34 research outputs found

    Nullity Invariance for Pivot and the Interlace Polynomial

    Get PDF
    We show that the effect of principal pivot transform on the nullity values of the principal submatrices of a given (square) matrix is described by the symmetric difference operator (for sets). We consider its consequences for graphs, and in particular generalize the recursive relation of the interlace polynomial and simplify its proof.Comment: small revision of Section 8 w.r.t. v2, 14 pages, 6 figure

    The Interlace Polynomial

    Full text link
    In this paper, we survey results regarding the interlace polynomial of a graph, connections to such graph polynomials as the Martin and Tutte polynomials, and generalizations to the realms of isotropic systems and delta-matroids.Comment: 18 pages, 5 figures, to appear as a chapter in: Graph Polynomials, edited by M. Dehmer et al., CRC Press/Taylor & Francis Group, LL

    The adjacency matroid of a graph

    Full text link
    If GG is a looped graph, then its adjacency matrix represents a binary matroid MA(G)M_{A}(G) on V(G)V(G). MA(G)M_{A}(G) may be obtained from the delta-matroid represented by the adjacency matrix of GG, but MA(G)M_{A}(G) is less sensitive to the structure of GG. Jaeger proved that every binary matroid is MA(G)M_{A}(G) for some GG [Ann. Discrete Math. 17 (1983), 371-376]. The relationship between the matroidal structure of MA(G)M_{A}(G) and the graphical structure of GG has many interesting features. For instance, the matroid minors MA(G)−vM_{A}(G)-v and MA(G)/vM_{A}(G)/v are both of the form MA(G′−v)M_{A}(G^{\prime}-v) where G′G^{\prime} may be obtained from GG using local complementation. In addition, matroidal considerations lead to a principal vertex tripartition, distinct from the principal edge tripartition of Rosenstiehl and Read [Ann. Discrete Math. 3 (1978), 195-226]. Several of these results are given two very different proofs, the first involving linear algebra and the second involving set systems or delta-matroids. Also, the Tutte polynomials of the adjacency matroids of GG and its full subgraphs are closely connected to the interlace polynomial of Arratia, Bollob\'{a}s and Sorkin [Combinatorica 24 (2004), 567-584].Comment: v1: 19 pages, 1 figure. v2: 20 pages, 1 figure. v3:29 pages, no figures. v3 includes an account of the relationship between the adjacency matroid of a graph and the delta-matroid of a graph. v4: 30 pages, 1 figure. v5: 31 pages, 1 figure. v6: 38 pages, 3 figures. v6 includes a discussion of the duality between graphic matroids and adjacency matroids of looped circle graph

    Interlace Polynomials for Multimatroids and Delta-Matroids

    Full text link
    We provide a unified framework in which the interlace polynomial and several related graph polynomials are defined more generally for multimatroids and delta-matroids. Using combinatorial properties of multimatroids rather than graph-theoretical arguments, we find that various known results about these polynomials, including their recursive relations, are both more efficiently and more generally obtained. In addition, we obtain several interrelationships and results for polynomials on multimatroids and delta-matroids that correspond to new interrelationships and results for the corresponding graphs polynomials. As a tool we prove the equivalence of tight 3-matroids and delta-matroids closed under the operations of twist and loop complementation, called vf-safe delta-matroids. This result is of independent interest and related to the equivalence between tight 2-matroids and even delta-matroids observed by Bouchet.Comment: 35 pages, 3 figure
    corecore