3,643 research outputs found

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Neuromorphic audio processing through real-time embedded spiking neural networks.

    Get PDF
    In this work novel speech recognition and audio processing systems based on a spiking artificial cochlea and neural networks are proposed and implemented. First, the biological behavior of the animal’s auditory system is analyzed and studied, along with the classical mechanisms of audio signal processing for sound classification, including Deep Learning techniques. Based on these studies, novel audio processing and automatic audio signal recognition systems are proposed, using a bio-inspired auditory sensor as input. A desktop software tool called NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information obtained from spiking cochleae was implemented, allowing to analyze these data for further research. Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural Networks, a system is proposed for classifying different time-independent audio signals, making use of a Neuromorphic Auditory Sensor and frequency studies obtained with NAVIS. To prove the robustness and analyze the limitations of the system, the input audios were disturbed, simulating extreme noisy environments. Deep Learning mechanisms, particularly Convolutional Neural Networks, are trained and used to differentiate between healthy persons and pathological patients by detecting murmurs from heart recordings after integrating the spike information from the signals using a neuromorphic auditory sensor. Finally, a similar approach is used to train Spiking Convolutional Neural Networks for speech recognition tasks. A novel SCNN architecture for timedependent signals classification is proposed, using a buffered layer that adapts the information from a real-time input domain to a static domain. The system was deployed on a 48-chip SpiNNaker platform. Finally, the performance and efficiency of these systems were evaluated, obtaining conclusions and proposing improvements for future works.Premio Extraordinario de Doctorado U

    Sparks of Large Audio Models: A Survey and Outlook

    Full text link
    This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, \textit{Large Audio Models}, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding \textit{Foundational Large Audio Models}, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of \textit{Large Audio Models} with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.Comment: work in progress, Repo URL: https://github.com/EmulationAI/awesome-large-audio-model

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Emotion Embeddings \unicode{x2014} Learning Stable and Homogeneous Abstractions from Heterogeneous Affective Datasets

    Full text link
    Human emotion is expressed in many communication modalities and media formats and so their computational study is equally diversified into natural language processing, audio signal analysis, computer vision, etc. Similarly, the large variety of representation formats used in previous research to describe emotions (polarity scales, basic emotion categories, dimensional approaches, appraisal theory, etc.) have led to an ever proliferating diversity of datasets, predictive models, and software tools for emotion analysis. Because of these two distinct types of heterogeneity, at the expressional and representational level, there is a dire need to unify previous work on increasingly diverging data and label types. This article presents such a unifying computational model. We propose a training procedure that learns a shared latent representation for emotions, so-called emotion embeddings, independent of different natural languages, communication modalities, media or representation label formats, and even disparate model architectures. Experiments on a wide range of heterogeneous affective datasets indicate that this approach yields the desired interoperability for the sake of reusability, interpretability and flexibility, without penalizing prediction quality. Code and data are archived under https://doi.org/10.5281/zenodo.7405327 .Comment: 18 pages, 6 figure

    A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

    Full text link
    Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.Comment: Preprint under review, 58 page

    Towards Cognizant Hearing Aids: Modeling of Content, Affect and Attention

    Get PDF

    Emotion Recognition from EEG Signal Focusing on Deep Learning and Shallow Learning Techniques

    Get PDF
    Recently, electroencephalogram-based emotion recognition has become crucial in enabling the Human-Computer Interaction (HCI) system to become more intelligent. Due to the outstanding applications of emotion recognition, e.g., person-based decision making, mind-machine interfacing, cognitive interaction, affect detection, feeling detection, etc., emotion recognition has become successful in attracting the recent hype of AI-empowered research. Therefore, numerous studies have been conducted driven by a range of approaches, which demand a systematic review of methodologies used for this task with their feature sets and techniques. It will facilitate the beginners as guidance towards composing an effective emotion recognition system. In this article, we have conducted a rigorous review on the state-of-the-art emotion recognition systems, published in recent literature, and summarized some of the common emotion recognition steps with relevant definitions, theories, and analyses to provide key knowledge to develop a proper framework. Moreover, studies included here were dichotomized based on two categories: i) deep learning-based, and ii) shallow machine learning-based emotion recognition systems. The reviewed systems were compared based on methods, classifier, the number of classified emotions, accuracy, and dataset used. An informative comparison, recent research trends, and some recommendations are also provided for future research directions

