171 research outputs found

    Design of a cybernetic hand for perception and action

    Get PDF
    Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllability—in addition to poor cosmetic appearance—are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumb–finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the user’s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control

    The SmartHand transradial prosthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. <it>SmartHand </it>tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand.</p> <p>Methods</p> <p>SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces.</p> <p>Results</p> <p>SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects.</p> <p>Conclusions</p> <p>Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies.</p

    Nonlinear control strategy for a cost effective myoelectric prosthetic hand

    Get PDF
    The loss of a limb tremendously impacts the life of the affected individual. In the past decades, researchers have been developing artificial limbs that may return some of the missing functions and cosmetics. However, the development of dexterous mechanisms capable of mimicking the function of the human hand is a complex venture. Even though myoelectric prostheses have advanced, several issues remain to be solved before an artificial limb may be comparable to its human counterpart. Moreover, the high cost of advanced limbs prevents their widespread use among the low-income population. This dissertation presents a strategy for the low-level of control of a cost effective robotic hand for prosthetic applications. The main purpose of this work is to reduce the high cost associated with limb replacement. The presented strategy uses an electromyographic signal classifier, which detects user intent by classifying 4 different wrist movements. This information is supplied as 4 different pre-shapes of the robotic hand to the low-level of control for safely and effectively performing the grasping tasks. Two proof-of-concept prototypes were implemented, consisting on five-finger underactuated hands driven by inexpensive DC motors and equipped with low-cost sensors. To overcome the limitations and nonlinearities of inexpensive components, a multi-stage control methodology was designed for modulating the grasping force based on slippage detection and nonlinear force control. A multi-stage control methodology for modulating the grasping force based on slippage detection and nonlinear force control was designed. The two main stages of the control strategy are the force control stage and the detection stage. The control strategy uses the force control stage to maintain a constant level of force over the object. The results of the experiments performed over this stage showed a rising time of less than 1 second, force overshoot of less than 1 N and steady state error of less than 0.15 N. The detection stage is used to monitor any sliding of the object from the hand. The experiments performed over this stage demonstrated a delay in the slip detection process of less than 200 milliseconds. The initial force, and the amount of force incremented after sliding is detected, were adjusted to reduce object displacement. Experiments were then performed to test the control strategy on situations often encountered in the ADL. The results showed that the control strategy was able to detect the dynamic changes in mass of the object and to successfully adjust the grasping force to prevent the object from dropping. The evaluation of the proposed control strategy suggests that this methodology can overcome the limitation of inexpensive sensors and actuators. Therefore, this control strategy may reduce the cost of current myoelectric prosthesis. We believe that the work presented here is a major step towards the development of a cost effective myoelectric prosthetic hand

    Active haptic perception in robots: a review

    Get PDF
    In the past few years a new scenario for robot-based applications has emerged. Service and mobile robots have opened new market niches. Also, new frameworks for shop-floor robot applications have been developed. In all these contexts, robots are requested to perform tasks within open-ended conditions, possibly dynamically varying. These new requirements ask also for a change of paradigm in the design of robots: on-line and safe feedback motion control becomes the core of modern robot systems. Future robots will learn autonomously, interact safely and possess qualities like self-maintenance. Attaining these features would have been relatively easy if a complete model of the environment was available, and if the robot actuators could execute motion commands perfectly relative to this model. Unfortunately, a complete world model is not available and robots have to plan and execute the tasks in the presence of environmental uncertainties which makes sensing an important component of new generation robots. For this reason, today\u2019s new generation robots are equipped with more and more sensing components, and consequently they are ready to actively deal with the high complexity of the real world. Complex sensorimotor tasks such as exploration require coordination between the motor system and the sensory feedback. For robot control purposes, sensory feedback should be adequately organized in terms of relevant features and the associated data representation. In this paper, we propose an overall functional picture linking sensing to action in closed-loop sensorimotor control of robots for touch (hands, fingers). Basic qualities of haptic perception in humans inspire the models and categories comprising the proposed classification. The objective is to provide a reasoned, principled perspective on the connections between different taxonomies used in the Robotics and human haptic literature. The specific case of active exploration is chosen to ground interesting use cases. Two reasons motivate this choice. First, in the literature on haptics, exploration has been treated only to a limited extent compared to grasping and manipulation. Second, exploration involves specific robot behaviors that exploit distributed and heterogeneous sensory data

