5 research outputs found

    Un cadre de conception centré utilisateur pour les systÚmes de biofeedback

    Get PDF
    International audienceBiofeedback is defined as a technique that you can use to learn how to control the functions of your body. In essence, biofeedback gives you the power to use your physiological data to control your body, used frequently to improve a state of health or physical performance. We present in this article a summary of the components of the architecture of biofeedback systems based on literature. Then we offer a complete design framework to allow help to design systems with biofeedback.Le biofeedback est défini comme une technique que vous pouvez utiliser pour apprendre à contrôler les fonctions de votre corps. En substance, le biofeedback vous donne le pouvoir d’utiliser vos données physiologiques pour contrôler votre corps, souvent pour améliorer un état de santé ou de la performance physique. Nous présentons dans cet article une synthèse des composants de l’architecture de systèmes de biofeedback basé sur la littérature. Ensuite, nous proposons un cadre complet de conception pour permettre d’aider à la conception de systèmes avec biofeedback

    Introductory Chapter: Smart Biofeedback – Perspectives and Applications

    Get PDF

    An ambient assisted living solution for mobile environments

    Get PDF
    An Ambient Assisted Living (AAL) mobile health application solution with biofeedback based on body sensors is very useful to perform a data collection for diagnosis in patients whose clinical conditions are not favourable. This system allows comfort, mobility, and efficiency in all the process of data collection providing more confidence and operability. A physical fall may be considered something natural in the life span of a human being from birth to death. In a perfect scenario it would be possible to predict when a fall will occur in order to avoid it. Falls represent a high risk for senior people health. Those falls can cause fractures or injuries causing great dependence and debilitation to the elderly and even death in extreme cases. Falls can be detected by the accelerometer included in most of the available mobile phones or portable digital assistants (PDAs). To reverse this tendency, it can be obtained more accurate data for patients monitoring from the body sensors attached to the human body (such as, electrocardiogram (ECG), electromyography (EMG), blood volume pulse (BVP), electro dermal activity (EDA), and galvanic skin response (GSR)). Then, this dissertation reviews the related literature on this topic and introduces a mobile solution for falls prevention, detection, and biofeedback monitoring. The proposed system collects sensed data that is sent to a smartphone or tablet through Bluetooth. Mobile devices are used to process and display information graphically to users. The falls prevention system uses collected data from sensors in order to control and advice the patient or even to give instructions to treat an abnormal condition to reduce the falls risk. In cases of symptoms that last more time it can even detect a possible disease. The signal processing algorithms plays a key role in the fall prevention system. These algorithms in real time, through the capture of biofeedback data, are needed to extract relevant information from the signals detected to warn the patient. Monitoring and processing data from sensors is realized by a smartphone or tablet that will send warnings to users. All the process is performed in real time. These mobile devices are also used as a gateway to send the collected data to a Web service, which subsequently allows data storage and consultation. The proposed system is evaluated, demonstrated, and validated through a prototype and it is ready for use

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper

    Smart Biofeedback

    Get PDF
    Smart biofeedback is receiving attention because of the widespread availability of advanced technologies and smart devices that are used in effective collection, analysis, and feedback of physiologic data. Researchers and practitioners have been working on various aspects of smart biofeedback methodologies and applications by using wireless communications, the Internet of Things (IoT), wearables, biomedical sensors, artificial intelligence, big data analytics, clinical virtual reality, smartphones, and apps, among others. The current paradigm shift in information and communication technologies (ICT) has been propelling the rapid pace of innovation in smart biofeedback. This book addresses five important topics of the perspectives and applications in smart biofeedback: brain networks, neuromeditation, psychophysiological psychotherapy, physiotherapy, and privacy, security, and integrity of data
    corecore