    Energy-Efficient Recurrent Neural Network Accelerators for Real-Time Inference

    Full text link
    Over the past decade, Deep Learning (DL) and Deep Neural Network (DNN) have gone through a rapid development. They are now vastly applied to various applications and have profoundly changed the life of hu- man beings. As an essential element of DNN, Recurrent Neural Networks (RNN) are helpful in processing time-sequential data and are widely used in applications such as speech recognition and machine translation. RNNs are difficult to compute because of their massive arithmetic operations and large memory footprint. RNN inference workloads used to be executed on conventional general-purpose processors including Central Processing Units (CPU) and Graphics Processing Units (GPU); however, they have un- necessary hardware blocks for RNN computation such as branch predictor, caching system, making them not optimal for RNN processing. To accelerate RNN computations and outperform the performance of conventional processors, previous work focused on optimization methods on both software and hardware. On the software side, previous works mainly used model compression to reduce the memory footprint and the arithmetic operations of RNNs. On the hardware side, previous works also designed domain-specific hardware accelerators based on Field Pro- grammable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) with customized hardware pipelines optimized for efficient pro- cessing of RNNs. By following this software-hardware co-design strategy, previous works achieved at least 10X speedup over conventional processors. Many previous works focused on achieving high throughput with a large batch of input streams. However, in real-time applications, such as gaming Artificial Intellegence (AI), dynamical system control, low latency is more critical. Moreover, there is a trend of offloading neural network workloads to edge devices to provide a better user experience and privacy protection. Edge devices, such as mobile phones and wearable devices, are usually resource-constrained with a tight power budget. They require RNN hard- ware that is more energy-efficient to realize both low-latency inference and long battery life. Brain neurons have sparsity in both the spatial domain and time domain. Inspired by this human nature, previous work mainly explored model compression to induce spatial sparsity in RNNs. The delta network algorithm alternatively induces temporal sparsity in RNNs and can save over 10X arithmetic operations in RNNs proven by previous works. In this work, we have proposed customized hardware accelerators to exploit temporal sparsity in Gated Recurrent Unit (GRU)-RNNs and Long Short-Term Memory (LSTM)-RNNs to achieve energy-efficient real-time RNN inference. First, we have proposed DeltaRNN, the first-ever RNN accelerator to exploit temporal sparsity in GRU-RNNs. DeltaRNN has achieved 1.2 TOp/s effective throughput with a batch size of 1, which is 15X higher than its related works. Second, we have designed EdgeDRNN to accelerate GRU-RNN edge inference. Compared to DeltaRNN, EdgeDRNN does not rely on on-chip memory to store RNN weights and focuses on reducing off-chip Dynamic Random Access Memory (DRAM) data traffic using a more scalable architecture. EdgeDRNN have realized real-time inference of large GRU-RNNs with submillisecond latency and only 2.3 W wall plug power consumption, achieving 4X higher energy efficiency than commercial edge AI platforms like NVIDIA Jetson Nano. Third, we have used DeltaRNN to realize the first-ever continuous speech recognition sys- tem with the Dynamic Audio Sensor (DAS) as the front-end. The DAS is a neuromorphic event-driven sensor that produces a stream of asyn- chronous events instead of audio data sampled at a fixed sample rate. We have also showcased how an RNN accelerator can be integrated with an event-driven sensor on the same chip to realize ultra-low-power Keyword Spotting (KWS) on the extreme edge. Fourth, we have used EdgeDRNN to control a powered robotic prosthesis using an RNN controller to replace a conventional proportional–derivative (PD) controller. EdgeDRNN has achieved 21 ÎŒs latency of running the RNN controller and could maintain stable control of the prosthesis. We have used DeltaRNN and EdgeDRNN to solve these problems to prove their value in solving real-world problems. Finally, we have applied the delta network algorithm on LSTM-RNNs and have combined it with a customized structured pruning method, called Column-Balanced Targeted Dropout (CBTD), to induce spatio-temporal sparsity in LSTM-RNNs. Then, we have proposed another FPGA-based accelerator called Spartus, the first RNN accelerator that exploits spatio- temporal sparsity. Spartus achieved 9.4 TOp/s effective throughput with a batch size of 1, the highest among present FPGA-based RNN accelerators with a power budget around 10 W. Spartus can complete the inference of an LSTM layer having 5 million parameters within 1 ÎŒs
    • 

    corecore