239 research outputs found

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    Energy efficient multi channel packet forwarding mechanism for wireless sensor networks in smart grid applications

    Get PDF
    Multichannel Wireless Sensor Networks (MWSNs) paradigm provides an opportunity for the Power Grid (PG) to be upgraded into an intelligent power grid known as the Smart Grid (SG) for efficiently managing the continuously growing energy demand of the 21st century. However, the nature of the intelligent grid environments is affected by the equipment noise, electromagnetic interference, and multipath effects, which pose significant challenges in existing schemes to find optimal vacant channels for MWSNs-based SG applications. This research proposed three schemes to address these issues. The first scheme was an Energy Efficient Routing (ERM) scheme to select the best-optimized route to increase the network performance between the source and the sink in the MWSNs. Secondly, an Efficient Channel Detection (ECD) scheme to detect vacant channels for the Primary Users (PUs) with improved channel detection probability and low probability of missed detection and false alarms in the MWSNs. Finally, a Dynamic Channel Assignment (DCA) scheme that dealt with channel scarcities by dynamically switching between different channels that provided higher data rate channels with longer idle probability to Secondary Users (SUs) at extremely low interference in the MWSNs. These three schemes were integrated as the Energy Efficient Multichannel Packet Forwarding Mechanism (CARP) for Wireless Sensor Networks in Smart Grid Applications. The extensive simulation studies were carried through an EstiNet software version 9.0. The obtained experimental simulation facts exhibited that the proposed schemes in the CARP mechanism achieved improved network performance in terms of packets delivery ratio (26%), congestion management (15%), throughput (23%), probability of channel detection (21%), reduces packet error rate (22%), end-to-end delay (25%), probability of channel missed-detection (25%), probability of false alarms (23.3%), and energy consumption (17%); as compared to the relevant schemes in both EQSHC and G-RPL mechanisms. To conclude, the proposed mechanism significantly improves the Quality of Service (QoS) data delivery performance for MWSNs in SG

    A comprehensive review of energy efficient routing protocols for query driven wireless sensor networks [version 3; peer review: 2 approved]

    Get PDF
    In this current era of communications and networking, The Internet of things plays the main role in the making of smart communication and networking. In this article, we have focused on the literature survey on wireless sensor networks which are energy efficient. Various standard protocols are reviewed along with some enhanced protocols which makes the network energy efficient. The comparison of the standard and enhanced protocols with respect to various applications in wireless sensor networks is thoroughly done in this article. The outcomes of the enhanced protocols are also briefly discussed. For easier analysis to future researchers, a comparative table which lists the enhanced protocols which are compared with standard counterparts along with the factors for energy efficiency of the protocols. This article also comments on the issues and challenges of the protocols which can be further analyzed for making the wireless sensor network more energy efficient

    Big data acquired by Internet of Things-enabled industrial multichannel wireless sensors networks for active monitoring and control in the smart grid industry 4.0

    Get PDF
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid

    Smart Agents in Industrial Cyber–Physical Systems

    Full text link

    Background, Systematic Review, Challenges and Outlook

    Get PDF
    Publisher Copyright: © 2013 IEEE. This research is supported by the Digital Manufacturing and Design Training Network (DiManD) project funded by the European Union through the Marie SkƂodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement no. 814078The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.publishersversionpublishe

    Smart Sensor Technologies for IoT

    Get PDF
    The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT

    A Study of Wireless Sensor Networks to Comprehend their Relevance to DiïŹ€erent Applications, Journal of Telecommunications and Information Technology, 2020, nr 2

    Get PDF
    Wireless sensor networks (WSNs) have experienced enormous growth, both in terms of the technology used and their practical applications. In order to understand the features of WSNs that make the solution suitable for a speciïŹc purpose, one needs to be aware of the theoretical concepts behind and technological aspects of WSNs. In this paper, the signiïŹcance of WSNs is illustrated, with a particular emphasis placed on their demands and on understanding researchrelated problems. A review of the literature available is presented as well. Detailed discussions concerning sensor node architecture, diïŹ€erent types of sensors used and their relevance for various types of WSNs is presented, highlighting the need to achieve application-speciïŹc requirements without degrading service quality. Multipath and cluster-based routing protocols are compared in order to analyze QoS requirements they are capable of satisfying, and their suitability for diïŹ€erent application areas is reviewed. This survey highlights the performance of diïŹ€erent routing protocols, therefore providing guidelines enabling each of the routing techniques to be used, in an eïŹƒcient manner, with factors such as speciïŹc network structure, protocol operation and routing path construction taken into consideration in order to achieve better performanc

    Efficient Range-Free Monte-Carlo-Localization for Mobile Wireless Sensor Networks

    Get PDF
    Das Hauptproblem von Lokalisierungsalgorithmen fĂŒr WSNs basierend auf Ankerknoten ist die AbhĂ€ngigkeit von diesen. MobilitĂ€t im Netzwerk kann zu Topologien fĂŒhren, in denen einzelne Knoten oder ganze Teile des Netzwerks temporĂ€r von allen Ankerknoten isoliert werden. In diesen FĂ€llen ist keine weitere Lokalisierung möglich. Dies wirkt sich primĂ€r auf den Lokalisierungsfehler aus, der in diesen FĂ€llen stark ansteigt. Des weiteren haben Betreiber von Sensornetzwerken Interesse daran, die Anzahl der kosten- und wartungsintensiveren Ankerknoten auf ein Minimum zu reduzieren. Dies verstĂ€rkt zusĂ€tzlich das Problem von nicht verfĂŒgbaren Ankerknoten wĂ€hrend des Netzwerkbetriebs. In dieser Arbeit werden zunĂ€chst die Vor- und Nachteile der beiden großen Hauptkategorien von Lokalisierungsalgorithmen (range-based und range-free Verfahren) diskutiert und eine Studie eines oft fĂŒr range-based Lokalisierung genutzten Distanzbestimmungsverfahren mit Hilfe des RSSI vorgestellt. Danach werden zwei neue Varianten fĂŒr ein bekanntes range-free Lokalisierungsverfahren mit Namen MCL eingefĂŒhrt. Beide haben zum Ziel das Problem der temporĂ€r nicht verfĂŒgbaren Ankerknoten zu lösen, bedienen sich dabei aber unterschiedlicher Mittel. SA-MCL nutzt ein dead reckoning Verfahren, um die PositionsschĂ€tzung vom letzten bekannten Standort weiter zu fĂŒhren. Dies geschieht mit Hilfe von zusĂ€tzlichen Sensorinformationen, die von einem elektronischen Kompass und einem Beschleunigungsmesser zur VerfĂŒgung gestellt werden. PO-MCL hingegen nutzt das MobilitĂ€tsverhalten von einigen Anwendungen in Sensornetzwerken aus, bei denen sich alle Knoten primĂ€r auf einer festen Anzahl von Pfaden bewegen, um den Lokalisierungsprozess zu verbessern. Beide Methoden werden durch detaillierte Netzwerksimulationen evaluiert. Im Fall von SA-MCL wird außerdem eine Implementierung auf echter Hardware vorgestellt und eine Feldstudie in einem mobilen Sensornetzwerk durchgefĂŒhrt. Aus den Ergebnissen ist zu sehen, dass der Lokalisierungsfehler in Situationen mit niedriger Ankerknotendichte im Fall von SA-MCL um bis zu 60% reduziert werden kann, beziehungsweise um bis zu 50% im Fall von PO-MCL.
    • 

    corecore