    Distributed Sensing and Stimulation Systems Towards Sense of Touch Restoration in Prosthetics

    Get PDF
    Modern prostheses aim at restoring the functional and aesthetic characteristics of the lost limb. To foster prosthesis embodiment and functionality, it is necessary to restitute both volitional control and sensory feedback. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing high-fidelity spatial information. To provide this type of feedback in prosthetics, it is necessary to sense tactile information from artificial skin placed on the prosthesis and transmit tactile feedback above the amputation in order to map the interaction between the prosthesis and the environment. This thesis proposes the integration of distributed sensing systems (e-skin) to acquire tactile sensation, and non-invasive multichannel electrotactile feedback and virtual reality to deliver high-bandwidth information to the user. Its core focus addresses the development and testing of close-loop sensory feedback human-machine interface, based on the latest distributed sensing and stimulation techniques for restoring the sense of touch in prosthetics. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives and the used methodology and contributions; as well as three studies distributed over stimulation system level and sensing system level. The first study presents the development of close-loop compensatory tracking system to evaluate the usability and effectiveness of electrotactile sensory feedback in enabling real-time close-loop control in prosthetics. It examines and compares the subject\u2019s adaptive performance and tolerance to random latencies while performing the dynamic control task (i.e. position control) and simultaneously receiving either visual feedback or electrotactile feedback for communicating the momentary tracking error. Moreover, it reported the minimum time delay needed for an abrupt impairment of users\u2019 performance. The experimental results have shown that electrotactile feedback performance is less prone to changes with longer delays. However, visual feedback drops faster than electrotactile with increased time delays. This is a good indication for the effectiveness of electrotactile feedback in enabling close- loop control in prosthetics, since some delays are inevitable. The second study describes the development of a novel non-invasive compact multichannel interface for electrotactile feedback, containing 24 pads electrode matrix, with fully programmable stimulation unit, that investigates the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the electrode matrix. Furthermore, it designed a novel dual parameter -modulation (interleaved frequency and intensity) and compared it to conventional stimulation (same frequency for all pads). In addition and for the first time, it compared the electrotactile stimulation to mechanical stimulation. More, it exposes the integration of virtual prosthesis with the developed system in order to achieve better user experience and object manipulation through mapping the acquired real-time collected tactile data and feedback it simultaneously to the user. The experimental results demonstrated that the proposed interleaved coding substantially improved the spatial localization compared to same-frequency stimulation. Furthermore, it showed that same-frequency stimulation was equivalent to mechanical stimulation, whereas the performance with dual-parameter modulation was significantly better. The third study presents the realization of a novel, flexible, screen- printed e-skin based on P(VDF-TrFE) piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic hand (particularly the Michelangelo hand by Ottobock) and an assistive sensorized glove for stroke patients. Moreover, it developed a new validation methodology to examine the sensors behavior while being solicited. The characterization results showed compatibility between the expected (modeled) behavior of the electrical response of each sensor to measured mechanical (normal) force at the skin surface, which in turn proved the combination of both fabrication and assembly processes was successful. This paves the way to define a practical, simplified and reproducible characterization protocol for e-skin patches In conclusion, by adopting innovative methodologies in sensing and stimulation systems, this thesis advances the overall development of close-loop sensory feedback human-machine interface used for restoration of sense of touch in prosthetics. Moreover, this research could lead to high-bandwidth high-fidelity transmission of tactile information for modern dexterous prostheses that could ameliorate the end user experience and facilitate it acceptance in the daily life

    A hybrid haptic stimulation prosthetic wearable device to recover the missing sensation of the upper limb amputees

