 57.1 756.8
Scheme 4 (16, 20) 91.5 1486.1 93.4 1507.6 99.1 1611.2 88.9 1394.0
Scheme 5 (12, 20) 52.4 811.9 61.0 853.7 62.7 892.3 58.1 836.0

Scheme 2 (m = 20, n = 16) includes all the storage products of Scheme 1 but only the first 16 outgoing products of Scheme 1. Scheme 3 (m = 20. n = 12) includes all the storage products of Scheme 1 but only the first 12 outgoing products. Scheme 4 (m = 16, n = 20) includes the first 16 storage products ofScheme 1 and all of the outgoing products. Scheme 5(m = 12, n = 20) includes the first 12 storage products ofScheme 1 and all of the outgoing products.The tuning parameters of the MBBO algorithms are the same as those used in the benchmark simulations. The optimization results are summarized in Table 2. It is seen from Table 2 that EMBBO performs best for all of the schemes except Scheme 4, for which NPBBO is the best because of its shortest travel distance and its lowest scheduling quality effect. Based on these results, it is concluded that the proposed EMBBO algorithm generally provides better performance than the single-constituent MBBO algorithms for our automated warehouse scheduling problem.A sample EMBBO scheduling route output is shown in Table 3 for Scheme 1. It is seen that the automated warehouse scheduling problem is divided into 5 routes, and each route includes 8 storage units, where the first 4 storage units are used to store products, and the last 4 storage units are used to retrieve products.Next we compare EMBBO with the 3 best constrained optimi­zation algorithms from the CEC 2009 competition, which include DMOEADD, LiuLiAlgorithm, and MTS. The optimization results are summarized in Table 4. It is seen that DMOEADD performs best on 3 cases (Scheme 1, Scheme 3, and Scheme 5), and EMBBO performs

best on the other 2 cases (Scheme 2 and Scheme 4). In the 3 schemes for which DMOEADD performed best, EMBBO per­formed second best. Although EMBBO is not the best algorithm, it is a consistently competitive algorithm for the automated ware­house scheduling problem.
5. ConclusionsIn this paper an ensemble multi-objective biogeography-based optimization algorithm called EMBBO was proposed to solve general multi-objective optimization problems, both constrained and unconstrained. In addition, an automated warehouse schedul­ing model was built based on common industrial warehouse characteristics, and the scheduling problem was formulated as a constrained multi-objective optimization problem.The performance of EMBBO was investigated on a set of CEC 2009 multi-objective benchmark functions. The numerical simula­tions showed that EMBBO is better than single-constituent MBBO algorithms for the most of the benchmark functions. In particular, EMBBO is better than its constituent algorithm on 7 of 10 unconstrained benchmarks, and 6 of 10 constrained benchmarks. Furthermore, EMBBO is competitive with the best CEC 2009 algorithms for multi-objective optimization. In particular, EMBBO is better than the best CEC 2009 algorithms on 5 of 10 uncon­strained benchmarks, and 3 of 10 constrained benchmarks.



Finally, EMBBO was applied to the automated warehouse scheduling problem and the results again showed that EMBBO is a competitive optimization method. In particular, EMBBO was better than its constituent algorithms on 4 of 5 warehouse scheduling problems, and it was better than the best CEC 2009 algorithms on 2 of 5 warehouse scheduling problems.Based on the optimization tests in this paper, EMBBO can effectively improve the performance of MBBO on multi-objective optimization problems, including real-world warehouse schedul­ing. The fundamental contributions of this paper are twofold. First, multiple MBBO algorithms are combined into a single algorithm, leveraging the best features of multiple algorithms. The frame-work presented here could be extended for other types of optimization algorithms also. Second, a real-world warehouse scheduling problem was formulated in a way that is amenable to multi-objective evolutionary algorithms.
AcknowledgmentsThis material is based upon work supported by the National Science Foundation under Grant no. 1344954, the National Natural Science Foundation of China under Grant nos. 61305078, 61074032 and 61179041, and the Shaoxing City Public Technology Applied Research Project under Grant no. 2013B70004.
Appendix AThe abbreviations, notations, and symbols used in this paper are summarized as follows:BBO: biogeography-based optimizationEMBBO: ensemble multi-objective biogeography-basedoptimizationMBBO: multi-objective biogeography-based optimization VEBBO: vector evaluated biogeography-based optimization NSBBO: non-dominated sorting biogeography-basedoptimizationNPBBO: niched Pareto biogeography-based optimizationGA: genetic algorithmVEGA: vector evaluated genetic algorithmNSGA: non-dominated sorting genetic algorithmNPGA: Niched Pareto genetic algorithmES: evolution strategiesEP: evolutionary programmingHS: harmony searchDE: differential evolutionMOEA: multi-objective evolutionary algorithmMOP: multi-objective optimization problemCEC: Congress on Evolutionary ComputationAS/RS: automated storage and retrieval systemsS/R: storage and retrievalSR: storage rackI/O: input/output

rand(ω,σ): uniformly distributed random number between ω and σ┌φ┐: smallest integer greater than or equal to φ 
B: population of non-dominated individuals C: number of storage units in each SR 
D: distance between adjacent SRs 
H: height of each storage unit
N: number of products S/R machine bears 
N0: population size O: offspring population P: population of candidate solutions Q: warehouse throughput capacity

