105 research outputs found

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Bio-inspired Mechatronic Design for the Actuation of a Soft Orthosis for Rehabilitation and Assistance of Hands

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería en Mecatrónica) Instituto Tecnológico de Costa Rica. Escuela de Ingeniería en Mecatrónica, 2010.It is described the design of a mechatronic system to actuate a hand soft orthotic device for rehabilitation and assistance purposes developed by the author of this thesis within the Bio Mechatronics Department of Fraunhofer Institute for Manufacturing Engineering and Automation (IPA) based in Stuttgart, Germany. The system mimics the musculoskeletal anatomy and kinesiology of the human body by resembling the bone-muscle-tendon configuration. A key feature of the orthosis is that allows the individual movement of the fingers. The actuation consists in the use of -high contraction- Festo Pneumatic Artificial Muscles (PAMs) within a 3D printed support structure which was designed using anthropometric data to aim to comfort and ergonomics. The PAMs are operated with piezoelectric -flow proportional- valves. The sensors mimic the human somatosensory system to control the motion and to confer a haptic nature to the human interface. The use of light indicators allows visual reinforcement during exercises. The final deliverable is a testing model that is going to be used for further experiments. Finally, this orthotic device is envisioned to become a mobile solution for self-aided rehabilitation.Instituto Tecnológico de Costa Rica. Escuela de Ingeniería en Mecatrónica. Fraunhofer Institute for Manufacturing Engineering and Automation (Fraunhofer IPA)

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    AirExGlove — A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients

    Get PDF
    Stroke is one of the leading causes of disability worldwide: post-stroke disabilities affect the upper and lower limbs, significantly undermining a subject's autonomy in the Activities of Daily Living (ADLs). Among post-stroke disabilities, one of the most impairing and widespread conditions is the clenched fist deformity: the subject experiences a permanent contraction of the hand, resulting in a closed hand rest pose. In this paper, the authors propose a novel light-weight inflatable soft exoskeleton device, called the AirExGlove, to deliver high-dosage, adaptive and gradual rehabilitation therapy to patients affected by clenched fist deformity. Our system is lightweight, low-cost, adaptable to any hand size and unobtrusive. The system has been extensively tested to assess the hand-opening range in which it can operate according to the severity of the patient condition, which is typically ranked on the Modified Ashworth Scale (MAS) scale. Experimental analysis demonstrates the suitability of the glove for patients affected by post-stroke muscle spasticity scoring up to 3 out of 4 in the MAS scale. Preliminary testing with clenched-fist patient confirmed a higher level of ergonomics of the system in comparison with rigid-linked robotic systems
    corecore