7,740 research outputs found

    Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

    Get PDF
    Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26- connected components of I. In addition, we define the weight of an edge (R, S) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs. An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.Ministerio de Economía y Competitividad MTM2016-81030-

    A theory of structural model validity in simulation.

    Get PDF
    During the last decennia, the practice of simulation has become increasingly popular among many system analysts, model builders and general scientists for the purpose of studying complex systems that surpass the operability of analytical solution techniques. As a consequence of the pragmatic orientation of simulation, a vital stage for a successful application is the issue of validating a constructed simulation model. Employing the model as an effective instrument for assessing the benefit of structural changes or for predicting future observations makes validation an essential part of any productive simulation study. The diversity of the employment field of simulation however brings about that there exists an irrefutable level of ambiguity concerning the principal subject of this validation process. Further, the literature has come up with a plethora of ad hoc validation techniques that have mostly been inherited from standard statistical analysis. It lies within the aim of this paper to reflect on the issue of validation in simulation and to present the reader with a topological parallelism of the classical philosophical polarity of objectivism versus relativism. First, we will position validation in relation to verification and accreditation and elaborate on the prime actors in validation, i.e. a conceptual model, a formal model and behaviour. Next, we will formally derive a topological interpretation of structural validation for both objectivists and relativists. As will be seen, recent advances in the domain of fuzzy topology allow for a valuable metaphor of a relativistic attitude towards modelling and structural validation. Finally, we will discuss several general types of modelling errors that may occur and examine their repercussion on the natural topological spaces of objectivists and relativists. We end this paper with a formal, topological oriented definition of structural model validity for both objectivists and relativists. The paper is concluded with summarising the most important findings and giving a direction for future research.Model; Simulation; Theory; Scientists; Processes; Statistical analysis;

    Searchable Sky Coverage of Astronomical Observations: Footprints and Exposures

    Full text link
    Sky coverage is one of the most important pieces of information about astronomical observations. We discuss possible representations, and present algorithms to create and manipulate shapes consisting of generalized spherical polygons with arbitrary complexity and size on the celestial sphere. This shape specification integrates well with our Hierarchical Triangular Mesh indexing toolbox, whose performance and capabilities are enhanced by the advanced features presented here. Our portable implementation of the relevant spherical geometry routines comes with wrapper functions for database queries, which are currently being used within several scientific catalog archives including the Sloan Digital Sky Survey, the Galaxy Evolution Explorer and the Hubble Legacy Archive projects as well as the Footprint Service of the Virtual Observatory.Comment: 11 pages, 7 figures, submitted to PAS

    Cubical Cohomology Ring of 3D Photographs

    Get PDF
    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex QQ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, ∂Q\partial Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information

    Spin networks, quantum automata and link invariants

    Full text link
    The spin network simulator model represents a bridge between (generalized) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFT). More precisely, when working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum automata which in turn represent discrete versions of topological quantum computation models. Such a quantum combinatorial scheme, which essentially encodes SU(2) Racah--Wigner algebra and its braided counterpart, is particularly suitable to address problems in topology and group theory and we discuss here a finite states--quantum automaton able to accept the language of braid group in view of applications to the problem of estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200

    Constraints on dark energy and cosmic topology

    Full text link
    A non-trivial spatial topology of the Universe is a potentially observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no assumptions on the cosmological parameters. We show how one can use a possible circles-in-the-sky detection of the spatial topology of globally homogeneous universes to set constraints on the dark energy equation of state parameters.Comment: 6 pages, 1 figure. To appear in Int. J. Mod. Phys. A (2009). From a talk presented at the Seventh Alexander Friedmann International Seminar on Gravitation and Cosmolog

    Rewriting Modernity

    Get PDF
    This article rereads Paul Virilio, drawing on the distinctionbetween topography and topology to argue a case for Virilio as a rewriter of modernity. Invoking Jean-François Lyotard’s notion of rewriting modernity as an unbroken process of accumulation founded on affective life in “Re-writing Modernity” and “Argumentation and Presentation: The Foundation Crisis,” it enlists topology as a horizontal spatial structure that enables us to rethink space, time,and modernity outside the limits of the “squared horizon,” where the“squared horizon” is viewed as a spatial and textual metaphor for framing perspectives on the past, present, and future. The analysis deconstructs the topography of the “squared horizon” as a relationality in an unfolding continuum, where spaces exist ontologically and where the immaterial forces of the dromospheric and the atmospheric generate a relational and historical connectedness

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd
    • 

    corecore