Table A1
CEC 2009 multi-objective benchmark functions, where n0 denotes the number of 
dimensions in each objective. More detailed about these functions can be found in 
Zhang, et al. (2008).

Function name Num. of 
objectives

Search space

Unconstrained multi-objective benchmark functions
U01: Unconstrained problem 2          [0,1] × [-1, 1}n0-1

1
-1.1]"”-’, no = 30

U02: Unconstrained 2 [0,1] x [-1,1]n0-1 -1.1]"”-’, no = 30
problem 2

U03: Unconstrained 2 [0,1]n0, no = 30
problem 3

U04: Unconstrained 2 [0,1] X [ -2, 2]n0-1-2,2]"”-’, no = 30
problem 4

U05: Unconstrained 2 [0,1] x [-1, 1]n0-1-1.1]"”-’, n0 = 30
problem 5

U06: Unconstrained 2 [0,1] x [-1, 1]n0-1 n0 = 30
problem 6

U07: Unconstrained problem 
7

2 [0,1] x [-1, 1]n0-1-1.1]"”-’, n0 = 30

U08: Unconstrained 3 [0,1]2 x [-2,2]n0-2, n0 = 30
problem 8

U09: Unconstrained 3 [0,1]2 x [-2,2]n0-2, no0 = 30
problem 9

U10: Unconstrained problem 3 [0,1]2 x [ -2,2]n0-2, n0 = 30
10

Constrained multi-objective benchmark functions
C01: Constrained problem 1 2 [0,1]n0, n0 = 10
C02: Constrained problem 2 2 [0,1]×[-l,l]n0-1, n0 = 10
C03: Constrained problem 3 2 [0,1] × [-2,2]n0-1, n0 = 10
C04: Constrained problem 4 2 [0,1] × [-2,2]n0-1, n0 = 10
C05: Constrained problem 5 2 [0,1] × [-2,2]n0-1, n0 = 10
C06: Constrained problem 6 2 [0,1] ×[-2,2]n0-1 , n0 = 10
C07: Constrained problem 7 2 [0,1] × [-2,2]n0-1, n0 = 10
C08: Constrained problem 8 3 [0,1]2 ×[-4,4]n0-2, n0 = 10
C09: Constrained problem 9 3 [0,l]2 ×[-2,2]n0-2, n0 = 10
C10: Constrained problem 10 3 [0, l]2 ×[-2,2]n0-2, n0 = 10

S: subset of the population
T: temporary populationTr: specified scheduling timeW: width of each storage unitY: hypervolume
Ls: lower search bounds of the sth independent variable 
Us: upper search bounds of the sth independent variable 
a: candidate solutiona0: non-dominated individual
bi: number of individuals that dominate ai
c: non-domination level
ci : crowding distance of ai
dij: travel distance of S/R machine
f: candidate solution fitness
k: number of objectives
l, g, e: flag signm: number of storage productsn: number of outgoing productsn0: optimization problem dimension
p: storage unitq: number of products in the warehouser: route S/R machine goes throughs: decision variabletij: time of S/R machine operation
vx : horizontal velocityvy: vertical velocitywr: weight coefficientx, y, z: Euclidean coordinates



Table A2
MBBO and CEC competition algorithm results for 10 unconstrained multi-objective benchmark functions. The table shows the relative hypervolume and normalized relative 
hypervolume. The best results with respect to MBBO in each row are shown in boldface font. The best results among all algorithms are underlined. Average CPU times are 
shown in the last row of the table.