    Get PDF
    A hybrid haptic feedback stimulation system that is capable in sensing the contact pressure, the surface texture, and the temperature, simultaneously, was designed for a prosthetic hand to provide a tactile sensation to amputation patients. In addition, the haptic system was developed to enable the prosthetic’s users to implement withdrawal reflexes due to the thermal noxious stimulus in a quick manner. The re-sensation is achieved by non-invasively stimulating the skin of the patients’ residual limbs, based on the type and the level of tactile signals provided by the sensory system of the prostheses. Accordingly, three stages of design and development were performed to satisfy the research methodology. A vibrotactile prosthetic device, which is designed for the detection of contact pressure and surface texture in upper extremity, represents. While, the design of a novel wearable hybrid pressure-vibration haptic feedback stimulation device for conveying the tactile information regarding the contact pressure between the prosthetic hand and the grasped objects represents the second methodology stage. Lastly, the third stage was achieved by designing a novel hybrid pressure-vibration-temperature feedback stimulation system to provide a huge information regarding the prostheses environment to the users without brain confusing or requiring long pre-training. The main contribution of this work is the development and evaluation of the first step of a novel approach for a lightweight, 7 Degrees-Of-Freedom (DOF) tactile prosthetic arm to perform an effective as well as fast object manipulation and grasping. Furthermore, this study investigates the ability to convey the tactile information about the contact pressure, surface texture, and object temperature to the amputees with high identification accuracy by mean of using the designed hybrid pressure-vibration-temperature feedback wearable device. An evaluation of sensation and response has been conducted on forty healthy volunteers to evaluate the ability of the haptic system to stimulate the human nervous system. The results in term of Stimulus Identification Rate (SIR) show that all the volunteers were correctly able to discriminate the sensation of touch, start of touch, end of touch, and grasping objects. While 94%, 96%, 97%, and 95.24% of the entire stimuli were successfully identified by the volunteers during the experiments of slippage, pressure level, surface texture, and temperature, respectively. The position tracking controller system was designed to synchronize the movements of the volunteers’ elbow joints and the prosthetic’s elbow joint to record the withdrawal reflexes. The results verified the ability of the haptic system to excite the human brain at the abnormal noxious stimulus and enable the volunteers to perform a quick withdrawal reflex within 0.32 sec. The test results and the volunteers' response established evidence that amputees are able to recover their sense of the contact pressure, the surface texture, and the object temperature as well as to perform thermal withdrawal reflexes using the solution developed in this work

    Modeling and Fabrication of Piezoelectric Nanomaterial Devices for Sensing and Energy Harvesting.

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2018. Major: Mechanical Engineering. Advisors: Rusen Yang, Juergen Konczak. 1 computer file (PDF); vii, 110 pages.Piezoelectric nanomaterials are the basis for many devices including sensors and energy harvesters, but more work is needed to realize the advantages of emerging materials and new designs. Barriers to the continued development of these devices include a limited understanding of piezoelectric behavior in emerging nanomaterials, and the limitations of current fabrication techniques. This thesis seeks to overcome these barriers, and fabricate new piezoelectric nanomaterial devices by 1) developing finite element models to explore piezoelectricity in an emerging nanomaterial, and 2) expanding a current fabrication technique to new substrates. Diphenylalanine (FF) peptide is an emerging bio-inspired piezoelectric material. However, limited information is available to predict its piezoelectric performance compared to conventional materials. In addition to piezoelectricity, nanomaterials such as zinc oxide (ZnO) may have semiconducting properties, making them suitable for highly sensitive devices enabled by the piezotronic effect. Chemical vapor deposition (CVD) can produce ultra-long ZnO nanowires, but the high-temperature process is incompatible with flexible polymer substrates, limiting device design. Finite element models were designed to predict piezoelectric potential in FF peptide. A model of a flexible FF peptide nanogenerator was created, and the nanogenerator was fabricated for mechanical energy harvesting. Next, a finite element model was created to investigate a piezotronic, ZnO nanowire-based force sensor for haptics and prosthetics applications. The use of ZnO nanowires grown by CVD was expanded to soft polymer substrates by a mechanical transfer process, to create a piezotronic strain sensor. Lastly, an apparatus for using low-temperature growth substrates inside of a high-temperature CVD furnace was designed and fabricated. Results of finite element models successfully predicted the piezoelectric behavior of a fabricated FF peptide nanogenerator, and suggest that a proposed tactile sensor could exceed the sensitivity of human mechanoreceptors. A mechanical transfer process was used to expand CVD to low-temperature substrates and realize a stretchable piezotronic strain sensor. An apparatus for cooling substrates inside a high-temperature CVD furnace was demonstrated for the synthesis of MoS2 on a low-temperature substrate. Finite element modeling and the expansion of current fabrication techniques can enable new piezoelectric nanomaterial devices for sustainable energy and human health