Fun. MBBO CEC competition algorithms

VEBBO NSBBO NPBBO EMBBO MOEAD MTS DMOEADD LiuLiAlgorithm GDE3

U01 (58.59, 0.133) (73.61, 0.167) (51.56, 0.117) (40.48, 0.092) (37.47, 0.085) (39.45, 0.089) (44.36, 0.101) (47.59, 0.108) (47.35, 0.107)
U02 (24.39, 0.123) (30.58, 0.155) (17.37, 0.088) (20.85, 0.106) (17.16, 0.087) (17.85, 0.091) (22.44, 0.113) (22.82, 0.115) (23.78, 0.120)
U03 (288.9, 0.122) (398.4, 0.168) (232.9, 0.098) (202.1, 0.085) (203.1, 0.086) (230.9, 0.097) (247.3, 0.104) (280.2, 0.118) (294.6, 0.124)
U04 (8.549, 0.109) (11.45, 0.146) (8.373, 0.107) (7.900, 0.100) (7.413, 0.095) (8.070, 0.103) (9.334, 0.119) (8.940, 0.114) (8.311, 0.106)
U05 (286.7, 0.192) (282.9, 0.190) (130.8, 0.088) (117.1, 0.079) (110.7, 0.074) (102.8, 0.0691 (135.6, 0.091) (155.2, 0.104) (167.1, 0.112)
U06 (697.5, 0.145) (795.4, 0.169) (485.4, 0.103) (477.2, 0.101) (425.5, 0.090) (416.3, 0.088) (446.9, 0.095) (438.5, 0.093) (532.2, 0.113)
U07 (55.72, 0.124) (57.96, 0.129) (40.51, 0.090) (40.40, 0.089) (42.03, 0.093) (45.91, 0.102) (51.34, 0.114) (60.86, 0.135) (55.34, 0.123)
U08 (550.4, 0.111) (763.2, 0.153) (428.8, 0.086) (633.5, 0.127) (456.7, 0.092) (422.5, 0.085) (559.3, 0.112) (572.1, 0.115) (578.9, 0.116)
U09 (2003.4, 0.124) (2447.6, 0.152) (1870.1, 0.116) (1476.8, 0.092) (1305.9, 0.081) (1403.7, 0.087) (1866.5, 0.116) (1749.3, 0.109) (1988.5, 0.123)
U10 (2526.9, 0.123) (3505.4, 0.170) (1811.7, 0.088) (2113.5, 0.103) (1755.6, 0.085) (2007.5, 0.098) (2016.8, 0.098) (2044.1, 0.099) (2789.6, 0.136)
Time 347.16 645.42 304.71 237.59 221.72 277.50 242.31 292.13 198.75

Table A3
MBBO and CEC competition algorithm results for 10 constrained multi-objective benchmark functions. The table shows the relative hypervolume and normalized relative 
hypervolume. The best results with respect to MBBO in each row are shown in boldface font. The best results among all algorithms are underlined. Average CPU times are 
shown in the last row of the table.

Fun. MBBO CEC competition algorithms

VEBBO NSBBO NPBBO EMBBO MTS DMOEADD LiuLiAlgorithm

C01 (6.240, 0.185) (6.545, 0.193) (4.254, 0.126) (3.853, 0.114) (5.256, 0.156) (3.471, 0.103) (4.178, 0.124)
C02 (15.53, 0.171) (20.41, 0.225) (8.040, 0.088) (9.844, 0.108) (17.20, 0.190) (7.233, 0.081) (7.639, 0.085)
C03 (723.6, 0.181) (730.5, 0.183) (529.6, 0.133) (458.1, 0.115) (607.8, 0.152) (508.6, 0.122) (519.5, 0.130)
C04 (9.890, 0.141) (15.30, 0.219) (7.199, 0.103) (5.912, 0.084) (13.17, 0.188) (5.989, 0.085) (6.361, 0.099)
C05 (39.29, 0.123) (73.61, 0.232) (30.89, 0.097) (34.56, 0.109) (62.90, 0.198) (30.80. 0.096) (40.13, 0.126)
C06 (0.280, 0.155) (0.561, 0.311) (0.238, 0.131) (0.191, 0.105) (0.185, 0.102) (0.162, 0.089) (0.187, 0.103)
C07 (54.11, 0.105) (152.1, 0.296) (50.28, 0.097) (36.62, 0.071) (110.4, 0.215) (31.30, 0.061) (48.65, 0.090)
C08 (111.7, 0.109) (186.1, 0.181) (121.6, 0.118) (159.3, 0.155) (138.7, 0.135) (109.5, 0.105) (177.3, 0.173)
C09 (137.0, 0.152) (176.9, 0.197) (155.2, 0.173) (105.0, 0.117) (112.4, 0.125) (109.41, 0.120) (120.8, 0.134)
C10 (1439.5, 0.113) (2631.5, 0.207) (1334.8, 0.105) (1508.1, 0.118) (2170.2, 0.171) (1157.6. 0.091) (2438.4, 0.192)
Time 322.30 513.75 284.24 214.42 256.87 227.63 270.35

γ: rank of a solution with respect to a given objective 
λ'. immigration rate 
μ∙. emigration rate 
Θ: mutation rate

See Tables Al-A3.
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