    The Role of Exploratory Conditions in Bio-Inspired Tactile Sensing of Single Topogical Features

    Get PDF
    We investigate the mechanism of tactile transduction during active exploration of finely textured surfaces using a tactile sensor mimicking the human fingertip. We focus in particular on the role of exploratory conditions in shaping the subcutaneous mechanical signals. The sensor has been designed by integrating a linear array of MEMS micro-force sensors in an elastomer layer. We measure the response of the sensors to the passage of elementary topographical features at constant velocity and normal load, such as a small hole on a flat substrate. Each sensor’s response is found to strongly depend on its relative location with respect to the substrate/skin contact zone, a result which can be quantitatively understood within the scope of a linear model of tactile transduction. The modification of the response induced by varying other parameters, such as the thickness of the elastic layer and the confining load, are also correctly captured by this model. We further demonstrate that the knowledge of these characteristic responses allows one to dynamically evaluate the position of a small hole within the contact zone, based on the micro-force sensors signals, with a spatial resolution an order of magnitude better than the intrinsic resolution of individual sensors. Consequences of these observations on robotic tactile sensing are briefly discussed

    The Architecture of Soft Machines

    Get PDF
    This thesis speculates about the possibility of softening architecture through machines. In deviating from traditional mechanical conceptions of machines based on autonomous, functional and purely operational notions, the thesis proposes to conceive of machines as corporeal media in co-constituting relationships with human bodies. As machines become corporeal (robots) and human bodies take on qualities of machines (cyborgs) the thesis investigates their relations to architecture through readings of William S. Burroughs’ proto-cyborgian novel The Soft Machine (1961) and Georges Teyssot’s essay ‘Hybrid Architecture: An Environment for the Prosthetic Body’ (2005) arguing for a revision of architecture’s anthropocentric mandate in favour of technologically co-constituting body ideas. The conceptual shift in man-machine relations is also demonstrated by discussion of two installations shown at the Venice Biennale, Daniel Libeskind’s mechanical Three Lessons in Architecture (1985) and Philip Beesely’s responsive Hylozoic Ground (2010). As the purely mechanical model has been superseded by a model that incorporates digital sensing and embedded actuation, as well as soft and compliant materiality, the promise of softer, more sensitive and corporeal conceptions of technology shines onto architecture. Following Nicholas Negroponte’s ambition for a ‘humanism through machines,’ stated in his groundbreaking work, Soft Architecture Machines (1975), and inspired by recent developments in the emerging field of soft robotics, I have developed a series of practical design experiments, ranging from soft mechanical hybrids to soft machines made entirely from silicone and actuated by embedded pneumatics, to speculate about architectural environments capable of interacting with humans. In a radical departure from traditional mechanical conceptions based on modalities of assembly, the design of these types of soft machines is derived from soft organisms such as molluscs (octopi, snails, jellyfish) in order to infuse them with notions of flexibility, compliance, sensitivity, passive dynamics and spatial variability. Challenging architecture’s alliance with notions of permanence and monumentality, the thesis finally formulates a critique of static typologisation of space with walls, floors, columns or windows. In proposing an embodied architecture the thesis concludes by speculating about architecture as a capacitated, sensitive and sensual body informed by reciprocal conditioning of constituent systems, materials, morphologies and behaviours
    corecore